1
|
Mokkawes T, De Visser T, Cao Y, De Visser SP. Melatonin Activation by Human Cytochrome P450 Enzymes: A Comparison between Different Isozymes. Molecules 2023; 28:6961. [PMID: 37836804 PMCID: PMC10574541 DOI: 10.3390/molecules28196961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Cytochrome P450 enzymes in the human body play a pivotal role in both the biosynthesis and the degradation of the hormone melatonin. Melatonin plays a key role in circadian rhythms in the body, but its concentration is also linked to mood fluctuations as well as emotional well-being. In the present study, we present a computational analysis of the binding and activation of melatonin by various P450 isozymes that are known to yield different products and product distributions. In particular, the P450 isozymes 1A1, 1A2, and 1B1 generally react with melatonin to provide dominant aromatic hydroxylation at the C6-position, whereas the P450 2C19 isozyme mostly provides O-demethylation products. To gain insight into the origin of these product distributions of the P450 isozymes, we performed a comprehensive computational study of P450 2C19 isozymes and compared our work with previous studies on alternative isozymes. The work covers molecular mechanics, molecular dynamics and quantum mechanics approaches. Our work highlights major differences in the size and shape of the substrate binding pocket amongst the different P450 isozymes. Consequently, substrate binding and positioning in the active site varies substantially within the P450 isozymes. Thus, in P450 2C19, the substrate is oriented with its methoxy group pointing towards the heme, and therefore reacts favorably through hydrogen atom abstraction, leading to the production of O-demethylation products. On the other hand, the substrate-binding pockets in P450 1A1, 1A2, and 1B1 are tighter, direct the methoxy group away from the heme, and consequently activate an alternative site and lead to aromatic hydroxylation instead.
Collapse
Affiliation(s)
| | | | | | - Sam P. De Visser
- Department of Chemical Engineering, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
2
|
Mukherjee G, Satpathy JK, Bagha UK, Mubarak MQE, Sastri CV, de Visser SP. Inspiration from Nature: Influence of Engineered Ligand Scaffolds and Auxiliary Factors on the Reactivity of Biomimetic Oxidants. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01993] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gourab Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Jagnyesh K. Satpathy
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Umesh K. Bagha
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - M. Qadri E. Mubarak
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Fakulti Sains dan Teknologi, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan Malaysia
| | - Chivukula V. Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Sam P. de Visser
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
3
|
Louka S, Barry SM, Heyes DJ, Mubarak MQE, Ali HS, Alkhalaf LM, Munro AW, Scrutton NS, Challis GL, de Visser SP. Catalytic Mechanism of Aromatic Nitration by Cytochrome P450 TxtE: Involvement of a Ferric-Peroxynitrite Intermediate. J Am Chem Soc 2020; 142:15764-15779. [PMID: 32811149 PMCID: PMC7586343 DOI: 10.1021/jacs.0c05070] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
The
cytochromes P450 are heme-dependent enzymes that catalyze many
vital reaction processes in the human body related to biodegradation
and biosynthesis. They typically act as mono-oxygenases; however,
the recently discovered P450 subfamily TxtE utilizes O2 and NO to nitrate aromatic substrates such as L-tryptophan.
A direct and selective aromatic nitration reaction may be useful in
biotechnology for the synthesis of drugs or small molecules. Details
of the catalytic mechanism are unknown, and it has been suggested
that the reaction should proceed through either an iron(III)-superoxo
or an iron(II)-nitrosyl intermediate. To resolve this controversy,
we used stopped-flow kinetics to provide evidence for a catalytic
cycle where dioxygen binds prior to NO to generate an active iron(III)-peroxynitrite
species that is able to nitrate l-Trp efficiently. We show
that the rate of binding of O2 is faster than that of NO
and also leads to l-Trp nitration, while little evidence
of product formation is observed from the iron(II)-nitrosyl complex.
To support the experimental studies, we performed density functional
theory studies on large active site cluster models. The studies suggest
a mechanism involving an iron(III)-peroxynitrite that splits homolytically
to form an iron(IV)-oxo heme (Compound II) and a free NO2 radical via a small free energy of activation. The latter activates
the substrate on the aromatic ring, while compound II picks up the ipso-hydrogen to form the product. The calculations give
small reaction barriers for most steps in the catalytic cycle and,
therefore, predict fast product formation from the iron(III)-peroxynitrite
complex. These findings provide the first detailed insight into the
mechanism of nitration by a member of the TxtE subfamily and highlight
how the enzyme facilitates this novel reaction chemistry.
Collapse
Affiliation(s)
- Savvas Louka
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Mancheste M13 9PL, United Kingdom
| | - Sarah M Barry
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Derren J Heyes
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - M Qadri E Mubarak
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Mancheste M13 9PL, United Kingdom
| | - Hafiz Saqib Ali
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Lona M Alkhalaf
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Andrew W Munro
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Nigel S Scrutton
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Gregory L Challis
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom.,Department of Biochemistry and Molecular Biology, Monash University, Clayton VIC 3800, Australia.,ARC Centre for Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, VIC 3800, Australia
| | - Sam P de Visser
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Mancheste M13 9PL, United Kingdom
| |
Collapse
|
4
|
Su H, Wang B, Shaik S. Quantum-Mechanical/Molecular-Mechanical Studies of CYP11A1-Catalyzed Biosynthesis of Pregnenolone from Cholesterol Reveal a C-C Bond Cleavage Reaction That Occurs by a Compound I-Mediated Electron Transfer. J Am Chem Soc 2019; 141:20079-20088. [PMID: 31741382 DOI: 10.1021/jacs.9b08561] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We explore here a long-standing mechanistic question by using quantum-mechanical/molecular-mechanical (QM/MM) methodology. The question concerns the mechanism of steroid hormone biosynthesis, whereby the P450 enzyme, CYP11A1, catalyzes the C20-C22 bond-cleavage in the 20,22-hydroxylated cholesterol, 20R,22R-DiOHCH, leading to pregnenolone, which is critical for the subsequent production of all steroid hormones. This is an unusual feat whereby the P450 enzyme breaks two O-H bonds and one C-C bond, while making two C═O bonds. How does the enzyme perform such a complex and highly energy-demanding reaction? Our computational results rule out the previously proposed Compound I (Cpd I) electrophilic attack mechanism via the formation of a peroxide intermediate as well as the H-abstraction-mediated C-C cleavage mechanism. Notably, oxygen-rebound cannot transpire, in spite of the fact that the classical active species, Cpd I, participates in the catalytic process. Our findings reveal a mechanism whereby C-C bond cleavage is mediated by an electron transfer from the C22-O--deprotonated substrate to Cpd I. As such, our QM/MM calculations demonstrate that Cpd I acts as an electron sink that facilitates the C-C bond cleavage.
Collapse
Affiliation(s)
- Hao Su
- Institute of Chemistry , The Hebrew University of Jerusalem , 9190400 Jerusalem , Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 360015 , P. R. China
| | - Sason Shaik
- Institute of Chemistry , The Hebrew University of Jerusalem , 9190400 Jerusalem , Israel
| |
Collapse
|
5
|
Zahler CT, Shaw BF. What Are We Missing by Not Measuring the Net Charge of Proteins? Chemistry 2019; 25:7581-7590. [PMID: 30779227 DOI: 10.1002/chem.201900178] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Indexed: 12/21/2022]
Abstract
The net electrostatic charge (Z) of a folded protein in solution represents a bird's eye view of its surface potentials-including contributions from tightly bound metal, solvent, buffer, and cosolvent ions-and remains one of its most enigmatic properties. Few tools are available to the average biochemist to rapidly and accurately measure Z at pH≠pI. Tools that have been developed more recently seem to go unnoticed. Most scientists are content with this void and estimate the net charge of a protein from its amino acid sequence, using textbook values of pKa . Thus, Z remains unmeasured for nearly all folded proteins at pH≠pI. When marveling at all that has been learned from accurately measuring the other fundamental property of a protein-its mass-one wonders: what are we missing by not measuring the net charge of folded, solvated proteins? A few big questions immediately emerge in bioinorganic chemistry. When a single electron is transferred to a metalloprotein, does the net charge of the protein change by approximately one elementary unit of charge or does charge regulation dominate, that is, do the pKa values of most ionizable residues (or just a few residues) adjust in response to (or in concert with) electron transfer? Would the free energy of charge regulation (ΔΔGz ) account for most of the outer sphere reorganization energy associated with electron transfer? Or would ΔΔGz contribute more to the redox potential? And what about metal binding itself? When an apo-metalloprotein, bearing minimal net negative charge (e.g., Z=-2.0) binds one or more metal cations, is the net charge abolished or inverted to positive? Or do metalloproteins regulate net charge when coordinating metal ions? The author's group has recently dusted off a relatively obscure tool-the "protein charge ladder"-and used it to begin to answer these basic questions.
Collapse
Affiliation(s)
- Collin T Zahler
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76706, USA
| | - Bryan F Shaw
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76706, USA
| |
Collapse
|
6
|
Postils V, Saint-André M, Timmins A, Li XX, Wang Y, Luis JM, Solà M, de Visser SP. Quantum Mechanics/Molecular Mechanics Studies on the Relative Reactivities of Compound I and II in Cytochrome P450 Enzymes. Int J Mol Sci 2018; 19:E1974. [PMID: 29986417 PMCID: PMC6073316 DOI: 10.3390/ijms19071974] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 02/03/2023] Open
Abstract
The cytochromes P450 are drug metabolizing enzymes in the body that typically react with substrates through a monoxygenation reaction. During the catalytic cycle two reduction and protonation steps generate a high-valent iron (IV)-oxo heme cation radical species called Compound I. However, with sufficient reduction equivalents present, the catalytic cycle should be able to continue to the reduced species of Compound I, called Compound II, rather than a reaction of Compound I with substrate. In particular, since electron transfer is usually on faster timescales than atom transfer, we considered this process feasible and decided to investigate the reaction computationally. In this work we present a computational study using density functional theory methods on active site model complexes alongside quantum mechanics/molecular mechanics calculations on full enzyme structures of cytochrome P450 enzymes. Specifically, we focus on the relative reactivity of Compound I and II with a model substrate for O⁻H bond activation. We show that generally the barrier heights for hydrogen atom abstraction are higher in energy for Compound II than Compound I for O⁻H bond activation. Nevertheless, for the activation of such bonds, Compound II should still be an active oxidant under enzymatic conditions. As such, our computational modelling predicts that under high-reduction environments the cytochromes P450 can react with substrates via Compound II but the rates will be much slower.
Collapse
Affiliation(s)
- Verònica Postils
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Maria Aurèlia Capmany i Farnés, 69, 17003 Girona, Catalonia, Spain.
- Manchester Institute of Biotechnology, School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Maud Saint-André
- Manchester Institute of Biotechnology, School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Amy Timmins
- Manchester Institute of Biotechnology, School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Xiao-Xi Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Yong Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Josep M Luis
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Maria Aurèlia Capmany i Farnés, 69, 17003 Girona, Catalonia, Spain.
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Maria Aurèlia Capmany i Farnés, 69, 17003 Girona, Catalonia, Spain.
| | - Sam P de Visser
- Manchester Institute of Biotechnology, School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
7
|
Spinello A, Pavlin M, Casalino L, Magistrato A. A Dehydrogenase Dual Hydrogen Abstraction Mechanism Promotes Estrogen Biosynthesis: Can We Expand the Functional Annotation of the Aromatase Enzyme? Chemistry 2018; 24:10840-10849. [DOI: 10.1002/chem.201802025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Indexed: 01/26/2023]
Affiliation(s)
- Angelo Spinello
- CNR-IOM-Democritos, c/o International School for Advanced Studies (SISSA); via Bonomea 265 34136 Trieste Italy
| | - Matic Pavlin
- CNR-IOM-Democritos, c/o International School for Advanced Studies (SISSA); via Bonomea 265 34136 Trieste Italy
| | - Lorenzo Casalino
- International School for Advanced Studies (SISSA); via Bonomea 265 34136 Trieste Italy
| | - Alessandra Magistrato
- CNR-IOM-Democritos, c/o International School for Advanced Studies (SISSA); via Bonomea 265 34136 Trieste Italy
| |
Collapse
|
8
|
Mak PJ, Denisov IG. Spectroscopic studies of the cytochrome P450 reaction mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2018; 1866:178-204. [PMID: 28668640 PMCID: PMC5709052 DOI: 10.1016/j.bbapap.2017.06.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/22/2017] [Indexed: 10/19/2022]
Abstract
The cytochrome P450 monooxygenases (P450s) are thiolate heme proteins that can, often under physiological conditions, catalyze many distinct oxidative transformations on a wide variety of molecules, including relatively simple alkanes or fatty acids, as well as more complex compounds such as steroids and exogenous pollutants. They perform such impressive chemistry utilizing a sophisticated catalytic cycle that involves a series of consecutive chemical transformations of heme prosthetic group. Each of these steps provides a unique spectral signature that reflects changes in oxidation or spin states, deformation of the porphyrin ring or alteration of dioxygen moieties. For a long time, the focus of cytochrome P450 research was to understand the underlying reaction mechanism of each enzymatic step, with the biggest challenge being identification and characterization of the powerful oxidizing intermediates. Spectroscopic methods, such as electronic absorption (UV-Vis), electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), electron nuclear double resonance (ENDOR), Mössbauer, X-ray absorption (XAS), and resonance Raman (rR), have been useful tools in providing multifaceted and detailed mechanistic insights into the biophysics and biochemistry of these fascinating enzymes. The combination of spectroscopic techniques with novel approaches, such as cryoreduction and Nanodisc technology, allowed for generation, trapping and characterizing long sought transient intermediates, a task that has been difficult to achieve using other methods. Results obtained from the UV-Vis, rR and EPR spectroscopies are the main focus of this review, while the remaining spectroscopic techniques are briefly summarized. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Piotr J Mak
- Department of Chemistry, Saint Louis University, St. Louis, MO, United States.
| | - Ilia G Denisov
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
9
|
Biodegradation of Cosmetics Products: A Computational Study of Cytochrome P450 Metabolism of Phthalates. INORGANICS 2017. [DOI: 10.3390/inorganics5040077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
10
|
Timmins A, de Visser SP. How Are Substrate Binding and Catalysis Affected by Mutating Glu 127 and Arg 161 in Prolyl-4-hydroxylase? A QM/MM and MD Study. Front Chem 2017; 5:94. [PMID: 29170737 PMCID: PMC5684110 DOI: 10.3389/fchem.2017.00094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/24/2017] [Indexed: 11/13/2022] Open
Abstract
Prolyl-4-hydroxylase is a vital enzyme for human physiology involved in the biosynthesis of 4-hydroxyproline, an essential component for collagen formation. The enzyme performs a unique stereo- and regioselective hydroxylation at the C4 position of proline despite the fact that the C5 hydrogen atoms should be thermodynamically easier to abstract. To gain insight into the mechanism and find the origin of this regioselectivity, we have done a quantum mechanics/molecular mechanics (QM/MM) study on wildtype and mutant structures. In a previous study (Timmins et al., 2017) we identified several active site residues critical for substrate binding and positioning. In particular, the Glu127 and Arg161 were shown to form multiple hydrogen bonding and ion-dipole interactions with substrate and could thereby affect the regio- and stereoselectivity of the reaction. In this work, we decided to test that hypothesis and report a QM/MM and molecular dynamics (MD) study on prolyl-4-hydroxylase and several active site mutants where Glu127 or Arg161 are mutated for Asp, Gln, or Lys. Thus, the R161D and R161Q mutants give very high barriers for hydrogen atom abstraction from any proline C-H bond and therefore will be inactive. The R161K mutant, by contrast, sees the regio- and stereoselectivity of the reaction change but still is expected to hydroxylate proline at room temperature. By contrast, the Glu127 mutants E127D and E127Q show possible changes in regioselectivity with the former being more probable to react compared to the latter.
Collapse
Affiliation(s)
| | - Sam P. de Visser
- School of Chemical Engineering and Analytical Science, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
11
|
Yen TH, He ZC, Lee GH, Tseng MC, Shen YH, Tseng TW, Liaw WF, Chiang MH. Reduced thione ligation is preferred over neutral phosphine ligation in diiron biomimics regarding electronic functionality: a spectroscopic and computational investigation. Chem Commun (Camb) 2017; 53:332-335. [DOI: 10.1039/c6cc08042a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Sulfur means superiority: effective electronic communication and buffering by sulfur ligation.
Collapse
Affiliation(s)
- Tao-Hung Yen
- Institute of Chemistry
- Academia Sinica
- Taipei 115
- Taiwan
- Molecular Science Technology Program
| | - Zong-Cheng He
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Gene-Hsiang Lee
- Instrumentation Center
- National Taiwan University
- Taipei 106
- Taiwan
| | | | - Yu-Hsuan Shen
- Department of Chemistry
- National Taiwan University
- Taipei 106
- Taiwan
| | - Tien-Wen Tseng
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Wen-Feng Liaw
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 300
- Taiwan
| | - Ming-Hsi Chiang
- Institute of Chemistry
- Academia Sinica
- Taipei 115
- Taiwan
- Molecular Science Technology Program
| |
Collapse
|
12
|
Davydov R, Strushkevich N, Smil D, Yantsevich A, Gilep A, Usanov S, Hoffman BM. Evidence That Compound I Is the Active Species in Both the Hydroxylase and Lyase Steps by Which P450scc Converts Cholesterol to Pregnenolone: EPR/ENDOR/Cryoreduction/Annealing Studies. Biochemistry 2015; 54:7089-97. [PMID: 26603348 DOI: 10.1021/acs.biochem.5b00903] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome P450scc (CYP 11A1) catalyzes the conversion of cholesterol (Ch) to pregnenolone, the precursor to steroid hormones. This process proceeds via three sequential monooxygenation reactions: two hydroxylations of Ch first form 22(R)-hydroxycholesterol (HC) and then 20α,22(R)-dihydroxycholesterol (DHC); a lyase reaction then cleaves the C20-C22 bond to form pregnenolone. Recent cryoreduction/annealing studies that employed electron paramagnetic resonance (EPR)/electron nuclear double resonance (ENDOR) spectroscopy [Davydov, R., et al. (2012) J. Am. Chem. Soc. 134, 17149] showed that compound I (Cpd I) is the active intermediate in the first step, hydroxylation of Ch. Herein, we have employed EPR and ENDOR spectroscopy to characterize the intermediates in the second and third steps of the enzymatic process, as conducted by 77 K radiolytic one-electron cryoreduction and subsequent annealing of the ternary oxy-cytochrome P450scc complexes with HC and DHC. This procedure is validated by showing that the cryoreduced ternary complexes of oxy-cytochrome P450scc with HC and DHC are catalytically competent and during annealing generate DHC and pregnenolone, respectively. Cryoreduction of the oxy-P450scc-HC ternary complex trapped at 77K produces the superoxo-ferrous P450scc intermediate along with a minor fraction of ferric hydroperoxo intermediates. The superoxo-ferrous intermediate converts into a ferric-hydroperoxo species after annealing at 145 K. During subsequent annealing at 170-180 K, the ferric-hydroperoxo intermediate converts to the primary product complex with the large solvent kinetic isotope effect that indicates Cpd I is being formed, and (1)H ENDOR measurements of the primary product formed in D2O demonstrate that Cpd I is the active species. They show that the primary product contains Fe(III) coordinated to the 20-O(1)H of DHC with the (1)H derived from substrate, the signature of the Cpd I reaction. Hydroperoxo ferric intermediates are the primary species formed during cryoreduction of the oxy-P450scc-DHC ternary complex, and they decay at 185 K with a strong solvent kinetic isotope effect to form low-spin ferric P450scc. Together, these observations indicated that Cpd I also is the active intermediate in the C20,22 lyase final step. In combination with our previous results, this study thus indicates that Cpd I is the active species in each of the three sequential monooxygenation reactions by which P450scc catalytically converts Ch to pregnenolone.
Collapse
Affiliation(s)
- Roman Davydov
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208-3113, United States
| | - Natallia Strushkevich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus , Kuprevicha Street 5/2, Minsk 220141, Belarus
| | - David Smil
- Structural Genomics Consortium, University of Toronto , 101 College Street, Toronto, ON, Canada M5G 1L7
| | - Aliaksei Yantsevich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus , Kuprevicha Street 5/2, Minsk 220141, Belarus
| | - Andrey Gilep
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus , Kuprevicha Street 5/2, Minsk 220141, Belarus
| | - Sergey Usanov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus , Kuprevicha Street 5/2, Minsk 220141, Belarus
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208-3113, United States
| |
Collapse
|
13
|
Mancini G, Zazza C. F429 Regulation of Tunnels in Cytochrome P450 2B4: A Top Down Study of Multiple Molecular Dynamics Simulations. PLoS One 2015; 10:e0137075. [PMID: 26415031 PMCID: PMC4587367 DOI: 10.1371/journal.pone.0137075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/12/2015] [Indexed: 01/22/2023] Open
Abstract
The root causes of the outcomes of the single-site mutation in enzymes remain by and large not well understood. This is the case of the F429H mutant of the cytochrome P450 (CYP) 2B4 enzyme where the substitution, on the proximal surface of the active site, of a conserved phenylalanine 429 residue with histidine seems to hamper the formation of the active species, Compound I (porphyrin cation radical-Fe(IV) = O, Cpd I) from the ferric hydroperoxo (Fe(III)OOH-, Cpd 0) precursor. Here we report a study based on extensive molecular dynamic (MD) simulations of 4 CYP-2B4 point mutations compared to the WT enzyme, having the goal of better clarifying the importance of the proximal Phe429 residue on CYP 2B4 catalytic properties. To consolidate the huge amount of data coming from five simulations and extract the most distinct structural features of the five species studied we made an extensive use of cluster analysis. The results show that all studied single polymorphisms of F429, with different side chain properties: i) drastically alter the reservoir of conformations accessible by the protein, perturbing global dynamics ii) expose the thiolate group of residue Cys436 to the solvent, altering the electronic properties of Cpd0 and iii) affect the various ingress and egress channels connecting the distal sites with the bulk environment, altering the reversibility of these channels. In particular, it was observed that the wild type enzyme exhibits unique structural features as compared to all mutant species in terms of weak interactions (hydrogen bonds) that generate a completely different dynamical behavior of the complete system. Albeit not conclusive, the current computational investigation sheds some light on the subtle and critical effects that proximal single-site mutations can exert on the functional mechanisms of human microsomal CYPs which should go rather far beyond local structure characterization.
Collapse
Affiliation(s)
- Giordano Mancini
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126, Pisa, Italy, and Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy
- * E-mail:
| | - Costantino Zazza
- Università degli Studi di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185, Roma, Italy
| |
Collapse
|
14
|
Faponle AS, Quesne MG, Sastri CV, Banse F, de Visser SP. Differences and comparisons of the properties and reactivities of iron(III)-hydroperoxo complexes with saturated coordination sphere. Chemistry 2015; 21:1221-36. [PMID: 25399782 PMCID: PMC4316188 DOI: 10.1002/chem.201404918] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Indexed: 11/06/2022]
Abstract
Heme and nonheme monoxygenases and dioxygenases catalyze important oxygen atom transfer reactions to substrates in the body. It is now well established that the cytochrome P450 enzymes react through the formation of a high-valent iron(IV)-oxo heme cation radical. Its precursor in the catalytic cycle, the iron(III)-hydroperoxo complex, was tested for catalytic activity and found to be a sluggish oxidant of hydroxylation, epoxidation and sulfoxidation reactions. In a recent twist of events, evidence has emerged of several nonheme iron(III)-hydroperoxo complexes that appear to react with substrates via oxygen atom transfer processes. Although it was not clear from these studies whether the iron(III)-hydroperoxo reacted directly with substrates or that an initial O-O bond cleavage preceded the reaction. Clearly, the catalytic activity of heme and nonheme iron(III)-hydroperoxo complexes is substantially different, but the origins of this are still poorly understood and warrant a detailed analysis. In this work, an extensive computational analysis of aromatic hydroxylation by biomimetic nonheme and heme iron systems is presented, starting from an iron(III)-hydroperoxo complex with pentadentate ligand system (L5(2)). Direct C-O bond formation by an iron(III)-hydroperoxo complex is investigated, as well as the initial heterolytic and homolytic bond cleavage of the hydroperoxo group. The calculations show that [(L5(2))Fe(III)(OOH)](2+) should be able to initiate an aromatic hydroxylation process, although a low-energy homolytic cleavage pathway is only slightly higher in energy. A detailed valence bond and thermochemical analysis rationalizes the differences in chemical reactivity of heme and nonheme iron(III)-hydroperoxo and show that the main reason for this particular nonheme complex to be reactive comes from the fact that they homolytically split the O-O bond, whereas a heterolytic O-O bond breaking in heme iron(III)-hydroperoxo is found.
Collapse
Affiliation(s)
- Abayomi S Faponle
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester131 Princess Street, Manchester M1 7DN (UK) E-mail:
| | - Matthew G Quesne
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester131 Princess Street, Manchester M1 7DN (UK) E-mail:
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati781039, Assam (India)
| | - Frédéric Banse
- Institut de Chimie Moleculaire et des Materiaux d'Orsay, Laboratoire de Chimie Inorganique, Université Paris-Sud11 91405 Orsay Cedex (France) E-mail:
| | - Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester131 Princess Street, Manchester M1 7DN (UK) E-mail:
| |
Collapse
|
15
|
Lian P, Wei D. An application of QM/MM simulation: the second protonation of cytochrome P450. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 827:311-24. [PMID: 25387972 DOI: 10.1007/978-94-017-9245-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The multiscale model strategy, hybrid quantum mechanics and molecular mechanics (QM/MM), has become more and more prevalent in the theoretical study of enzymatic reactions. It combines both the efficiency of the Newtonian molecular calculations and the accuracy of the quantum mechanical methods. Simulation using QM/MM multiscale model may be one of the most promising approaches that could further narrow the gap between the theoretical models and the real problems. It is capable of dealing with not only the conformational changes of biomacromolecules, but also the catalytic reactions. Herein, we reviewed some of our recent work to demonstrate the application of the QM/MM simulations in exploring the enzymatic reactions.
Collapse
Affiliation(s)
- Peng Lian
- State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | |
Collapse
|
16
|
Spin equilibrium and O₂-binding kinetics of Mycobacterium tuberculosis CYP51 with mutations in the histidine-threonine dyad. J Inorg Biochem 2014; 136:81-91. [PMID: 24793591 DOI: 10.1016/j.jinorgbio.2014.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 11/22/2022]
Abstract
The acidic residues of the "acid-alcohol pair" in CYP51 enzymes are uniformly replaced with histidine. Herein, we adopt the Mycobacterium tuberculosis (mt) enzyme as a model system to investigate these residues' roles in finely tuning the heme conformation, iron spin state, and formation and decay of the oxyferrous enzyme. Properties of the mtCYP51 and the T260A, T260V, and H259A mutants were interrogated using UV-Vis and resonance Raman spectroscopies. Evidence supports that these mutations induce comprehensive changes in the heme environment. The heme iron spin states are differentially sensitive to the binding of the substrate, dihydrolanosterol (DHL). DHL and clotrimazole perturb the local environments of the heme vinyl and propionate substituents. Molecular dynamics (MD) simulations of the DHL-enzyme complexes support that the observed perturbations are attributable to changes in the DHL binding mode. Furthermore, the rates of the oxyferrous formation were measured using stopped-flow methods. These studies demonstrate that both HT mutations and DHL modulate the rates of oxyferrous formation. Paradoxically, the binding rate to the H259A mutant-DHL complex was approximately four-fold that of mtCYP51, a phenomenon that is predicted to result from the creation of an additional diffusion channel from loss of the H259-E173 ion pair in the mutant. Oxyferrous enzyme auto-oxidation rates were relatively constant, with the exception of the T260V-DHL complex. MD simulations lead us to speculate that this behavior may be attributed to the distortion of the heme macrocycle by the substrate.
Collapse
|
17
|
Sen K, Thiel W. Role of two alternate water networks in Compound I formation in P450eryF. J Phys Chem B 2014; 118:2810-20. [PMID: 24564366 DOI: 10.1021/jp411272h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The P450eryF enzyme (CYP107A1) hydroxylates 6-deoxyerythronolide B to erythronolide B during erythromycin synthesis by Saccharopolyspora erythraea. In many P450 enzymes, a conserved "acid-alcohol pair" is believed to participate in the proton shuttling pathway for O2 activation that generates the reactive oxidant (Compound I, Cpd I). In CYP107A1, the alcohol-containing amino acid is replaced with alanine. The crystal structure of DEB bound to CYP107A1 indicates that one of the substrate hydroxyl groups (5-OH) may facilitate proton transfer during O2 activation. We applied molecular dynamics (MD) and hybrid quantum mechanics/molecular mechanics (QM/MM) techniques to investigate substrate-mediated O2 activation in CYP107A1. In the QM/MM calculations, the QM region was treated by density functional theory, and the MM region was represented by the CHARMM force field. The MD simulations suggest the existence of two water networks around the active site, the one found in the crystal structure involving E360 and an alternative one involving E244. According to the QM/MM calculations, the first proton transfer that converts the peroxo to the hydroperoxo intermediate (Compound 0, Cpd 0) proceeds via the E244 water network with direct involvement of the 5-OH group of the substrate. For the second proton transfer from Cpd 0 to Cpd I, the computed barriers for the rate-limiting homolytic O-O cleavage are similar for the E360 and E244 pathways, and hence both glutamate residues may serve as proton source in this step.
Collapse
Affiliation(s)
- Kakali Sen
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | | |
Collapse
|
18
|
Blomberg MRA, Borowski T, Himo F, Liao RZ, Siegbahn PEM. Quantum chemical studies of mechanisms for metalloenzymes. Chem Rev 2014; 114:3601-58. [PMID: 24410477 DOI: 10.1021/cr400388t] [Citation(s) in RCA: 441] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Margareta R A Blomberg
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University , SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
19
|
Krámos B, Oláh J. Enolization as an Alternative Proton Delivery Pathway in Human Aromatase (P450 19A1). J Phys Chem B 2014; 118:390-405. [DOI: 10.1021/jp407365x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Balázs Krámos
- Department of Inorganic and
Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - Julianna Oláh
- Department of Inorganic and
Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| |
Collapse
|
20
|
Lian P, Li J, Wang DQ, Wei DQ. Car–Parrinello Molecular Dynamics/Molecular Mechanics (CPMD/MM) Simulation Study of Coupling and Uncoupling Mechanisms of Cytochrome P450cam. J Phys Chem B 2013; 117:7849-56. [DOI: 10.1021/jp312107r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peng Lian
- State Key
Laboratory of Microbial
Metabolism, and College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China 200240
| | - Jue Li
- State Key
Laboratory of Microbial
Metabolism, and College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China 200240
| | - Dong-Qi Wang
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, CH-8093
Zurich, Switzerland
| | - Dong-Qing Wei
- State Key
Laboratory of Microbial
Metabolism, and College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China 200240
| |
Collapse
|
21
|
Davydov R, Gilep AA, Strushkevich NV, Usanov SA, Hoffman BM. Compound I is the reactive intermediate in the first monooxygenation step during conversion of cholesterol to pregnenolone by cytochrome P450scc: EPR/ENDOR/cryoreduction/annealing studies. J Am Chem Soc 2012; 134:17149-56. [PMID: 23039857 DOI: 10.1021/ja3067226] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome P450scc (CYP11A1) catalyzes conversion of cholesterol (CH) to pregnenolone, the precursor to all steroid hormones. This process proceeds via three sequential monooxygenation reactions: two stereospecific hydroxylations with formation first of 22R-hydroxycholesterol (22-HC) and then 20α,22R-dihydroxycholesterol (20,22-DHC), followed by C20-C22 bond cleavage. Herein we have employed EPR and ENDOR spectroscopy to characterize the intermediates in the first hydroxylation step by 77 K radiolytic one-electron cryoreduction and subsequent annealing of the ternary oxy-cytochrome P450scc-cholesterol complex. This approach is fully validated by the demonstration that the cryoreduced ternary complex of oxy-P450scc-CH is catalytically competent and hydroxylates cholesterol to form 22-HC with no detectable formation of 20-HC, just as occurs under physiological conditions. Cryoreduction of the ternary complex trapped at 77 K produces predominantly the hydroperoxy-ferriheme P450scc intermediate, along with a minor fraction of peroxo-ferriheme intermediate that converts into a new hydroperoxo-ferriheme species at 145 K. This behavior reveals that the distal pocket of the parent oxy-P450scc-cholesterol complex exhibits an efficient proton delivery network, with an ordered water molecule H-bonded to the distal oxygen of the dioxygen ligand. During annealing of the hydroperoxy-ferric P450scc intermediates at 185 K, they convert to the primary product complex in which CH has been converted to 22-HC. In this process, the hydroperoxy-ferric intermediate decays with a large solvent kinetic isotope effect, as expected when proton delivery to the terminal O leads to formation of Compound I (Cpd I). (1)H ENDOR measurements of the primary product formed in deuterated solvent show that the heme Fe(III) is coordinated to the 22R-O(1)H of 22-HC, where the (1)H is derived from substrate and exchanges to D after annealing at higher temperatures. These observations establish that Cpd I is the agent that hydroxylates CH, rather than the hydroperoxy-ferric heme.
Collapse
Affiliation(s)
- Roman Davydov
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | | | | | | | | |
Collapse
|
22
|
Liao RZ, Thiel W. Why Is the Oxidation State of Iron Crucial for the Activity of Heme-Dependent Aldoxime Dehydratase? A QM/MM Study. J Phys Chem B 2012; 116:9396-408. [DOI: 10.1021/jp305510c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Rong-Zhen Liao
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470, Mülheim an der Ruhr, Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
23
|
Hirao H, Cheong ZH, Wang X. Pivotal role of water in terminating enzymatic function: a density functional theory study of the mechanism-based inactivation of cytochromes P450. J Phys Chem B 2012; 116:7787-94. [PMID: 22620991 DOI: 10.1021/jp302592d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The importance of the mechanism-based inactivation (MBI) of enzymes, which has a variety of physiological effects and therapeutic implications, has been garnering appreciation. Density functional theory calculations were undertaken to gain a clear understanding of the MBI of a cytochrome P450 enzyme (CYP2B4) by tert-butylphenylacetylene (tBPA). The results of calculations suggest that, in accordance with previous proposals, the reaction proceeds via a ketene-type metabolic intermediate. Once an oxoiron(IV) porphyryn π-cation radical intermediate (compound I) of P450 is generated at the heme reaction site, ketene formation is facile, as the terminal acetylene of tBPA can form a C-O bond with the oxo unit of compound I with a relatively low reaction barrier (14.1 kcal/mol). Unexpectedly, it was found that the ketene-type intermediate was not very reactive. Its reaction with the hydroxyl group of a threonine (Thr302) to form an ester bond required a substantial barrier (38.2 kcal/mol). The high barrier disfavored the mechanism by which these species react directly. However, the introduction of a water molecule in the reaction center led to its active participation in the reaction. The water was capable of donating its proton to the tBPA molecule, while accepting the proton of threonine. This water-mediated mechanism lowered the reaction barrier for the formation of an ester bond by about 20 kcal/mol. Therefore, our study suggests that a water molecule, which can easily gain access to the threonine residue through the proton-relay channel, plays a critical role in enhancing the covalent modification of threonine by terminal acetylene compounds. Another type of MBI by acetylenes, N-alkylation of the heme prosthetic group, was less favorable than the threonine modification pathway.
Collapse
Affiliation(s)
- Hajime Hirao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , Singapore.
| | | | | |
Collapse
|
24
|
Isobe H, Yamaguchi K, Okumura M, Shimada J. Role of Perferryl–Oxo Oxidant in Alkane Hydroxylation Catalyzed by Cytochrome P450: A Hybrid Density Functional Study. J Phys Chem B 2012; 116:4713-30. [DOI: 10.1021/jp211184y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroshi Isobe
- Department of Chemistry, Graduate
School of Science, Osaka University, Toyonaka,
Osaka 560-0043, Japan
| | - Kizashi Yamaguchi
- Department of Chemistry, Graduate
School of Science, Osaka University, Toyonaka,
Osaka 560-0043, Japan
| | - Mitsutaka Okumura
- Department of Chemistry, Graduate
School of Science, Osaka University, Toyonaka,
Osaka 560-0043, Japan
| | - Jiro Shimada
- Green
Innovation Research Laboratories, NEC Corporation, 34, Miyukigaoka, Tsukuba, Ibaraki
305-8501, Japan
| |
Collapse
|
25
|
dos Santos MR, Diniz JR, Arouca AM, Gomes AF, Gozzo FC, Tamborim SM, Parize AL, Suarez PAZ, Neto BAD. Ionically tagged iron complex-catalyzed epoxidation of olefins in imidazolium-based ionic liquids. CHEMSUSCHEM 2012; 5:716-726. [PMID: 22473642 DOI: 10.1002/cssc.201100453] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A new ionophilic ligand and a new ionically tagged imidazolium-based iron(III) complex were synthesized and applied in the air oxidation (also hydrogen peroxide) of alkenes in imidazolium-based ionic liquids. At least ten recycling reactions were performed. The epoxidized olefin was obtained in very good yields of 84-91 %. Some important mechanistic insights are also provided based on electrospray ionization quadrupole-time of flight mass spectrometry for the oxidation reaction. These results indicate that oxidations can take place by two different pathways, depending on the reaction condition: a radical or a concerted mechanism. These results contribute towards a better understanding of iron-catalyzed oxidation mechanisms.
Collapse
Affiliation(s)
- Marcelo R dos Santos
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Brasília-DF, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jaccob M, Rajaraman G. A computational examination on the structure, spin-state energetics and spectroscopic parameters of high-valent FeIVNTs species. Dalton Trans 2012; 41:10430-9. [DOI: 10.1039/c2dt31071f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Kumar D, Thiel W, de Visser SP. Theoretical Study on the Mechanism of the Oxygen Activation Process in Cysteine Dioxygenase Enzymes. J Am Chem Soc 2011; 133:3869-82. [DOI: 10.1021/ja107514f] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Devesh Kumar
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1,
D-45470 Mülheim an der Ruhr, Germany
- Molecular Modelling Group, Indian Institute of Chemical Technology, Hyderabad
500 607, India
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1,
D-45470 Mülheim an der Ruhr, Germany
| | - Sam P. de Visser
- The Manchester Interdisciplinary
Biocenter and School of Chemical Engineering and Analytical Science, University of Manchester, 131 Princess Street, Manchester
M1 7DN, United Kingdom
| |
Collapse
|
28
|
Coupling and uncoupling mechanisms in the methoxythreonine mutant of cytochrome P450cam: a quantum mechanical/molecular mechanical study. J Biol Inorg Chem 2010; 15:361-72. [PMID: 20225401 PMCID: PMC2830628 DOI: 10.1007/s00775-009-0608-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Thr252 residue plays a vital role in the catalytic cycle of cytochrome P450cam during the formation of the active species (Compound I) from its precursor (Compound 0). We investigate the effect of replacing Thr252 by methoxythreonine (MeO-Thr) on this protonation reaction (coupling) and on the competing formation of the ferric resting state and H2O2 (uncoupling) by combined quantum mechanical/molecular mechanical (QM/MM) methods. For each reaction, two possible mechanisms are studied, and for each of these the residues Asp251 and Glu366 are considered as proton sources. The computed QM/MM barriers indicate that uncoupling is unfavorable in the case of the Thr252MeO-Thr mutant, whereas there are two energetically feasible proton transfer pathways for coupling. The corresponding rate-limiting barriers for the formation of Compound I are higher in the mutant than in the wild-type enzyme. These findings are consistent with the experimental observations that the Thr252MeO-Thr mutant forms the alcohol product exclusively (via Compound I), but at lower reaction rates compared with the wild-type enzyme.
Collapse
|
29
|
Surawatanawong P, Tye JW, Hall MB. Density Functional Theory Applied to a Difference in Pathways Taken by the Enzymes Cytochrome P450 and Superoxide Reductase: Spin States of Ferric Hydroperoxo Intermediates and Hydrogen Bonds from Water. Inorg Chem 2009; 49:188-98. [DOI: 10.1021/ic9017272] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Jesse W. Tye
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255
| | - Michael B. Hall
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255
| |
Collapse
|
30
|
Shaik S, Cohen S, Wang Y, Chen H, Kumar D, Thiel W. P450 Enzymes: Their Structure, Reactivity, and Selectivity—Modeled by QM/MM Calculations. Chem Rev 2009; 110:949-1017. [DOI: 10.1021/cr900121s] [Citation(s) in RCA: 791] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sason Shaik
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Shimrit Cohen
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Yong Wang
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Hui Chen
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Devesh Kumar
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Walter Thiel
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
31
|
Senn HM, Kästner J, Breidung J, Thiel W. Finite-temperature effects in enzymatic reactions — Insights from QM/MM free-energy simulations. CAN J CHEM 2009. [DOI: 10.1139/v09-092] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We report potential-energy and free-energy data for three enzymatic reactions: carbon–halogen bond formation in fluorinase, hydrogen abstraction from camphor in cytochrome P450cam, and chorismate-to-prephenate Claisen rearrangement in chorismate mutase. The results were obtained by combined quantum mechanics/molecular mechanics (QM/MM) optimizations and two types of QM/MM free-energy simulations (free-energy perturbation and umbrella sampling) using semi-empirical or density-functional QM methods. Based on these results and our previously published free-energy data on electrophilic substitution in para-hydroxybenzoate hydroxylase, we discuss the importance of finite-temperature effects in the chemical step of enzyme reactions. We find that the entropic contribution to the activation barrier is generally rather small, usually of the order of 5 kJ mol–1 or less, consistent with the notion that enzymes bind and pre-organize the reactants in the active site. A somewhat larger entropic contribution is encountered in the case of chorismate mutase where the pericyclic transition state is intrinsically more rigid than the chorismate reactant (also in the enzyme). The present results suggest that barriers from QM/MM geometry optimization may often be close to free-energy barriers for the chemical step in enzymatic reactions.
Collapse
Affiliation(s)
- Hans Martin Senn
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Johannes Kästner
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Jürgen Breidung
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
32
|
Denisov IG, Mak PJ, Makris TM, Sligar SG, Kincaid JR. Resonance Raman characterization of the peroxo and hydroperoxo intermediates in cytochrome P450. J Phys Chem A 2009; 112:13172-9. [PMID: 18630867 DOI: 10.1021/jp8017875] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Resonance Raman (RR) studies of intermediates generated by cryoreduction of the oxyferrous complex of the D251N mutant of cytochrome P450(cam) (CYP101) are reported. Owing to the fact that proton delivery to the active site is hindered in this mutant, the unprotonated peroxo-ferric intermediate is observed as the primary species after radiolytic reduction of the oxy-complex in frozen solutions at 77 K. In as much as previous EPR and ENDOR studies have shown that annealing of this species to approximately 180 K results in protonation of the distal oxygen atom to form the hydroperoxo intermediate, this system has been exploited to permit direct RR interrogation of the changes in the Fe-O and O-O bonds caused by the reduction and subsequent protonation. Our results show that the nu(O-O) mode decreases from a superoxo-like frequency near approximately 1130 cm(-1) to 792 cm(-1) upon reduction. The latter frequency, as well as its lack of sensitivity to H/D exchange, is consistent with heme-bound peroxide formulation. This species also exhibits a nu(Fe-O) mode, the 553 cm(-1) frequency of which is higher than that observed for the nonreduced oxy P450 precursor (537 cm(-1)), implying a strengthened Fe-O linkage upon reduction. Upon subsequent protonation, the resulting Fe-O-OH fragment exhibits a lowered nu(O-O) mode at 774 cm(-1), whereas the nu(Fe-O) increases to 564 cm(-1). Both modes exhibit a downshift upon H/D exchange, as expected for a hydroperoxo-ferric formulation. These experimental RR data are compared with those previously acquired for the wild-type protein, and the shifts observed upon reduction and subsequent protonation are discussed with reference to theoretical predictions.
Collapse
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
33
|
Sen K, Hackett JC. Molecular oxygen activation and proton transfer mechanisms in lanosterol 14alpha-demethylase catalysis. J Phys Chem B 2009; 113:8170-82. [PMID: 19438188 DOI: 10.1021/jp902932p] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The CYP51 lanosterol 14alpha-demethylases are evolutionarily ancient enzymes ubiquitously distributed throughout the biological domains. The experimental X-ray crystal structure of Mycobacterium tuberculosis (Mtb) CYP51 is the first of an enzyme capable of catalyzing inert C-C bond cleavage. Amino acid sequence comparisons of CYP51 family members with other members of the CYP superfamily reveal the almost universally conserved "acid-alcohol" pair, putatively involved in proton transport and O(2) activation, is replaced with a His-Thr dyad. In this study, extended molecular dynamics (MD) simulations and hybrid quantum mechanics/molecular mechanics calculations (QM/MM) are applied to characterize reactive oxygen intermediates and to unravel mechanisms of O(2) activation vis-a-vis proton transport for this important enzyme. MD confirms stable His259deltaH(+)-Thr260OH-O(2) (Mtb numbering) hydrogen bonding early in the simulations, suggesting these amino acids could function similarly to the Asp251-Thr252 pair in CYP101. QM/MM calculations support this dyad competently catalyzes the peroxo to Compound 0 (Cmpd 0) reaction, albeit an endothermic homolytic O-O scission mechanism affording Compound I (Cmpd I) was identified. Disruption of the His259H(+)-Thr260OH hydrogen bond in MD simulation divulges a second previously unidentified hydrogen-bond network, including three water molecules linking Glu173 in the CYP51 F-helix to the distal O(2) atom. Expansion of the QM region to contain these atoms unveils an unprecedented triradicaloid electronic structure of the peroxo intermediate characterized by spin polarization to the Glu173 side chain, attributable to the protein electrostatic environment. This amino acid, in concert with an active-site water network, catalyzes a facile protonation of the peroxo intermediate and offers a series of redundant heterolytic and homolytic mechanisms, affording exothermic formation of the ultimate oxidant Cmpd I. In summary, this study highlights the importance of the protein electrostatic environment to tune the electronic structure of CYP catalytic intermediates in addition to Cmpd I and illustrates the diversity of proton transport pathways available to these enzymes to drive catalysis.
Collapse
Affiliation(s)
- Kakali Sen
- Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, 800 East Leigh Street, Richmond, Virginia 23219, USA
| | | |
Collapse
|
34
|
Altarsha M, Benighaus T, Kumar D, Thiel W. How is the reactivity of cytochrome P450cam affected by Thr252X mutation? A QM/MM study for X = serine, valine, alanine, glycine. J Am Chem Soc 2009; 131:4755-63. [PMID: 19281168 DOI: 10.1021/ja808744k] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proton transfer reactions play a vital role in the catalytic cycle of cytochrome P450cam and are responsible for the formation of the iron-oxo species called Compound I (Cpd I) that is supposed to be the active oxidant. Depending on the course of the proton transfer, protonation of the last observable intermediate (ferric hydroperoxo complex, Cpd 0) can lead to either the formation of Cpd I (coupling reaction) or the ferric resting state (uncoupling reaction). The ratio of these two processes is drastically affected by mutation of the Thr252 residue. In this work, we study the effect of Thr252X (X = serine, valine, alanine, glycine) mutations on the formation of Cpd I by means of hybrid quantum mechanical/molecular mechanical (QM/MM) calculations and classical simulations. In the wild-type enzyme, the coupling reaction is favored since its rate-limiting barrier is 13 kcal/mol lower than that for uncoupling. This difference is reduced to 7 kcal/mol in the serine mutant. In the case of valine, alanine, and glycine mutants, an additional water molecule enters the active site and lowers the activation energy of the uncoupling reaction significantly. With the additional water molecule, coupling and uncoupling have similar barriers in the valine mutant, and the uncoupling reaction becomes favored in the alanine and glycine mutants. These findings agree very well with experimental results and thus confirm the assumption that uncontrolled proton delivery by solvent water networks is responsible for the uncoupling reaction. The present study provides a detailed mechanistic understanding of the role of the Thr252 residue.
Collapse
Affiliation(s)
- Muhannad Altarsha
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | | | | | | |
Collapse
|
35
|
Altarsha M, Wang D, Benighaus T, Kumar D, Thiel W. QM/MM Study of the Second Proton Transfer in the Catalytic Cycle of the D251N Mutant of Cytochrome P450cam. J Phys Chem B 2009; 113:9577-88. [DOI: 10.1021/jp809838k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Muhannad Altarsha
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Dongqi Wang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Tobias Benighaus
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Devesh Kumar
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
36
|
Abstract
Combined quantum-mechanics/molecular-mechanics (QM/MM) approaches have become the method of choice for modeling reactions in biomolecular systems. Quantum-mechanical (QM) methods are required for describing chemical reactions and other electronic processes, such as charge transfer or electronic excitation. However, QM methods are restricted to systems of up to a few hundred atoms. However, the size and conformational complexity of biopolymers calls for methods capable of treating up to several 100,000 atoms and allowing for simulations over time scales of tens of nanoseconds. This is achieved by highly efficient, force-field-based molecular mechanics (MM) methods. Thus to model large biomolecules the logical approach is to combine the two techniques and to use a QM method for the chemically active region (e.g., substrates and co-factors in an enzymatic reaction) and an MM treatment for the surroundings (e.g., protein and solvent). The resulting schemes are commonly referred to as combined or hybrid QM/MM methods. They enable the modeling of reactive biomolecular systems at a reasonable computational effort while providing the necessary accuracy.
Collapse
Affiliation(s)
- Hans Martin Senn
- Department of Chemistry, WestCHEM and University of Glasgow, Glasgow G12 8QQ, UK.
| | | |
Collapse
|
37
|
Probing the role of the proximal heme ligand in cytochrome P450cam by recombinant incorporation of selenocysteine. Proc Natl Acad Sci U S A 2009; 106:5481-6. [PMID: 19293375 DOI: 10.1073/pnas.0810503106] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The unique monooxygenase activity of cytochrome P450cam has been attributed to coordination of a cysteine thiolate to the heme cofactor. To investigate this interaction, we replaced cysteine with the more electron-donating selenocysteine. Good yields of the selenoenzyme were obtained by bacterial expression of an engineered gene containing the requisite UGA codon for selenocysteine and a simplified yet functional selenocysteine insertion sequence (SECIS). The sulfur-to-selenium substitution subtly modulates the structural, electronic, and catalytic properties of the enzyme. Catalytic activity decreases only 2-fold, whereas substrate oxidation becomes partially uncoupled from electron transfer, implying a more complex role for the axial ligand than generally assumed.
Collapse
|
38
|
|
39
|
Groenhof AR, Ehlers AW, Lammertsma K. Alkane Hydroxylation by Peroxy Acids: A Comparison with the Cytochrome P450 Hydroxylation. J Phys Chem A 2008; 112:12855-61. [DOI: 10.1021/jp801720s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- André R. Groenhof
- Vrije Universiteit, FEW, Department of Chemistry, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Andreas W. Ehlers
- Vrije Universiteit, FEW, Department of Chemistry, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Koop Lammertsma
- Vrije Universiteit, FEW, Department of Chemistry, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
40
|
Branco RJ, Seifert A, Budde M, Urlacher VB, Ramos MJ, Pleiss J. Anchoring effects in a wide binding pocket: The molecular basis of regioselectivity in engineered cytochrome P450 monooxygenase from B. megaterium. Proteins 2008; 73:597-607. [DOI: 10.1002/prot.22083] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
Liu X, Wang Y, Han K. Systematic study on the mechanism of aldehyde oxidation to carboxylic acid by cytochrome P450. J Biol Inorg Chem 2007; 12:1073-81. [PMID: 17661096 DOI: 10.1007/s00775-007-0277-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 05/22/2007] [Accepted: 07/05/2007] [Indexed: 11/26/2022]
Abstract
The mechanism of aldehyde to carboxylic acid conversion catalyzed by P450 enzymes via a series of reactions was studied systematically for the first time with density functional theory calculations. A two-state reactivity mechanism has been proposed, which can be adopted for many aldehyde oxidation reactions catalyzed by P450 enzymes. The mechanism involves initial hydrogen abstraction as the rate-limiting step and this is followed by steps of oxygen rebound without barriers owing to the quick recombination of the resultant radical species. Meanwhile, in an attempt to explore whether there exist some rules for the hydroxylation of aldehyde substrates by P450, the transition state barriers of the rate-limiting step for a series of aldehyde hydroxylation reactions have been compared. A predictive pattern of extended barrier/bond energy correlation for different hydroxylations of aldehyde substrates by P450 has been established, which was further confirmed to be a reliable reactivity scale by experimental results.
Collapse
Affiliation(s)
- Xiaojing Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | | | | |
Collapse
|
42
|
Bonifacio A, Groenhof AR, Keizers PHJ, de Graaf C, Commandeur JNM, Vermeulen NPE, Ehlers AW, Lammertsma K, Gooijer C, van der Zwan G. Altered spin state equilibrium in the T309V mutant of cytochrome P450 2D6: a spectroscopic and computational study. J Biol Inorg Chem 2007; 12:645-54. [PMID: 17318599 PMCID: PMC1915625 DOI: 10.1007/s00775-007-0210-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 01/23/2007] [Indexed: 11/28/2022]
Abstract
Cytochrome P450 2D6 (CYP2D6) is one of the most important cytochromes P450 in humans. Resonance Raman data from the T309V mutant of CYP2D6 show that the substitution of the conserved I-helix threonine situated in the enzyme's active site perturbs the heme spin equilibrium in favor of the six-coordinated low-spin species. A mechanistic hypothesis is introduced to explain the experimental observations, and its compatibility with the available structural and spectroscopic data is tested using quantum-mechanical density functional theory calculations on active-site models for both the CYP2D6 wild type and the T309V mutant.
Collapse
Affiliation(s)
- Alois Bonifacio
- Department of Chemistry and Pharmaceutical Sciences, Sections of Analytical Chemistry and Applied Spectroscopy (ACAS), Organic and Inorganic Chemistry and Molecular Toxicology, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - André R. Groenhof
- Department of Chemistry and Pharmaceutical Sciences, Sections of Analytical Chemistry and Applied Spectroscopy (ACAS), Organic and Inorganic Chemistry and Molecular Toxicology, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Peter H. J. Keizers
- Department of Chemistry and Pharmaceutical Sciences, Sections of Analytical Chemistry and Applied Spectroscopy (ACAS), Organic and Inorganic Chemistry and Molecular Toxicology, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Chris de Graaf
- Department of Chemistry and Pharmaceutical Sciences, Sections of Analytical Chemistry and Applied Spectroscopy (ACAS), Organic and Inorganic Chemistry and Molecular Toxicology, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Jan N. M. Commandeur
- Department of Chemistry and Pharmaceutical Sciences, Sections of Analytical Chemistry and Applied Spectroscopy (ACAS), Organic and Inorganic Chemistry and Molecular Toxicology, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Nico P. E. Vermeulen
- Department of Chemistry and Pharmaceutical Sciences, Sections of Analytical Chemistry and Applied Spectroscopy (ACAS), Organic and Inorganic Chemistry and Molecular Toxicology, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Andreas W. Ehlers
- Department of Chemistry and Pharmaceutical Sciences, Sections of Analytical Chemistry and Applied Spectroscopy (ACAS), Organic and Inorganic Chemistry and Molecular Toxicology, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Koop Lammertsma
- Department of Chemistry and Pharmaceutical Sciences, Sections of Analytical Chemistry and Applied Spectroscopy (ACAS), Organic and Inorganic Chemistry and Molecular Toxicology, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Cees Gooijer
- Department of Chemistry and Pharmaceutical Sciences, Sections of Analytical Chemistry and Applied Spectroscopy (ACAS), Organic and Inorganic Chemistry and Molecular Toxicology, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Gert van der Zwan
- Department of Chemistry and Pharmaceutical Sciences, Sections of Analytical Chemistry and Applied Spectroscopy (ACAS), Organic and Inorganic Chemistry and Molecular Toxicology, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
43
|
Hirao H, Kumar D, Shaik S. On the identity and reactivity patterns of the “second oxidant” of the T252A mutant of cytochrome P450cam in the oxidation of 5-methylenenylcamphor. J Inorg Biochem 2006; 100:2054-68. [PMID: 17084458 DOI: 10.1016/j.jinorgbio.2006.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 08/27/2006] [Accepted: 09/07/2006] [Indexed: 11/26/2022]
Abstract
Density functional calculations show that in the absence of Compound I, the primary oxidant species of P450, the precursor species, Compound 0 (FeOOH), can effect double bond activation of 5-methylenylcamphor (1). The mechanism is initiated by homolytic cleavage of the O-O bond and formation of an OH radical bound to the Compound II species by hydrogen bonding interactions. Subsequently, the so-formed OH radical can either activate the double bond of 1 or attack the meso position of the heme en route to heme degradation. The calculations show that double bond activation is preferred over attack on the heme. Past the double bond activation, the intermediate can either lead to epoxidation or to a glycol formation. The glycol formation is predicted to be preferred, although in the P450(cam) pocket the competition may be closer. Therefore, in the absence of Compound I, Compound 0 will be capable of epoxidizing double bonds. Previous studies [E. Derat, D. Kumar, H. Hirao, S. Shaik, J. Am. Chem. Soc. 128 (2006) 473-484] showed that in the case of a substrate that can undergo only C-H activation, the bound OH prefers heme degradation over hydrogen abstraction. Since the epoxidation barrier for Compound I is much smaller than that of Compound 0 (12.8 vs. 18.9kcal/mol), when Compound I is present in the cycle, Compound 0 will be silent. As such, our mechanism explains lucidly why T252A P450(cam) can epoxidize olefins like 5-methylenylcamphor but is ineffective in camphor hydroxylation [S. Jin, T.M. Makris, T. A. Bryson, S.G. Sligar, J.H. Dawson, J. Am. Chem. Soc. 125 (2003) 3406-3407]. Our calculations show that the glycol formation is a marker reaction of Compound 0 with 5-methylenylcamphor. If this product can be found in T252A P450(cam) or in similar mutants of other P450 isozymes, this will constitute a more definitive proof for the action of Cpd 0 in P450 enzymes.
Collapse
Affiliation(s)
- Hajime Hirao
- Department of Chemistry and the Lise Meitner-Minerva Center for Computational, Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | |
Collapse
|
44
|
de Visser SP. Substitution of Hydrogen by Deuterium Changes the Regioselectivity of Ethylbenzene Hydroxylation by an Oxo–Iron–Porphyrin Catalyst. Chemistry 2006; 12:8168-77. [PMID: 16871510 DOI: 10.1002/chem.200600376] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Heme oxo-iron complexes are powerful oxygenation catalysts of environmentally benign hydroxylation processes. We have performed density functional theoretic calculations on a model system, that is, an oxo-iron-porphyrin (Por) complex [(Fe=O)Cl(Por)], and studied its reactivity toward a realistic substrate, namely, ethylbenzene. The calculations showed that the dominant reaction process in the gas phase is benzyl hydroxylation leading to 1-phenylethanol, with an energetic barrier of 9.1 kcal mol(-1), while the competing para-phenyl hydroxylation has a barrier 3.0 kcal mol(-1) higher in energy. This benzyl hydroxylation barrier is the lowest C-H hydroxylation barrier we have obtained so far for oxo-iron-porphyrin complexes. Due to electronic differences between the intermediates in the phenyl and benzyl hydroxylation processes, the phenyl hydroxylation process is considerably stabilised over the benzyl hydroxylation mechanism in environments with a large dielectric constant. In addition, we calculated kinetic isotope effects of the substitution of one or more hydrogen atoms of ethylbenzene by deuterium atoms and studied its effect on the reaction barriers. Thus, in a medium with a large dielectric constant, a regioselectivity change occurs between [H(10)]ethylbenzene and [D(10)]ethylbenzene whereby the deuterated species gives phenol products whereas the hydrogenated species gives mainly 1-phenylethanol products. This remarkable metabolic switching was analysed and found to occur due to 1) differences in strength between a C-H versus a C-D bond and 2) stabilisation of cationic intermediates in a medium with a large dielectric constant. We have compared our calculations with experimental work on synthetic oxo-iron-porphyrin catalysts as well as with enzyme-reactivity studies.
Collapse
Affiliation(s)
- Sam P de Visser
- The Manchester Interdisciplinary Biocentre and the School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
45
|
Cavalli A, Carloni P, Recanatini M. Target-Related Applications of First Principles Quantum Chemical Methods in Drug Design. Chem Rev 2006; 106:3497-519. [PMID: 16967914 DOI: 10.1021/cr050579p] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrea Cavalli
- Department of Pharmaceutical Sciences, University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | | | | |
Collapse
|
46
|
Wang Y, Wang H, Wang Y, Yang C, Yang L, Han K. Theoretical Study of the Mechanism of Acetaldehyde Hydroxylation by Compound I of CYP2E1. J Phys Chem B 2006; 110:6154-9. [PMID: 16553429 DOI: 10.1021/jp060033m] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent experimental studies revealed that cytochrome P450 2E1 (CYP2E1) could metabolize not only ethanol but also its primary product, acetaldehyde, accompanying the well-known acetaldehyde dehydrogenases (ALDH) in the metabolism of acetaldehyde. Mechanistic aspects of acetaldehyde hydroxylation by Compound I model active species of CYP2E1 were investigated by means of B3LYP DFT calculations in the present paper. Our study results demonstrate that acetaldehyde hydroxylation by CYP2E1 is in accord with the effectively concerted mechanisms both on the high quartet spin state (HS) and on the low doublet spin state (LS). The rate-limiting step is H-abstraction, and the activation energy is about 11.7 approximately 14.0 kcal/mol on the quartet (doublet) reaction route, which is about one-half to one-third of that needed by methane hydroxylation. The phenomenon that the HS and LS reaction routes are both effectively concerted was shown for the first time to occur in trans-2-phenyl-iso-propylcyclopropane hydroxylation by Kumar et al. (see Figure 7 in the paper of Kumar, D.; de Visser, S. P.; Sharma, P. K.; Cohen, S.; Shaik, S. J. Am. Chem. Soc. 2004, 126, 1907) and was confirmed in our work of acetaldehyde hydroxylation by cytochrome P450. Theoretical exploration of the HS O-rebound barrier degradation is also presented in the present paper on the basis of Shaik's valence bond (VB) model.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | | | | | | | | | | |
Collapse
|