1
|
Zu B, Chen S, Jin Q, Xu Z, Wu X, Wu L. Wurtzite CuIn(S xSe 1-x) 2 Nanocrystals: Colloidal Synthesis and Band-Gap Engineering. Inorg Chem 2024. [PMID: 39484835 DOI: 10.1021/acs.inorgchem.4c04140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
CuIn(SxSe1-x)2 nanocrystals as an emerging class of functional materials present huge potential for industrial applications; however, the synthesis of CuIn(SxSe1-x)2 nanocrystals remains a formidable challenge in achieving both tunable band gap and phase. Here, we reported a facile hot-injection method for synthesizing a family of wurtzite CuIn(SxSe1-x)2 nanocrystals, enabling manipulation of the S and Se contents across the entire compositional range (0 ≤ x ≤ 1). The obtained nanocrystals exhibit band gaps ranging from 1.21 to 1.58 eV, which vary depending on the S/Se ratios in the products. This approach can be readily extended to other scenarios involving chalcogenide nanomaterials, thereby facilitating the advancement of next-generation functional materials and applications.
Collapse
Affiliation(s)
- Bingqian Zu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Song Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Qiren Jin
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Zilong Xu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Xudong Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Liang Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
2
|
Drake GA, Keating LP, Huang C, Shim M. Colloidal Multi-Dot Nanorods. J Am Chem Soc 2024; 146:9074-9083. [PMID: 38517010 DOI: 10.1021/jacs.3c14115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Colloidal nanorod heterostructures consisting of multiple quantum dots within a nanorod (n-DNRs, where n is the number of quantum dots within a nanorod) are synthesized with alternating segments of CdSe "dot" and CdS "rod" via solution heteroepitaxy. The reaction temperature, time dependent ripening, and asymmetry of the wurtzite lattice and the resulting anisotropy of surface ligand steric hindrance are exploited to vary the morphology of the growing quantum dot segments. The alternating CdSe and CdS growth steps can be easily repeated to increment the dot number in unidirectional or bidirectional growth regimes. As an initial exploration of electron occupation effects on their optical properties, asymmetric 2-DNRs consisting of two dots of different lengths and diameters are synthesized and are shown to exhibit a change in color and an unusual photoluminescence quantum yield increase upon photochemical doping.
Collapse
Affiliation(s)
- Gryphon A Drake
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Logan P Keating
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Conan Huang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Moonsub Shim
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Shulenberger KE, Jilek MR, Sherman SJ, Hohman BT, Dukovic G. Electronic Structure and Excited State Dynamics of Cadmium Chalcogenide Nanorods. Chem Rev 2023; 123:3852-3903. [PMID: 36881852 DOI: 10.1021/acs.chemrev.2c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The cylindrical quasi-one-dimensional shape of colloidal semiconductor nanorods (NRs) gives them unique electronic structure and optical properties. In addition to the band gap tunability common to nanocrystals, NRs have polarized light absorption and emission and high molar absorptivities. NR-shaped heterostructures feature control of electron and hole locations as well as light emission energy and efficiency. We comprehensively review the electronic structure and optical properties of Cd-chalcogenide NRs and NR heterostructures (e.g., CdSe/CdS dot-in-rods, CdSe/ZnS rod-in-rods), which have been widely investigated over the last two decades due in part to promising optoelectronic applications. We start by describing methods for synthesizing these colloidal NRs. We then detail the electronic structure of single-component and heterostructure NRs and follow with a discussion of light absorption and emission in these materials. Next, we describe the excited state dynamics of these NRs, including carrier cooling, carrier and exciton migration, radiative and nonradiative recombination, multiexciton generation and dynamics, and processes that involve trapped carriers. Finally, we describe charge transfer from photoexcited NRs and connect the dynamics of these processes with light-driven chemistry. We end with an outlook that highlights some of the outstanding questions about the excited state properties of Cd-chalcogenide NRs.
Collapse
Affiliation(s)
| | - Madison R Jilek
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Skylar J Sherman
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Benjamin T Hohman
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Gordana Dukovic
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado 80309, United States.,Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
4
|
Abstract
Anisotropic heterostructures of colloidal nanocrystals embed size-, shape-, and composition-dependent electronic structure within variable three-dimensional morphology, enabling intricate design of solution-processable materials with high performance and programmable functionality. The key to designing and synthesizing such complex materials lies in understanding the fundamental thermodynamic and kinetic factors that govern nanocrystal growth. In this review, nanorod heterostructures, the simplest of anisotropic nanocrystal heterostructures, are discussed with respect to their growth mechanisms. The effects of crystal structure, surface faceting/energies, lattice strain, ligand sterics, precursor reactivity, and reaction temperature on the growth of nanorod heterostructures through heteroepitaxy and cation exchange reactions are explored with currently known examples. Understanding the role of various thermodynamic and kinetic parameters enables the controlled synthesis of complex nanorod heterostructures that can exhibit unique tailored properties. Selected application prospects arising from such capabilities are then discussed.
Collapse
Affiliation(s)
- Gryphon A Drake
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 United States
| | - Logan P Keating
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 United States
| | - Moonsub Shim
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 United States
| |
Collapse
|
5
|
Aguilar-Ferrer D, Szewczyk J, Coy E. Recent developments in polydopamine-based photocatalytic nanocomposites for energy production: Physico-chemical properties and perspectives. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Cassidy J, Yang M, Harankahage D, Porotnikov D, Moroz P, Razgoniaeva N, Ellison C, Bettinger J, Ehsan S, Sanchez J, Madry J, Khon D, Zamkov M. Tuning the Dimensionality of Excitons in Colloidal Quantum Dot Molecules. NANO LETTERS 2021; 21:7339-7346. [PMID: 34450018 DOI: 10.1021/acs.nanolett.1c02540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrically coupled quantum dots (QDs) can support unique optoelectronic properties arising from the superposition of single-particle excited states. Experimental methods for integrating colloidal QDs within the same nano-object, however, have remained elusive to the rational design. Here, we demonstrate a chemical strategy that allows for the assembling of colloidal QDs into coupled composites, where proximal interactions give rise to unique optoelectronic behavior. The assembly method employing "adhesive" surfactants was used to fabricate both homogeneous (e.g., CdS-CdS, PbS-PbS, CdSe-CdSe) and heterogeneous (e.g., PbS-CdS, CdS-CdSe) nanoparticle assemblies, exhibiting quasi-one-dimensional exciton fine structure. In addition, tunable mixing of single-particle exciton states was achieved for dimer-like assemblies of CdSe/CdS core-shell nanocrystals. The nanoparticle assembly mechanism was explained within the viscoelastic interaction theory adapted for molten-surface colloids. We expect that the present work will provide the synthetic and theoretical foundation needed for building assemblies of many inorganic nanocrystals.
Collapse
Affiliation(s)
- James Cassidy
- The Center for Photochemical Sciences and Department of Physics, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Mingrui Yang
- The Center for Photochemical Sciences and Department of Physics, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Dulanjan Harankahage
- The Center for Photochemical Sciences and Department of Physics, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Dmitry Porotnikov
- The Center for Photochemical Sciences and Department of Physics, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Pavel Moroz
- The Center for Photochemical Sciences and Department of Physics, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Natalia Razgoniaeva
- The Center for Photochemical Sciences and Department of Physics, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Cole Ellison
- The Center for Photochemical Sciences and Department of Physics, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Jacob Bettinger
- The Center for Photochemical Sciences and Department of Physics, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Shafqat Ehsan
- Department of Chemistry and Biochemistry, St. Mary's University, San Antonio, Texas 78228, United States
| | - John Sanchez
- Department of Chemistry and Biochemistry, St. Mary's University, San Antonio, Texas 78228, United States
| | - Jessica Madry
- Texas A&M University College of Medicine, Bryan, Texas 77807, United States
| | - Dmitriy Khon
- Department of Chemistry and Biochemistry, St. Mary's University, San Antonio, Texas 78228, United States
| | - Mikhail Zamkov
- The Center for Photochemical Sciences and Department of Physics, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
7
|
Burke R, Bren KL, Krauss TD. Semiconductor nanocrystal photocatalysis for the production of solar fuels. J Chem Phys 2021; 154:030901. [DOI: 10.1063/5.0032172] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Rebeckah Burke
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Kara L. Bren
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Todd D. Krauss
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
- The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
8
|
Chen K, Wang C, Peng Z, Qi K, Guo Z, Zhang Y, Zhang H. The chemistry of colloidal semiconductor nanocrystals: From metal-chalcogenides to emerging perovskite. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213333] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Zhang H, Guyot-Sionnest P. Shape-Controlled HgTe Colloidal Quantum Dots and Reduced Spin-Orbit Splitting in the Tetrahedral Shape. J Phys Chem Lett 2020; 11:6860-6866. [PMID: 32787206 DOI: 10.1021/acs.jpclett.0c01550] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Spherical and tetrahedral HgTe colloidal quantum dots (CQDs) are synthesized, and their doping is tuned electrochemically. Compared to spherical dots of a similar volume, the tetrahedral CQDs show a decrease in confinement energy as well as a sharper band edge absorption. The intraband spectra of the tetrahedral CQDs also display a smaller splitting from spin-orbit coupling. The shape-controlled synthesis with an improved size distribution and sharper optical features could find applications in optoelectronic devices.
Collapse
Affiliation(s)
- Haozhi Zhang
- The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Philippe Guyot-Sionnest
- The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
10
|
Chen J, Ma Q, Wu XJ, Li L, Liu J, Zhang H. Wet-Chemical Synthesis and Applications of Semiconductor Nanomaterial-Based Epitaxial Heterostructures. NANO-MICRO LETTERS 2019; 11:86. [PMID: 34138028 PMCID: PMC7770813 DOI: 10.1007/s40820-019-0317-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/29/2019] [Indexed: 05/19/2023]
Abstract
Semiconductor nanomaterial-based epitaxial heterostructures with precisely controlled compositions and morphologies are of great importance for various applications in optoelectronics, thermoelectrics, and catalysis. Until now, various kinds of epitaxial heterostructures have been constructed. In this minireview, we will first introduce the synthesis of semiconductor nanomaterial-based epitaxial heterostructures by wet-chemical methods. Various architectures based on different kinds of seeds or templates are illustrated, and their growth mechanisms are discussed in detail. Then, the applications of epitaxial heterostructures in optoelectronics, catalysis, and thermoelectrics are described. Finally, we provide some challenges and personal perspectives for the future research directions of semiconductor nanomaterial-based epitaxial heterostructures.
Collapse
Affiliation(s)
- Junze Chen
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qinglang Ma
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xue-Jun Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Liuxiao Li
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jiawei Liu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hua Zhang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, People's Republic of China.
| |
Collapse
|
11
|
Choo S, Ban HW, Gu DH, Jeong H, Jo S, Baek S, Jo W, Son JS. Synthesis of Inorganic-Organic 2D CdSe Slab-Diamine Quantum Nets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804426. [PMID: 30624025 DOI: 10.1002/smll.201804426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/13/2018] [Indexed: 06/09/2023]
Abstract
Porous semiconductors attract great interest due to their unique structural characteristics of high surface area as well as their intrinsic optical and electronic properties. In this study, synthesis of inorganic-organic 2D CdSe slabs-diaminooctane (DAO) porous quantum net structures is demonstrated. It is found that the hybrid 2D CdSe-DAO lamellar structures are disintegrated into porous net structures, maintaining an ultrathin thickness of ≈1 nm in CdSe slabs. Furthermore, the CdSe slabs in quantum nets show the highly shifted excitonic transition in the absorption spectrum, demonstrating their strongly confined electronic structures. The possible formation mechanism of this porous structure is investigated with the control experiments of the synthesis using n-alkyldiamines with various hydrocarbon chain lengths and ligand exchange of DAO with oleylamine. It is suggested that a strong van der Waals interaction among long chain DAO may exert strong tensile stress on the CdSe slabs, eventually disintegrating slabs. The thermal decomposition of CdSe-DAO quantum nets is further studied to form well-defined CdSe nanorods. It is believed that the current CdSe-DAO quantum nets will offer a new type of porous semiconductors nanostructures under a strong quantum-confinement regime, which can be applied to various technological areas of catalysts, electronics, and optoelectronics.
Collapse
Affiliation(s)
- Seungjun Choo
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyeong Woo Ban
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Da Hwi Gu
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyewon Jeong
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seungki Jo
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seongheon Baek
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Wook Jo
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jae Sung Son
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
12
|
Saini A, Saha A, Viñas C, Teixidor F. The key to controlling the morphologies of quantum nanocrystals: spherical carborane ligands. Chem Commun (Camb) 2019; 55:9817-9820. [DOI: 10.1039/c9cc03941d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carboranyl ligands with different functional moieties have been used to obtain different morphologies in the quantum regime using a colloidal route.
Collapse
Affiliation(s)
- Abhishek Saini
- Institut de Ciencia de Materials de Barcelona
- Bellaterra
- Spain
| | - Arpita Saha
- Institut de Ciencia de Materials de Barcelona
- Bellaterra
- Spain
| | - Clara Viñas
- Institut de Ciencia de Materials de Barcelona
- Bellaterra
- Spain
| | | |
Collapse
|
13
|
Chen W, Karton A, Hussian T, Javaid S, Wang F, Pang Y, Jia G. Spontaneous shape and phase control of colloidal ZnSe nanocrystals by tailoring Se precursor reactivity. CrystEngComm 2019. [DOI: 10.1039/c9ce00078j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel synthetic method of shape and phase control of ZnSe nanocrystals by tailoring Se precursor reactivity is reported.
Collapse
Affiliation(s)
- Wei Chen
- Curtin Institute of Functional Molecules and Interfaces
- School of Molecular and Life Sciences
- Curtin University
- Bentley
- Australia
| | - Amir Karton
- School of Molecular Sciences
- The University of Western Australia
- 6009 Perth
- Australia
| | - Tanveer Hussian
- School of Molecular Sciences
- The University of Western Australia
- 6009 Perth
- Australia
| | - Shaghraf Javaid
- Curtin Institute of Functional Molecules and Interfaces
- School of Molecular and Life Sciences
- Curtin University
- Bentley
- Australia
| | - Fei Wang
- Curtin Institute of Functional Molecules and Interfaces
- School of Molecular and Life Sciences
- Curtin University
- Bentley
- Australia
| | - Yingping Pang
- Curtin Institute of Functional Molecules and Interfaces
- School of Molecular and Life Sciences
- Curtin University
- Bentley
- Australia
| | - Guohua Jia
- Curtin Institute of Functional Molecules and Interfaces
- School of Molecular and Life Sciences
- Curtin University
- Bentley
- Australia
| |
Collapse
|
14
|
Ding T, Liang G, Wang J, Wu K. Carrier-doping as a tool to probe the electronic structure and multi-carrier recombination dynamics in heterostructured colloidal nanocrystals. Chem Sci 2018; 9:7253-7260. [PMID: 30288246 PMCID: PMC6148752 DOI: 10.1039/c8sc01926f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/31/2018] [Indexed: 12/29/2022] Open
Abstract
Heterostructured colloidal nanocrystals, such as core/shells and dot-in-rods, enable new spectral and dynamic properties otherwise unachievable with single-component nanocrystals or quantum dots (QDs). For example, the electron and hole wavefunctions can be engineered such that they are either both confined in the same domain or (partially) separated over different domains in the heterostructures, which are the so-called type I or (quasi-) type II localization regimes, respectively. A critical factor dictating the carrier localization regime is the band alignment or electronic structure of the heterostructure, which, however, is difficult to measure and hence is often ambiguous. In this work, using CdSe@CdS dot-in-rods (DIRs) as a model system, we show that band edge carrier-doping is a simple-yet-powerful tool to probe the electronic structure of heterostructures. By doping an electron into the CdSe core and then observing whether the doped electron bleaches band edge absorption of only the core or those of both the core and shell, we can easily differentiate the type I and quasi-type II structures. A systematic study of DIRs with various dimensions shows that the extent of electron wavefunction delocalization can be tuned by the core sizes and rod diameters. Comparison with the electronic structure determined from transient absorption measurements also reveals the important role of electron-hole binding in affecting the delocalization of electron wavefunction. In addition to probing the electronic structure, the doped electron allows for studying multi-carrier recombination dynamics in these heterostructures which plays a vital role in their many optical and optoelectronic applications. Specifically, by comparing the band edge exciton recombination kinetics of the doped and neutral DIRs, we can extract the negative trion lifetime, which can be further used to derive the positive trion lifetime when combined with biexciton lifetime measurements. These lifetimes also depend sensitively on the core sizes and rod diameters of the DIRs.
Collapse
Affiliation(s)
- Tao Ding
- State Key Laboratory of Molecular Reaction Dynamics , Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , China 116023 .
| | - Guijie Liang
- State Key Laboratory of Molecular Reaction Dynamics , Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , China 116023 .
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices , Hubei University of Arts and Science , Xiangyang , Hubei 441053 , China
| | - Junhui Wang
- State Key Laboratory of Molecular Reaction Dynamics , Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , China 116023 .
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics , Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , China 116023 .
| |
Collapse
|
15
|
Agrawal A, Cho SH, Zandi O, Ghosh S, Johns RW, Milliron DJ. Localized Surface Plasmon Resonance in Semiconductor Nanocrystals. Chem Rev 2018; 118:3121-3207. [PMID: 29400955 DOI: 10.1021/acs.chemrev.7b00613] [Citation(s) in RCA: 296] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Localized surface plasmon resonance (LSPR) in semiconductor nanocrystals (NCs) that results in resonant absorption, scattering, and near field enhancement around the NC can be tuned across a wide optical spectral range from visible to far-infrared by synthetically varying doping level, and post synthetically via chemical oxidation and reduction, photochemical control, and electrochemical control. In this review, we will discuss the fundamental electromagnetic dynamics governing light matter interaction in plasmonic semiconductor NCs and the realization of various distinctive physical properties made possible by the advancement of colloidal synthesis routes to such NCs. Here, we will illustrate how free carrier dielectric properties are induced in various semiconductor materials including metal oxides, metal chalcogenides, metal nitrides, silicon, and other materials. We will highlight the applicability and limitations of the Drude model as applied to semiconductors considering the complex band structures and crystal structures that predominate and quantum effects that emerge at nonclassical sizes. We will also emphasize the impact of dopant hybridization with bands of the host lattice as well as the interplay of shape and crystal structure in determining the LSPR characteristics of semiconductor NCs. To illustrate the discussion regarding both physical and synthetic aspects of LSPR-active NCs, we will focus on metal oxides with substantial consideration also of copper chalcogenide NCs, with select examples drawn from the literature on other doped semiconductor materials. Furthermore, we will discuss the promise that LSPR in doped semiconductor NCs holds for a wide range of applications such as infrared spectroscopy, energy-saving technologies like smart windows and waste heat management, biomedical applications including therapy and imaging, and optical applications like two photon upconversion, enhanced luminesence, and infrared metasurfaces.
Collapse
Affiliation(s)
- Ankit Agrawal
- McKetta Department of Chemical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Shin Hum Cho
- McKetta Department of Chemical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Omid Zandi
- McKetta Department of Chemical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Sandeep Ghosh
- McKetta Department of Chemical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Robert W Johns
- McKetta Department of Chemical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States.,Department of Chemistry , University of California Berkeley , Berkeley , California 94720 , United States
| | - Delia J Milliron
- McKetta Department of Chemical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
16
|
Enright MJ, Cossairt BM. Synthesis of tailor-made colloidal semiconductor heterostructures. Chem Commun (Camb) 2018; 54:7109-7122. [DOI: 10.1039/c8cc03498b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This feature article provides an account of the various bottom-up and top-down methods that have been developed to prepare colloidal heterostructures and highlights the benefits of a seeded assembly approach for greater control and customizability.
Collapse
|
17
|
Kim D, Lee YK, Lee D, Kim WD, Bae WK, Lee DC. Colloidal Dual-Diameter and Core-Position-Controlled Core/Shell Cadmium Chalcogenide Nanorods. ACS NANO 2017; 11:12461-12472. [PMID: 29131591 DOI: 10.1021/acsnano.7b06542] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
To capitalize on shape- and structure-dependent properties of semiconductor nanorods (NRs), high-precision control and exquisite design of their growth are desired. Cadmium chalcogenide (CdE; E = S or Se) NRs are the most studied class of such, whose growth exhibits axial anisotropy, i.e., different growth rates along the opposite directions of {0001} planes. However, the mechanism behind asymmetric axial growth of NRs remains unclear because of the difficulty in instant analysis of growth surfaces. Here, we design colloidal dual-diameter semiconductor NRs (DDNRs) under the quantum confinement regime, which have two sections along the long axis with different diameters. The segmentation of the DDNRs allows rigorous assessment of the kinetics of NR growth at a molecular level. The reactivity of a terminal facet passivated by an organic ligand is governed by monomer diffusivity through the surface ligand monolayer. Therefore, the growth rate in two polar directions can be finely tuned by controlling the strength of ligand-ligand attraction at end surfaces. Building on these findings, we report the synthesis of single-diameter CdSe/CdS core/shell NRs with CdSe cores of controllable position, which reveals a strong structure-optical polarization relationship. The understanding of the NR growth mechanism with controllable anisotropy will serve as a cornerstone for the exquisite design of more complex anisotropic nanostructures.
Collapse
Affiliation(s)
- Dahin Kim
- Department of Chemical and Biomolecular Engineering, KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Korea
| | - Young Kuk Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT) , Daejeon 34114, Korea
| | - Dongkyu Lee
- Department of Chemical and Biomolecular Engineering, KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Korea
| | - Whi Dong Kim
- Department of Chemical and Biomolecular Engineering, KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Korea
| | - Wan Ki Bae
- Photoelectronic Hybrids Research Center, Korea Institute of Science and Technology (KIST) , Seoul 02792, Korea
| | - Doh C Lee
- Department of Chemical and Biomolecular Engineering, KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Korea
| |
Collapse
|
18
|
Ponseca CS, Chábera P, Uhlig J, Persson P, Sundström V. Ultrafast Electron Dynamics in Solar Energy Conversion. Chem Rev 2017; 117:10940-11024. [DOI: 10.1021/acs.chemrev.6b00807] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Carlito S. Ponseca
- Division
of Chemical Physics, Chemical Center, and ‡Theoretical Chemistry Division,
Chemical Center, Lund University, Box 124, Lund SE-221 00, Sweden
| | - Pavel Chábera
- Division
of Chemical Physics, Chemical Center, and ‡Theoretical Chemistry Division,
Chemical Center, Lund University, Box 124, Lund SE-221 00, Sweden
| | - Jens Uhlig
- Division
of Chemical Physics, Chemical Center, and ‡Theoretical Chemistry Division,
Chemical Center, Lund University, Box 124, Lund SE-221 00, Sweden
| | - Petter Persson
- Division
of Chemical Physics, Chemical Center, and ‡Theoretical Chemistry Division,
Chemical Center, Lund University, Box 124, Lund SE-221 00, Sweden
| | - Villy Sundström
- Division
of Chemical Physics, Chemical Center, and ‡Theoretical Chemistry Division,
Chemical Center, Lund University, Box 124, Lund SE-221 00, Sweden
| |
Collapse
|
19
|
Ding Q, Zhang X, Li L, Lou X, Xu J, Zhou P, Yan M. Temperature dependent photoluminescence of composition tunable Zn xAgInSe quantum dots and temperature sensor application. OPTICS EXPRESS 2017; 25:19065-19076. [PMID: 29041096 DOI: 10.1364/oe.25.019065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
Quantum dots (QDs) exhibit not only wide tunability of luminescence but also complex optical properties because of the large degree of freedom in their structure and chemical composition. Quaternary ZnxAgInSe QDs with different Zn/Ag ratios were synthesized and examined as temperature sensors. The relationship among the luminescence energy, emission intensity, and full-width at half-maximum (FWHM) of the emission band at different temperatures was investigated. To understand the photoluminescence mechanism, time-resolved photoluminescence spectra were recorded. Moreover, the dependence of the luminescence peak energy and FWHM on temperature was investigated, and a small deviation from the actual temperature was observed, indicative of the use of ZnxAgInSe QDs as high sensitivity temperature sensors.
Collapse
|
20
|
Ji B, Panfil YE, Banin U. Heavy-Metal-Free Fluorescent ZnTe/ZnSe Nanodumbbells. ACS NANO 2017; 11:7312-7320. [PMID: 28654241 DOI: 10.1021/acsnano.7b03407] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
For visible range emitting particles, which are relevant for display and additional applications, Cd-chalcogenide nanocrystals have reached the highest degree of control and performance. Considering potential toxicity and regulatory limitations, there is a challenge to successfully develop Cd-free emitting nanocrystals and, in particular, heterostructures with desirable properties. Herein, we report a colloidal synthesis of fluorescent heavy-metal-free Zn-chalcogenide semiconductor nanodumbbells (NDBs), in which ZnSe tips were selectively grown on the apexes of ZnTe rods, as evidenced by a variety of methods. The fluorescence of the NDBs can be tuned between ∼500 and 585 nm by changing the ZnSe tip size. The emission quantum yield can be greatly increased through chloride surface treatment and reaches more than 30%. Simulations within an effective-mass-based model show that the hole wave function is spread over the ZnTe nanorods, while the electron wave function is localized on the ZnSe tips. Quantitative agreement for the red-shifted emission wavelength is obtained between the simulations and the experiments. Additionally, the changes in radiative lifetimes correlate well with the calculated decrease in electron-hole overlap upon growth of larger ZnSe tips. The heavy-metal-free ZnTe/ZnSe NDBs may be relevant for optoelectronic applications such as displays or light-emitting diodes.
Collapse
Affiliation(s)
- Botao Ji
- The Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Yossef E Panfil
- The Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Uri Banin
- The Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| |
Collapse
|
21
|
Jang Y, Shapiro A, Isarov M, Rubin-Brusilovski A, Safran A, Budniak AK, Horani F, Dehnel J, Sashchiuk A, Lifshitz E. Interface control of electronic and optical properties in IV–VI and II–VI core/shell colloidal quantum dots: a review. Chem Commun (Camb) 2017; 53:1002-1024. [DOI: 10.1039/c6cc08742f] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Core/shell heterostructures provide controlled optical properties, tuneable electronic structure, and chemical stability due to an appropriate interface design.
Collapse
|
22
|
Abstract
E
g(D, L) function of CdSe nanorods versus L and D.
Collapse
Affiliation(s)
- Ming Li
- School of Physics and Electronic Information
- Huaibei Normal University
- Huaibei
- China
- Collaborative Innovation Center of Advanced Functional Materials
| |
Collapse
|
23
|
Chatterjee S, Maitra U. Hierarchical self-assembly of photoluminescent CdS nanoparticles into a bile acid derived organogel: morphological and photophysical properties. Phys Chem Chem Phys 2017; 19:17726-17734. [DOI: 10.1039/c7cp02519j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple strategy for the preparation of a new bile acid derived organogel–CdS NP hybrid, and the study of its photophysical and morphological properties.
Collapse
Affiliation(s)
| | - Uday Maitra
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore
- India
| |
Collapse
|
24
|
Wu K, Liang G, Kong D, Chen J, Chen Z, Shan X, McBride JR, Lian T. Quasi-type II CuInS 2/CdS core/shell quantum dots. Chem Sci 2016; 7:1238-1244. [PMID: 29910880 PMCID: PMC5975837 DOI: 10.1039/c5sc03715h] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/12/2015] [Indexed: 02/03/2023] Open
Abstract
Ternary chalcopyrite CuInS2 quantum dots (QDs) have been extensively studied in recent years as an alternative to conventional QDs for solar energy conversion applications. However, compared with the well-established photophysics in prototypical CdSe QDs, much less is known about the excited properties of CuInS2 QDs. In this work, using ultrafast spectroscopy, we showed that both conduction band (CB) edge electrons and copper vacancy (VCu) localized holes were susceptible to surface trappings in CuInS2 QDs. These trap states could be effectively passivated by forming quasi-type II CuInS2/CdS core/shell QDs, leading to a single-exciton (with electrons delocalized among CuInS2/CdS CB and holes localized in VCu) half lifetime of as long as 450 ns. Because of reduced electron-hole overlap in quasi-type II QDs, Auger recombination of multiple excitons was also suppressed and the bi-exciton lifetime was prolonged to 42 ps in CuInS2/CdS QDs from 10 ps in CuInS2 QDs. These demonstrated advantages, including passivated trap states, long single and multiple exciton lifetimes, suggest that quasi-type II CuInS2/CdS QDs are promising materials for photovoltaic and photocatalytic applications.
Collapse
Affiliation(s)
- Kaifeng Wu
- Department of Chemistry , Emory University , 1515 Dickey Drive, NE , Atlanta , Georgia 30322 , USA .
| | - Guijie Liang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices , Hubei University of Arts and Science , Xiangyang 441053 , Hubei Province , P. R. China
| | - Degui Kong
- College of Electronic Engineering , Heilongjiang University , Harbin 150080 , P. R. China
| | - Jinquan Chen
- Department of Chemistry , Emory University , 1515 Dickey Drive, NE , Atlanta , Georgia 30322 , USA .
| | - Zheyuan Chen
- Department of Chemistry , Emory University , 1515 Dickey Drive, NE , Atlanta , Georgia 30322 , USA .
| | - Xinhe Shan
- Department of Chemistry , Emory University , 1515 Dickey Drive, NE , Atlanta , Georgia 30322 , USA .
| | - James R McBride
- Department of Chemistry , The Vanderbilt Institute of Nanoscale Science and Engineering , Vanderbilt University , Nashville TN 37235 , USA
| | - Tianquan Lian
- Department of Chemistry , Emory University , 1515 Dickey Drive, NE , Atlanta , Georgia 30322 , USA .
| |
Collapse
|
25
|
Chen G, Roy I, Yang C, Prasad PN. Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy. Chem Rev 2016; 116:2826-85. [DOI: 10.1021/acs.chemrev.5b00148] [Citation(s) in RCA: 1014] [Impact Index Per Article: 126.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Guanying Chen
- Institute
for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
- School
of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Indrajit Roy
- Institute
for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Chunhui Yang
- School
of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Paras N. Prasad
- Institute
for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
26
|
Plasmonic nanoparticles and their characterization in physiological fluids. Colloids Surf B Biointerfaces 2016; 137:39-49. [DOI: 10.1016/j.colsurfb.2015.05.053] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/20/2015] [Accepted: 05/27/2015] [Indexed: 11/19/2022]
|
27
|
Jiang Z, Matras-Postolek K, Yang P. Hydrophobic CdSe and CdTe quantum dots: shell coating, shape control, and self-assembly. RSC Adv 2016. [DOI: 10.1039/c6ra03408j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Several kinds of hydrophobic quantum dots including CdSe, CdTe, CdSe/CdxZn1−xS, and CdTe/CdSe/ZnSe were fabricated via organic synthesis to observe morphology variation during shell coating.
Collapse
Affiliation(s)
- Zhixiang Jiang
- School of Material Science and Engineering
- University of Jinan
- Jinan
- P.R. China
| | | | - Ping Yang
- School of Material Science and Engineering
- University of Jinan
- Jinan
- P.R. China
| |
Collapse
|
28
|
Wu K, Lian T. Quantum confined colloidal nanorod heterostructures for solar-to-fuel conversion. Chem Soc Rev 2016; 45:3781-810. [DOI: 10.1039/c5cs00472a] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Colloidal one-dimensional (1D) semiconductor nanorods (NRs) offer the opportunity to simultaneously maintain quantum confinement in radial dimensions for tunable light absorptions and bulk like carrier transport in the axial direction for long-distance charge separations.
Collapse
Affiliation(s)
- Kaifeng Wu
- Department of Chemistry
- Emory University
- Atlanta
- USA
| | | |
Collapse
|
29
|
Zhai Y, Shim M. Cu2S/ZnS Heterostructured Nanorods: Cation Exchange vs. Solution-Liquid-Solid-like Growth. Chemphyschem 2015; 17:741-51. [DOI: 10.1002/cphc.201500859] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Indexed: 11/08/2022]
Affiliation(s)
- You Zhai
- Department of Materials Science and Engineering; University of Illinois at Urbana-Champaign; 1304 W Green St. Urbana IL 61801 USA
| | - Moonsub Shim
- Department of Materials Science and Engineering; University of Illinois at Urbana-Champaign; 1304 W Green St. Urbana IL 61801 USA
| |
Collapse
|
30
|
Zhou D, Zou H, Liu M, Zhang K, Sheng Y, Cui J, Zhang H, Yang B. Surface Ligand Dynamics-Guided Preparation of Quantum Dots-Cellulose Composites for Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2015; 7:15830-9. [PMID: 26146754 DOI: 10.1021/acsami.5b03004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Surface ligand dynamics of colloidal quantum dots (QDs) has been revealed as an important issue for determining QDs performance in their synthesis and postsynthesis treatment, such as ligand-related photoluminescence, colloidal stability, and so forth. However, this issue is less associated with the preparation of highly luminescent nanocomposites, which usually leads to poor performance and repeatability. In this work, on the basis of the studies about surface ligand dynamics of aqueous QDs, highly luminescent QDs-cellulose composites are prepared and employed to fabricate high color purity light-emitting diodes (LEDs). Detailed investigations indicate that the species of QD capping ligands and in particular the temperature are the key for controlling the ligand dynamics. The preparation of nanocomposites using less dynamic ligand-modified QDs at low temperature overcomes the conventional problems of QD aggregation, low QD content, luminescence quenching and shift, thus producing highly luminescent QDs-cellulose composites. This protocol is available for a variety of aqueous QDs, such as CdS, CdSe, CdTe, and CdSe(x)Te(1-x), which permits the design and fabrication of QD-based LEDs using the nanocomposites as color conversion layer on a blue emitting InGaN chip.
Collapse
Affiliation(s)
- Ding Zhou
- †State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Haoyang Zou
- †State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Min Liu
- †State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Kai Zhang
- †State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yu Sheng
- ‡Department of Dermatology, First Affiliated Hospital, Harbin Medical University, Harbin 150001, P. R. China
| | | | - Hao Zhang
- †State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Bai Yang
- †State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
31
|
Wu K, Hill LJ, Chen J, McBride JR, Pavlopolous NG, Richey NE, Pyun J, Lian T. Universal Length Dependence of Rod-to-Seed Exciton Localization Efficiency in Type I and Quasi-Type II CdSe@CdS Nanorods. ACS NANO 2015; 9:4591-9. [PMID: 25803834 DOI: 10.1021/acsnano.5b01245] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A critical step involved in many applications of one-dimensional seeded CdSe@CdS nanorods, such as luminescent solar concentrators, optical gains, and photocatalysis, is the localization of excitons from the light-harvesting CdS nanorod antenna into the light-emitting CdSe quantum dot seed. We report that the rod-to-seed exciton localization efficiency decreases with the rod length but is independent of band alignment between the CdSe seed and CdS rod. This universal dependence can be well modeled by the competition between exciton one-dimensional diffusion to the CdSe seed and trapping on the CdS rod. This finding provides a rational approach for optimizing these materials for their various device applications.
Collapse
Affiliation(s)
- Kaifeng Wu
- †Department of Chemistry, Emory University, 1515 Dickey Drive, NE, Atlanta, Georgia 30322, United States
| | - Lawrence J Hill
- ‡Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Jinquan Chen
- †Department of Chemistry, Emory University, 1515 Dickey Drive, NE, Atlanta, Georgia 30322, United States
| | - James R McBride
- §Department of Chemistry, The Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Nicholas G Pavlopolous
- ‡Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Nathaniel E Richey
- ‡Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Jeffrey Pyun
- ‡Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Tianquan Lian
- †Department of Chemistry, Emory University, 1515 Dickey Drive, NE, Atlanta, Georgia 30322, United States
| |
Collapse
|
32
|
Wu K, Zhu H, Lian T. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods. Acc Chem Res 2015; 48:851-9. [PMID: 25682713 DOI: 10.1021/ar500398g] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Colloidal quantum confined one-dimensional (1D) semiconductor nanorods (NRs) and related semiconductor-metal heterostructures are promising new materials for efficient solar-to-fuel conversion because of their unique physical and chemical properties. NRs can simultaneously exhibit quantum confinement effects in the radial direction and bulk like carrier transport in the axial direction. The former implies that concepts well-established in zero-dimensional quantum dots, such as size-tunable energetics and wave function engineering through band alignment in heterostructures, can also be applied to NRs; while the latter endows NRs with fast carrier transport to achieve long distance charge separation. Selective growth of catalytic metallic nanoparticles, such as Pt, at the tips of NRs provides convenient routes to multicomponent heterostructures with photocatalytic capabilities and controllable charge separation distances. The design and optimization of such materials for efficient solar-to-fuel conversion require the understanding of exciton and charge carrier dynamics. In this Account, we summarize our recent studies of ultrafast charge separation and recombination kinetics and their effects on steady-state photocatalytic efficiencies of colloidal CdS and CdSe/CdS NRs and related NR-Pt heterostructures. After a brief introduction of their electronic structure, we discuss exciton dynamics of CdS NRs. By transient absorption and time-resolved photoluminescence decay, it is shown that although the conduction band electrons are long-lived, photogenerated holes in CdS NRs are trapped on an ultrafast time scale (∼0.7 ps), which forms localized excitons due to strong Coulomb interaction in 1D NRs. In quasi-type II CdSe/CdS dot-in-rod NRs, a large valence band offset drives the ultrafast localization of holes to the CdSe core, and the competition between this process and ultrafast hole trapping on a CdS rod leads to three types of exciton species with distinct spatial distributions. The effect of the exciton dynamics on photoreduction reactions is illustrated using methyl viologen (MV(2+)) as a model electron acceptor. The steady-state MV(2+) photoreduction quantum yield of CdSe/CdS dot-in-rod NRs approaches unity under rod excitation, much larger than CdSe QDs and CdSe/CdS core/shell QDs. Detailed time-resolved studies show that in quasi-type II CdSe/CdS NRs and type II ZnSe/CdS NRs strong quantum confinement in the radial direction facilitates fast electron transfer and hole removal, whereas the fast carrier mobility along the axial direction enables long distance charge separation and slow charge recombination, which is essential for efficient MV(2+) photoreduction. The NR/MV(2+) relay system can be coupled to Pt nanoparticles in solution for light-driven H2 generation. Alternatively, Pt-tipped CdS and CdSe/CdS NRs provide fully integrated all inorganic systems for light-driven H2 generation. In CdS-Pt and CdSe/CdS-Pt hetero-NRs, ultrafast hole trapping on the CdS rod surface or in CdSe core enables efficient electron transfer from NRs to Pt tips by suppressing hole and energy transfer. It is shown that the quantum yields of photodriven H2 generation using these heterostructures correlate well with measured hole transfer rates from NRs to sacrificial donors, revealing that hole removal is the key efficiency-limiting step. These findings provide important insights for designing more efficient quantum confined NR and NR-Pt based systems for solar-to-fuel conversion.
Collapse
Affiliation(s)
- Kaifeng Wu
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Haiming Zhu
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Tianquan Lian
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
33
|
Nam S, Oh N, Zhai Y, Shim M. High efficiency and optical anisotropy in double-heterojunction nanorod light-emitting diodes. ACS NANO 2015; 9:878-885. [PMID: 25565187 DOI: 10.1021/nn506577p] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Recent advances in colloidal quantum dot light-emitting diodes (QD-LEDs) have led to efficiencies and brightness that rival the best organic LEDs. Nearly ideal internal quantum efficiency being achieved leaves light outcoupling as the only remaining means to improve external quantum efficiency (EQE) but that might require radically different device design and reoptimization. However, the current state-of-the-art QD-LEDs are based on spherical core/shell QDs, and the effects of shape and optical anisotropy remain essentially unexplored. Here, we demonstrate solution-processed, red-emitting double-heterojunction nanorod (DHNR)-LEDs with efficient hole transport exhibiting low threshold voltage and high brightness (76,000 cd m(-2)) and efficiencies (EQE = 12%, current efficiency = 27.5 cd A(-1), and power efficiency = 34.6 lm W(-1)). EQE exceeding the expected upper limit of ∼ 8% (based on ∼ 20% light outcoupling and solution photoluminescence quantum yield of ∼ 40%) suggests shape anisotropy and directional band offsets designed into DHNRs play an important role in enhancing light outcoupling.
Collapse
Affiliation(s)
- Sooji Nam
- Department of Materials Science and Engineering and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign Urbana, Illinois 61801, United States
| | | | | | | |
Collapse
|
34
|
Zhou D, Liu M, Lin M, Bu X, Luo X, Zhang H, Yang B. Hydrazine-mediated construction of nanocrystal self-assembly materials. ACS NANO 2014; 8:10569-10581. [PMID: 25296278 DOI: 10.1021/nn5040444] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Self-assembly is the basic feature of supramolecular chemistry, which permits to integrate and enhance the functionalities of nano-objects. However, the conversion of self-assembled structures to practical materials is still laborious. In this work, on the basis of studying one-pot synthesis, spontaneous assembly, and in situ polymerization of aqueous semiconductor nanocrystals (NCs), NC self-assembly materials are produced and applied to design high performance white light-emitting diode (WLED). In producing self-assembly materials, the additive hydrazine (N2H4) is curial, which acts as the promoter to achieve room-temperature synthesis of aqueous NCs by favoring a reaction-controlled growth, as the polyelectrolyte to weaken inter-NC electrostatic repulsion and therewith facilitate the one-dimensional self-assembly, and in particular as the bifunctional monomers to polymerize with mercapto carboxylic acid-modified NCs via in situ amidation reaction. This strategy is versatile for mercapto carboxylic acid-modified aqueous NCs, for example CdS, CdSe, CdTe, CdSe(x)Te(1-x), and Cd(y)Hg(1-y)Te. Because of the multisite modification with carboxyl, the NCs act as macromonomers, thus producing cross-linked self-assembly materials with excellent thermal, solvent, and photostability. The assembled NCs preserve strong luminescence and avoid unpredictable fluorescent resonance energy transfer, the main problem in design WLED from multiple NC components. These advantages allow the fabrication of NC-based WLED with high color rendering index (86), high luminous efficacy (41 lm/W), and controllable color temperature.
Collapse
Affiliation(s)
- Ding Zhou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, PR China
| | | | | | | | | | | | | |
Collapse
|
35
|
Yang HJ, He SY, Tuan HY. Simultaneous axial screw dislocation-mediated growth and radial layer-by-layer deposition for controlled synthesis of asymmetric axial ZnO nanospindles. NANOSCALE 2014; 6:9034-9042. [PMID: 24970315 DOI: 10.1039/c4nr01888e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Single-component nanostructures with axial asymmetry were successfully synthesized in organic solvents via a new type of growth model. Asymmetric axial ZnO nanospindles with a hexagonal cross-section were produced by a growth model consisting of simultaneous axial screw dislocation-mediated growth and radial layer-by-layer deposition. The growth process of ZnO nanospindles is explained by comprehensively characterizing and monitoring the products at different reaction time intervals. Hexagonal discs containing dislocations were first generated at a reaction time of 2.5 min. When the reaction time continued to increase, the nanodiscs grew along the 〈0002〉 direction. Half-nanospindles were formed at mid-reaction stage when the growth rate of [0001] was greater than [000-1]. Finally, the asymmetric nanospindles were obtained at 40 min. Further, the length of the asymmetric axial ZnO spindles can be precisely tuned by the adjustment of reaction temperature. Thus, the growth model presented here can synthesize a new category of one-dimensional asymmetric nanostructures.
Collapse
Affiliation(s)
- Hong-Jie Yang
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013, Republic of China.
| | | | | |
Collapse
|
36
|
Oh N, Nam S, Zhai Y, Deshpande K, Trefonas P, Shim M. Double-heterojunction nanorods. Nat Commun 2014; 5:3642. [PMID: 24710332 DOI: 10.1038/ncomms4642] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/13/2014] [Indexed: 01/05/2023] Open
Abstract
As semiconductor heterostructures play critical roles in today's electronics and optoelectronics, the introduction of active heterojunctions can impart new and improved capabilities that will enable the use of solution-processable colloidal quantum dots in future devices. Such heterojunctions incorporated into colloidal nanorods may be especially promising, since the inherent shape anisotropy can provide additional benefits of directionality and accessibility in band structure engineering and assembly. Here we develop double-heterojunction nanorods where two distinct semiconductor materials with type II staggered band offset are both in contact with one smaller band gap material. The double heterojunction can provide independent control over the electron and hole injection/extraction processes while maintaining high photoluminescence yields. Light-emitting diodes utilizing double-heterojunction nanorods as the electroluminescent layer are demonstrated with low threshold voltage, narrow bandwidth and high efficiencies.
Collapse
Affiliation(s)
- Nuri Oh
- 1] Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA [2]
| | - Sooji Nam
- 1] Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA [2]
| | - You Zhai
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Kishori Deshpande
- The Dow Chemical Company, 2301 N. Brazosport Boulevard, Freeport, Texas 77541, USA
| | - Pete Trefonas
- Dow Electronic Materials, 455 Forest Street, Marlborough, Massachusetts 01752, USA
| | - Moonsub Shim
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
37
|
Lu X, Korgel BA. A Single-Step Reaction for Silicon and Germanium Nanorods. Chemistry 2014; 20:5874-9. [DOI: 10.1002/chem.201402230] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Indexed: 11/06/2022]
|
38
|
Alvarado SR, Guo Y, Ruberu TPA, Tavasoli E, Vela J. Inorganic chemistry solutions to semiconductor nanocrystal problems. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2013.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Lopez-Haro M, Jiu T, Bayle-Guillemaud P, Jouneau PH, Chandezon F. Multiscale tomographic analysis of polymer-nanoparticle hybrid materials for solar cells. NANOSCALE 2013; 5:10945-10955. [PMID: 24062024 DOI: 10.1039/c3nr03202g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The present work focuses on the study of the three-dimensional (3D) morphology of polymer and nanoparticle hybrid nanocomposites used as active layers in solution-processed solar cells. The hybrid consists of blends of regioregular poly(3-alkylthiophene) and CdSe nanorods. Electron tomography (ET) analysis performed in high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) allows resolving single nanorods in the hybrid blend. These results are compared with those obtained using focused ion beam coupled with scanning electron microscopy (FIB-SEM), operated in a so-called 3D "slice-and-view" mode. This technique allows 3D information to be obtained on a whole device stack (hybrid active layers plus electrodes and the substrate) for significantly larger surface areas than with ET (~10 vs. ~0.1 μm(2)). The combination of ET and 3D FIB "slice-and-view" reconstructions provides complementary and coherent information on the 3D morphology of the hybrid systems at different length scales. Phase separation between the nanoparticles and the polymer is investigated by a quantitative analysis of the reconstructed volumes and is related to the performances of the hybrid devices.
Collapse
Affiliation(s)
- Miguel Lopez-Haro
- INAC/SP2M (UMR-E CEA-UJF)/LEMMA, Minatec, CEA-Grenoble, 17 rue des Martyrs, F-38054 Grenoble cedex 9, France.
| | | | | | | | | |
Collapse
|
40
|
Wu K, Rodríguez-Córdoba WE, Liu Z, Zhu H, Lian T. Beyond band alignment: hole localization driven formation of three spatially separated long-lived exciton states in CdSe/CdS nanorods. ACS NANO 2013; 7:7173-85. [PMID: 23829512 DOI: 10.1021/nn402597p] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Colloidal one-dimensional semiconductor nanoheterostructures have emerged as an important family of functional materials for solar energy conversion, although the nature of the long-lived exciton state and their formation and dissociation dynamics remain poorly understood. In this paper we study these dynamics in CdSe/CdS dot-in-rod (DIR) NRs, a representative of 1D heterostructures, and DIR-electron-acceptor complexes by transient absorption spectroscopy. Because of a quasi-type II band alignment of CdSe and CdS, it is often assumed that there exists one long-lived exciton state with holes localized in the CdSe seed and electrons delocalized among CdSe and CdS. We show that excitation into the CdS rod forms three distinct types of long-lived excitons that are spatially localized in the CdS rod, in and near the CdSe seed and in the CdS shell surrounding the seed. The branching ratio of forming these exciton states is controlled by the competition between the band offset driven hole localization to the CdSe seed and hole trapping to the CdS surface. Because of dielectric contrast induced strong electron-hole interaction in 1D materials, the competing hole localization pathways lead to spatially separated long-lived excitons. Their distinct spatial locations affect their dissociation rates in the presence of electron acceptors, which has important implications for the application of 1D heterostructures as light-harvesting materials.
Collapse
Affiliation(s)
- Kaifeng Wu
- Department of Chemistry, Emory University, 1515 Dickey Drive, NE, Atlanta, Georgia 30322, United States
| | | | | | | | | |
Collapse
|
41
|
Chen G, Seo J, Yang C, Prasad PN. Nanochemistry and nanomaterials for photovoltaics. Chem Soc Rev 2013; 42:8304-38. [PMID: 23868557 DOI: 10.1039/c3cs60054h] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nanochemistry and nanomaterials provide numerous opportunities for a new generation of photovoltaics with high solar energy conversion efficiencies at low fabrication cost. Quantum-confined nanomaterials and polymer-inorganic nanocomposites can be tailored to harvest sun light over a broad range of the spectrum, while plasmonic structures offer effective ways to reduce the thickness of light-absorbing layers. Multiple exciton generation, singlet exciton fission, photon down-conversion, and photon up-conversion realized in nanostructures, create significant interest for harvesting underutilized ultraviolet and currently unutilized infrared photons. Nanochemical interface engineering of nanoparticle surfaces and junction-interfaces enable enhanced charge separation and collection. In this review, we survey these recent advances employed to introduce new concepts for improving the solar energy conversion efficiency, and reduce the device fabrication cost in photovoltaic technologies. The review concludes with a summary of contributions already made by nanochemistry. It then describes the challenges and opportunities in photovoltaics where the chemical community can play a vital role.
Collapse
Affiliation(s)
- Guanying Chen
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, People's Republic of China.
| | | | | | | |
Collapse
|
42
|
Lu X, Hessel CM, Yu Y, Bogart TD, Korgel BA. Colloidal luminescent silicon nanorods. NANO LETTERS 2013; 13:3101-3105. [PMID: 23731184 DOI: 10.1021/nl401802h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Silicon nanorods are grown by trisilane decomposition in hot squalane in the presence of tin (Sn) nanocrystals and dodecylamine. Sn induces solution-liquid-solid nanorod growth with dodecylamine serving as a stabilizing ligand. As-prepared nanorods do not luminesce, but etching with hydrofluoric acid to remove residual surface oxide followed by thermal hydrosilylation with 1-octadecene induces bright photoluminescence with quantum yields of 4-5%. X-ray photoelectron spectroscopy shows that the ligands prevent surface oxidation for months when stored in air.
Collapse
Affiliation(s)
- Xiaotang Lu
- Department of Chemical Engineering, Texas Materials Institute, and Center for Nano- and Molecular Science and Technology, The University of Texas at Austin , Austin, Texas 78712-1062, United States
| | | | | | | | | |
Collapse
|
43
|
Gupta S, Kershaw SV, Susha AS, Wong TL, Higashimine K, Maenosono S, Rogach AL. Near‐Infrared‐Emitting Cd
x
Hg
1−
x
Se Nanorods Fabricated by Ion Exchange in an Aqueous Medium. Chemphyschem 2013; 14:2853-8. [DOI: 10.1002/cphc.201300084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/24/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Shuchi Gupta
- Department of Physics and Materials Science & Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong S.A.R. (China)
| | - Stephen V. Kershaw
- Department of Physics and Materials Science & Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong S.A.R. (China)
| | - Andrei S. Susha
- Department of Physics and Materials Science & Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong S.A.R. (China)
| | - Tai Lun Wong
- Department of Physics and Materials Science & Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong S.A.R. (China)
| | - Koichi Higashimine
- School of Materials Science, Japan Advanced Institute of Science and Technology, Asahidai 1–1 Nomi, Ishikawa 923‐1292 (Japan)
| | - Shinya Maenosono
- School of Materials Science, Japan Advanced Institute of Science and Technology, Asahidai 1–1 Nomi, Ishikawa 923‐1292 (Japan)
| | - Andrey L. Rogach
- Department of Physics and Materials Science & Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong S.A.R. (China)
| |
Collapse
|
44
|
Jung J, Pang X, Feng C, Lin Z. Semiconducting conjugated polymer-inorganic tetrapod nanocomposites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:8086-8092. [PMID: 23600796 DOI: 10.1021/la400925y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Cadmium telluride (CdTe) tetrapods were synthesized via multiple injections of the Te precursor by utilizing bifunctional ligands. Subsequently, tetrapod-shaped semiconducting inorganic-organic nanocomposites (i.e., P3HT-CdTe tetrapod nanocomposites) were produced by directly grafting conjugated polymer ethynyl-terminated poly(3-hexylthiophene) (i.e., P3HT-≡) onto azide-functionalized CdTe tetrapods (i.e., CdTe-N3) via a catalyst-free click chemistry. The intimate contact between P3HT and CdTe tetrapod rendered the effective dispersion of CdTe tetrapods in nanocomposites and facilitated their efficient electronic interaction. The success of coupling reaction was confirmed by Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. The grafting density of P3HT chains on the CdTe tetrapods was estimated by thermogravimetric analysis. The photophysical properties of P3HT-CdTe tetrapod nanocomposites were studied using UV-vis and photoluminescence spectroscopies. These intimate semiconducting conjugated polymer-tetrapod nanocomposites may offer a maximized interface between conjugated polymers and tetrapods for efficient charge separation and enhanced charge transport regardless of their orientation for potential application in hybrid solar cells with improved power conversion efficiency.
Collapse
Affiliation(s)
- Jaehan Jung
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | |
Collapse
|
45
|
Gerasin VA, Antipov EM, Karbushev VV, Kulichikhin VG, Karpacheva GP, Talroze RV, Kudryavtsev YV. New approaches to the development of hybrid nanocomposites: from structural materials to high-tech applications. RUSSIAN CHEMICAL REVIEWS 2013. [DOI: 10.1070/rc2013v082n04abeh004322] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Kriegel I, Rodríguez-Fernández J, Wisnet A, Zhang H, Waurisch C, Eychmüller A, Dubavik A, Govorov AO, Feldmann J. Shedding light on vacancy-doped copper chalcogenides: shape-controlled synthesis, optical properties, and modeling of copper telluride nanocrystals with near-infrared plasmon resonances. ACS NANO 2013; 7:4367-77. [PMID: 23570329 DOI: 10.1021/nn400894d] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Size- and shape-controlled synthesis of copper chalcogenide nanocrystals (NCs) is of paramount importance for a careful engineering and understanding of their optoelectronic properties and, thus, for their exploitation in energy- and plasmonic-related applications. From the copper chalcogenide family copper telluride NCs have remained fairly unexplored as a result of a poor size-, shape-, and monodispersity control that is achieved via one-step syntheses approaches. Here we show that copper telluride (namely Cu(2-x)Te) NCs with well-defined morphologies (spheres, rods, tetrapods) can be prepared via cation exchange of preformed CdTe NCs while retaining their original shape. The resulting copper telluride NCs are characterized by pronounced plasmon bands in the near-infrared (NIR), in analogy to other copper-deficient chalcogenides (Cu(2-x)S, Cu(2-x)Se). We demonstrate that the extinction spectra of the as-prepared NCs are in agreement with theoretical calculations based on the discrete dipole approximation and an empirical dielectric function for Cu(2-x)Te. Additionally we show that the Drude model does not appropriately describe the complete set of Cu(2-x)Te NCs with different shapes. In particular, the low-intensity longitudinal plasmon bands for nanorods and tetrapods are better described by a modified Drude model with an increased damping in the long-wavelength interval. Importantly, a Lorentz model of localized quantum oscillators describes reasonably well all three morphologies, suggesting that holes in the valence band of Cu(2-x)Te cannot be described as fully free particles and that the effects of localization of holes are important. A similar behavior for Cu2-xS and Cu(2-x)Se NCs suggests that the effect of localization of holes can be a common property for the whole class of copper chalcogenide NCs. Taken altogether, our results represent a simple route toward copper telluride nanocrystals with well-defined shapes and optical properties and extend the understanding on vacancy-doped copper chalcogenide NCs with NIR optical resonances.
Collapse
Affiliation(s)
- Ilka Kriegel
- Photonics and Optoelectronics Group, Department of Physics and CeNS, Ludwig-Maximilians-Universität München, Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Khon E, Lambright K, Khnayzer RS, Moroz P, Perera D, Butaeva E, Lambright S, Castellano FN, Zamkov M. Improving the catalytic activity of semiconductor nanocrystals through selective domain etching. NANO LETTERS 2013; 13:2016-23. [PMID: 23541120 DOI: 10.1021/nl400715n] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Colloidal chemistry offers an assortment of synthetic tools for tuning the shape of semiconductor nanocrystals. While many nanocrystal architectures can be obtained directly via colloidal growth, other nanoparticle morphologies require alternative processing strategies. Here, we show that chemical etching of colloidal nanoparticles can facilitate the realization of nanocrystal shapes that are topologically inaccessible by hot-injection techniques alone. The present methodology is demonstrated by synthesizing a two-component CdSe/CdS nanoparticle dimer, constructed in a way that both CdSe and CdS semiconductor domains are exposed to the external environment. This structural morphology is highly desirable for catalytic applications as it enables both reductive and oxidative reactions to occur simultaneously on dissimilar nanoparticle surfaces. Hydrogen production tests confirmed the improved catalytic activity of CdSe/CdS dimers, which was enhanced 3-4 times upon etching treatment. We expect that the demonstrated application of etching to shaping of colloidal heteronanocrystals can become a common methodology in the synthesis of charge-separating nanocrystals, leading to advanced nanoparticles architectures for applications in areas of photocatalysis, photovoltaics, and light detection.
Collapse
Affiliation(s)
- Elena Khon
- The Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Rice KP, Saunders AE, Stoykovich MP. Seed-Mediated Growth of Shape-Controlled Wurtzite CdSe Nanocrystals: Platelets, Cubes, and Rods. J Am Chem Soc 2013; 135:6669-76. [DOI: 10.1021/ja402240m] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Katherine P. Rice
- Department of Chemical
and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United
States
| | - Aaron E. Saunders
- Department of Chemical
and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United
States
| | - Mark P. Stoykovich
- Department of Chemical
and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United
States
| |
Collapse
|
49
|
Fan Z, Yalcin AO, Tichelaar FD, Zandbergen HW, Talgorn E, Houtepen AJ, Vlugt TJH, van Huis MA. From Sphere to Multipod: Thermally Induced Transitions of CdSe Nanocrystals Studied by Molecular Dynamics Simulations. J Am Chem Soc 2013; 135:5869-76. [DOI: 10.1021/ja401406q] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhaochuan Fan
- Process and Energy Laboratory, Delft University of Technology, Leeghwaterstraat 44,
2628 CA Delft, The Netherlands
| | - Anil O. Yalcin
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628
CJ Delft, The Netherlands
| | - Frans D. Tichelaar
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628
CJ Delft, The Netherlands
| | - Henny W. Zandbergen
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628
CJ Delft, The Netherlands
| | - Elise Talgorn
- Department of Chemical Engineering, Delft University of Technology, Julianalaan 136, 2628
BL Delft, The Netherlands
| | - Arjan J. Houtepen
- Department of Chemical Engineering, Delft University of Technology, Julianalaan 136, 2628
BL Delft, The Netherlands
| | - Thijs J. H. Vlugt
- Process and Energy Laboratory, Delft University of Technology, Leeghwaterstraat 44,
2628 CA Delft, The Netherlands
| | - Marijn A. van Huis
- Soft Condensed Matter, Debye
Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
50
|
Yang G, Zhong H, Liu R, Li Y, Zou B. In situ aggregation of ZnSe nanoparticles into supraparticles: shape control and doping effects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:1970-1976. [PMID: 23330949 DOI: 10.1021/la304458q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The ability to tune the size, shape, and properties of supraparticles is of great importance for fundamental study as well as their promising applications. We previously developed a method to synthesize monodisperse ZnSe supraparticles via "in situ aggregation" of ZnSe nanoparticles through a simple hot-injection method. In the present work, we show that the "in situ aggregation" strategy can be extended to tune the shapes of ZnSe supraparticles, and introduce novel functional magnetic and luminescence properties. Shape control is manipulated with oleic acid as ligands, which balances the attractive interparticles van der Waals forces and steric repulsive forces from the ligands. With the increase of oleic acid concentration, a morphology change from microspheres to asymmetrical multimer and three-dimensional nanoflowers was observed. "Doping" preformed Fe(3)O(4) nanoparticles into ZnSe supraparticles endow them with magnetic properties. The magnetism of these Fe(3)O(4)@ZnSe supraparticles depends on the dosage of dopant. Doping of preformed CdS nanocrystals was also studied, resulting in emissive hybrid CdS@ZnSe supraparticles with diameters of 50-100 nm. It is noted that the doping of Fe(3)O(4) and CdS nanoparticles show differing morphologies. The differences can be explained by variance in the lattice mismatches which leads to differing potentials for crystal growth.
Collapse
Affiliation(s)
- Gaoling Yang
- Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing, 100081, Peoples' Republic of China
| | | | | | | | | |
Collapse
|