1
|
Witek HA, Podeszwa R. Kekulé Counts, Clar Numbers, and ZZ Polynomials for All Isomers of (5,6)-Fullerenes C 52-C 70. Molecules 2024; 29:4013. [PMID: 39274861 PMCID: PMC11396526 DOI: 10.3390/molecules29174013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024] Open
Abstract
We report an extensive tabulation of several important topological invariants for all the isomers of carbon (5,6)-fullerenes Cn with n = 52-70. The topological invariants (including Kekulé count, Clar count, and Clar number) are computed and reported in the form of the corresponding Zhang-Zhang (ZZ) polynomials. The ZZ polynomials appear to be distinct for each isomer cage, providing a unique label that allows for differentiation between various isomers. Several chemical applications of the computed invariants are reported. The results suggest rather weak correlation between the Kekulé count, Clar count, Clar number invariants, and isomer stability, calling into doubt the predictive power of these topological invariants in discriminating the most stable isomer of a given fullerene. The only exception is the Clar count/Kekulé count ratio, which seems to be the most important diagnostic discovered from our analysis. Stronger correlations are detected between Pauling bond orders computed from Kekulé structures (or Clar covers) and the corresponding equilibrium bond lengths determined from the optimized DFTB geometries of all 30,579 isomers of C20-C70.
Collapse
Affiliation(s)
- Henryk A Witek
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Rafał Podeszwa
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| |
Collapse
|
2
|
García-Risueño P, Armengol E, García-Cerdaña À, García-Lastra JM, Carrasco-Busturia D. Electron-vibrational renormalization in fullerenes through ab initio and machine learning methods. Phys Chem Chem Phys 2024. [PMID: 38984472 DOI: 10.1039/d4cp00632a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The effect of nuclear vibrations on the electronic eigenvalues and the HOMO-LUMO gap is known for several kinds of carbon-based materials, like diamond, diamondoids, carbon nanoclusters, carbon nanotubes and others, like hydrogen-terminated oligoynes and polyyne. However, it has not been widely analysed in another remarkable kind which presents both theoretical and technological interest: fullerenes. In this article we present the study of the HOMO, LUMO and gap renormalizations due to zero-point motion of a relatively large number (163) of fullerenes and fullerene derivatives. We have calculated this renormalization using density-functional theory with the frozen-phonon method, finding that it is non-negligible (above 0.1 eV) for systems with relevant technological applications in photovoltaics and that the strength of the renormalization increases with the size of the gap. In addition, we have applied machine learning methods for classification and regression of the renormalizations, finding that they can be approximately predicted using the output of a computationally cheap ground state calculation. Our conclusions are supported by recent research in other systems.
Collapse
Affiliation(s)
| | - Eva Armengol
- Artificial Intelligence Research Institute, (IIIA, CSIC) Carrer de Can Planes, s/n, Campus UAB, 08193 Bellaterra, Catalonia, Spain
| | - Àngel García-Cerdaña
- Artificial Intelligence Research Institute, (IIIA, CSIC) Carrer de Can Planes, s/n, Campus UAB, 08193 Bellaterra, Catalonia, Spain
| | - Juan María García-Lastra
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - David Carrasco-Busturia
- DTU Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Division of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
3
|
Schiemenz S, Koenig RM, Stevenson S, Avdoshenko SM, Popov AA. Vibrational anatomy of C 90, C 96, and C 100 fullertubes: probing Frankenstein's skeletal structures of fullerene head endcaps and nanotube belt midsection. NANOSCALE 2022; 14:10823-10834. [PMID: 35829712 DOI: 10.1039/d2nr01870e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fullertubes are tubular fullerenes with nanotube-like middle section and fullerene-like endcaps. To understand how this intermediate form between spherical fullerenes and nanotubes is reflected in the vibrational modes, we performed comprehensive studies of IR and Raman spectra of fullertubes C90-D5h, C96-D3d, and C100-D5d. An excellent agreement between experimental and DFT-computed spectra enabled a detailed vibrational assignment and allowed an analysis of the localization degree of the vibrational modes in different parts of fullertubes. Projection analysis was performed to establish an exact numerical correspondence between vibrations of the belt midsection and fullerene headcaps to the modes of nanotubes and fullerene C60-Ih. As a result, we could not only identify fullerene-like and CNT-like vibrations of fullertubes, but also trace their origin in specific vibrational modes of CNT and C60-Ih. IR spectra were found to be dominated by vibrations of fullerene-like caps resembling IR-active modes of C60-Ih, whereas in Raman spectra both caps and belt vibrations are found to be equally active. Unlike the resonance Raman spectra of CNTs, in which only two single-phonon bands are detected, the Raman spectra of fullertubes exhibit several CNT-like vibrations and thus provide additional information on nanotube phonons.
Collapse
Affiliation(s)
- Sandra Schiemenz
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), 01069 Dresden, Germany.
| | - Ryan M Koenig
- Purdue University Fort Wayne, Department of Chemistry and Biochemistry, Fort Wayne, IN 46835, USA.
| | - Steven Stevenson
- Purdue University Fort Wayne, Department of Chemistry and Biochemistry, Fort Wayne, IN 46835, USA.
| | - Stanislav M Avdoshenko
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), 01069 Dresden, Germany.
| | - Alexey A Popov
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), 01069 Dresden, Germany.
| |
Collapse
|
4
|
Tamm NB, Troyanov SI. Two Isolated-Pentagon-Rule Isomers C 98(110) and C 98(111) Isolated as Trifluoromethylfullerenes C 98(CF 3) 22. Inorg Chem 2021; 60:18625-18628. [PMID: 34860013 DOI: 10.1021/acs.inorgchem.1c03111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fullerene C98 has 259 topologically possible isomers that obey the isolated-pentagon rule (IPR). In this work, a family of experimentally confirmed IPR isomers of C98 fullerene is extended by the high-performance liquid chromatography isolation and X-ray structural characterization of two trifluoromethyl derivatives, C1-C98(110)(CF3)22 and C1-C98(111)(CF3)22. The carbon cages of isomers Cs-C98(110) and Cs-C98(111) differ by a Stone-Wales rotation of only one C-C bond, which results in very similar addition patterns of 22 CF3 groups in the C98(CF3)22 molecules. The stabilizing substructures in both C98(CF3)22 molecules include six benzenoid rings and four isolated C═C bonds. Both Cs-C98(110) and Cs-C98(111) belong to the isomers of moderate relative stability among altogether seven IPR isomers of C98 fullerene with experimentally confirmed cage structures.
Collapse
Affiliation(s)
- Nadezhda B Tamm
- Chemistry Department, Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Sergey I Troyanov
- Chemistry Department, Moscow State University, Leninskie Gory, Moscow 119991, Russia
| |
Collapse
|
5
|
Fullerenes C100 and C108: new substructures of higher fullerenes. Struct Chem 2021. [DOI: 10.1007/s11224-021-01803-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Khamatgalimov AR, Gerasimova TP, Burganov TI, Kovalenko VI. Features of molecular structures of some IPR isomers of C96 fullerene. Struct Chem 2021. [DOI: 10.1007/s11224-021-01824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Khamatgalimov AR, Kovalenko VI. Substructural Approach for Assessing the Stability of Higher Fullerenes. Int J Mol Sci 2021; 22:3760. [PMID: 33916647 PMCID: PMC8038623 DOI: 10.3390/ijms22073760] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022] Open
Abstract
This review describes the most significant published results devoted to the study of the nature of the higher fullerenes stability, revealing of correlations between the structural features of higher fullerene molecules and the possibility of their producing. A formalization of the substructure approach to assessing the stability of higher fullerenes is proposed, which is based on a detailed analysis of the main structural features of fullerene molecules. The developed substructure approach, together with the stability of the substructures constituting the fullerene molecule, helps to understand deeper the features of the electronic structure of fullerenes.
Collapse
Affiliation(s)
- Ayrat R. Khamatgalimov
- FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 420088 Kazan, Russia;
| | - Valeri I. Kovalenko
- FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 420088 Kazan, Russia;
- Department of Environmental Engineering, Kazan National Research Technological University, 420015 Kazan, Russia
| |
Collapse
|
8
|
Tamm NB, Guan R, Yang S, Sidorov LN, Troyanov SI. Three Isolated-Pentagon-Rule Isomers of C 96 Fullerene Isolated as Trifluoromethyl Derivatives. Inorg Chem 2020; 59:17866-17869. [PMID: 33290050 DOI: 10.1021/acs.inorgchem.0c02919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The family of experimentally confirmed isolated-pentagon-rule (IPR) isomers of C96 fullerene is extended by trifluoromethylation of a C96 fraction of the fullerene soot, high-performance liquid chromatography separation of CF3 derivatives, and a single-crystal X-ray diffraction study of C96(CF3)n compounds with the use of synchrotron radiation. New cage isomers were revealed in C96(94)(CF3)18/20 and C96(182)(CF3)18 compounds, whereas isomer C96(181), previously known in the adduct with nickel porphyrinate, was confirmed in C96(181)(CF3)18/20 derivatives. Common and special features of the addition patterns of CF3 groups on C96 carbon cages are discussed in more detail. The investigated isomers belong to the most stable C2-C96(181) and slightly less stable C1-C96(94) and C2-C96(182) among the altogether 15 experimentally confirmed IPR isomers of C96 fullerene.
Collapse
Affiliation(s)
- Nadezhda B Tamm
- Chemistry Department, Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Runnan Guan
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Lev N Sidorov
- Chemistry Department, Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Sergey I Troyanov
- Chemistry Department, Moscow State University, Leninskie Gory, Moscow 119991, Russia
| |
Collapse
|
9
|
Wang S, Chang Q, Zhang G, Li F, Wang X, Yang S, Troyanov SI. Structural Studies of Giant Empty and Endohedral Fullerenes. Front Chem 2020; 8:607712. [PMID: 33344423 PMCID: PMC7744686 DOI: 10.3389/fchem.2020.607712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/12/2020] [Indexed: 11/13/2022] Open
Abstract
Structure elucidations of giant fullerenes composed of 100 or more carbon atoms are severely hampered by their extremely low yield, poor solubility and huge numbers of possible cage isomers. High-temperature exohedral chlorination followed by X-ray single crystal diffraction studies of the chloro derivatives offers a practical solution for structure elucidations of giant fullerenes. Various isomers of giant fullerenes have been determined by this method, specially, non-classical giant fullerenes containing heptagons generated by the skeletal transformations of carbon cages. Alternatively, giant fullerenes can be also stabilized by encapsulating metal atoms or clusters through intramolecular electron transfer from the encapsulated species to the outer fullerene cage. In this review, we present a comprehensive overview on synthesis, separation and structural elucidation of giant fullerenes. The isomer structures, chlorination patterns of a series of giant fullerenes C2n (2n = 100-108) and heptagon-containing non-classical fullerenes derived from giant fullerenes are summarized. On the other hand, giant endohedral fullerenes bearing different endohedral species are also discussed. At the end, we propose an outlook on the future development of giant fullerenes.
Collapse
Affiliation(s)
- Song Wang
- Chongqing Key Laboratory of Catalysis & Environmental New Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
| | - Qing Chang
- Chongqing Key Laboratory of Catalysis & Environmental New Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
| | - Guizhi Zhang
- Chongqing Key Laboratory of Catalysis & Environmental New Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
| | - Fukun Li
- Chongqing Key Laboratory of Catalysis & Environmental New Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
| | - Xingmin Wang
- Chongqing Key Laboratory of Catalysis & Environmental New Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences (CAS) Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, China
| | | |
Collapse
|
10
|
Tamm NB, Guan R, Yang S, Troyanov SI. New Isolated‐Pentagon‐Rule Isomers of Fullerene C
96
Captured as Chloro Derivatives. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000235] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nadezhda B. Tamm
- Chemistry Department Moscow State University Leninskie Gory 119991 Moscow Russia
| | - Runnan Guan
- Hefei National Laboratory for Physical Sciences at Microscale University of Science and Technology of China (USTC) 230026 Hefei China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale University of Science and Technology of China (USTC) 230026 Hefei China
| | - Sergey I. Troyanov
- Chemistry Department Moscow State University Leninskie Gory 119991 Moscow Russia
| |
Collapse
|
11
|
Meng QY, Zhang B, Wang DL. Geometric and electronic properties of Y2C2@C1(1660)-C108 fullerene. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2019.112672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Tamm NB, Guan R, Yang S, Troyanov SI. Trifluoromethyl Derivatives of Elusive Fullerene C 98. Chemistry 2020; 26:616-619. [PMID: 31714624 DOI: 10.1002/chem.201904789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/09/2019] [Indexed: 11/11/2022]
Abstract
Data concerning the isomeric composition of C98 and the chemistry of C98 derivatives are scarce due to very low abundance of C98 in the fullerene soot. Trifluoromethylation of C98 -containing mixtures followed by HPLC separation of CF3 derivatives and single crystal X-ray diffraction study resulted in structural characterization of four compounds C98 (248)(CF3 )18/20 , C98 (116)(CF3 )18 , and C98 (120)(CF3 )20 . To date, these compounds represent the largest fullerenes isolated as CF3 derivatives with experimentally determined molecular structures. The addition patterns of C98 (CF3 )18/20 are discussed in detail revealing the stabilizing factors, such as isolated double C=C bonds and benzenoid rings on C98 fullerene cages. A detailed comparison with the addition patterns of the known C98 Cln allowed us to contribute to the better understanding the chemistry of elusive C98 fullerene.
Collapse
Affiliation(s)
- Nadezhda B Tamm
- Chemistry Department, Moscow State University, Leninskie gory, 119991, Moscow, Russia
| | - Runnan Guan
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China (USTC), Hefei, 230026, P.R. China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China (USTC), Hefei, 230026, P.R. China
| | - Sergey I Troyanov
- Chemistry Department, Moscow State University, Leninskie gory, 119991, Moscow, Russia
| |
Collapse
|
13
|
Tamm NB, Guan R, Yang S, Kemnitz E, Troyanov SI. Chlorination-Promoted Cage Transformation of IPR C 92 Discovered via Trifluoromethylation under Formation of Non-classical C 92 (NC)(CF 3 ) 22. Chem Asian J 2019; 14:2108-2111. [PMID: 31091007 DOI: 10.1002/asia.201900469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/23/2019] [Indexed: 11/12/2022]
Abstract
High-temperature trifluoromethylation of isolated-pentagon-rule (IPR) fullerene C92 chlorination products followed by HPLC separation of C92 (CF3 )n derivatives resulted in the isolation and X-ray structural characterization of IPR C92 (38)(CF3 )18 and non-classical C92 (NC)(CF3 )22 . The formation of C92 (38)(CF3 )18 as the highest CF3 derivative of the known isomer C92 (38) can be expected. The formation of C92 (NC)(CF3 )22 was interpreted as chlorination-promoted cage transformation of C92 (38) followed by trifluoromethylation of non-classical C92 (NC) chloride. Noticeably, C92 (NC)(CF3 )22 shows the highest degree of trifluoromethylation among all known CF3 derivatives of fullerenes. The addition patterns of C92 (38)(CF3 )18 and C92 (NC)(CF3 )22 are discussed and compared to the chlorination patterns of C92 (38)Cln compounds.
Collapse
Affiliation(s)
- Nadezhda B Tamm
- Chemistry Department, Moscow State University, Leninskie Gory, 119991, Moscow, Russia
| | - Runnan Guan
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China (USTC), 230026, Hefei, China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China (USTC), 230026, Hefei, China
| | - Erhard Kemnitz
- Institute of Chemistry, Humboldt University Berlin, Brook-Taylor.-Str. 2, 12489, Berlin, Germany
| | - Sergey I Troyanov
- Chemistry Department, Moscow State University, Leninskie Gory, 119991, Moscow, Russia
| |
Collapse
|
14
|
Pérez-Figueroa SE, Calaminici P, Köster AM. Hybrid ADFT Study of the C 104 and C 106 IPR Isomers. J Phys Chem A 2019; 123:4565-4574. [PMID: 31021089 DOI: 10.1021/acs.jpca.9b00665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work presents a hybrid auxiliary density functional theory (ADFT) study of the neutral and hexaanionic C104 and C106 fullerenes with the aim to determine their ground state structures. To this end, all C104 and C106 fullerene structures that obey the isolated pentagon rule (IPR) were optimized with the Perdew-Burke-Ernzerhof generalized gradient approximation followed by a single-point energy calculation with the PBE0 hybrid functional. Our studies show that this composite approach yields relative energies of giant fullerenes that are accurate to around 1 kcal/mol. As a result, the ground states of C104, C1046-, and C1066- can be assigned to the isomers 234:Cs, 821:D2, and 891:Cs, respectively. On the other hand, the energetically lowest lying IPR isomers of C106, 331:Cs, 1194:C2, 534:C1 are separated by less than 1 kcal/mol which makes an unequivocal ground state assignment by hybrid DFT methods impossible. To guide future experiments, we also report the simulated IR and Raman spectra of the most stable neutral and hexaanionic C104 and C106 fullerenes.
Collapse
|
15
|
Guan R, Jin F, Yang S, Tamm NB, Troyanov SI. Stable C92(26) and C92(38) as Well as Unstable C92(50) and C92(23) Isolated-Pentagon-Rule Isomers As Revealed by Chlorination of C92 Fullerene. Inorg Chem 2019; 58:5393-5396. [DOI: 10.1021/acs.inorgchem.9b00144] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Runnan Guan
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Fei Jin
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Nadezhda B. Tamm
- Chemistry Department, Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Sergey I. Troyanov
- Chemistry Department, Moscow State University, Leninskie Gory, Moscow 119991, Russia
| |
Collapse
|
16
|
Song XN, Hu J, Lin J, Wang SY, Zhang JR, Yang SQ, Ma Y, Zhou Y, Wang CK. Theoretical study of nano onion-like fullerenes C20@C80 on XPS and NEXAFS spectra. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1542167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Xiu-Neng Song
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, People's Republic of China
| | - Jing Hu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, People's Republic of China
| | - Juan Lin
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, People's Republic of China
| | - Sheng-Yu Wang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, People's Republic of China
| | - Jun-Rong Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, People's Republic of China
| | - Shu-Qiong Yang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, People's Republic of China
| | - Yong Ma
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, People's Republic of China
| | - Yong Zhou
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, People's Republic of China
| | - Chuan-Kui Wang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, People's Republic of China
| |
Collapse
|
17
|
Slanina Z, Uhlík F, Pan C, Akasaka T, Lu X, Adamowicz L. Computed stabilization for a giant fullerene endohedral: Y2C2@C1(1660)-C108. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.08.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
González-Veloso I, Rodríguez-Otero J, Cabaleiro-Lago EM. Assessment of electronic transitions involving intermolecular charge transfer in complexes formed by fullerenes and donor–acceptor nanohoops. Phys Chem Chem Phys 2018; 20:27791-27803. [DOI: 10.1039/c8cp04119a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inserting an anthraquinone or tetracyanoanthraquinone unit in cycloparaphenylene nanohoops facilitates intermolecular electron transfer to a fullerene guest.
Collapse
Affiliation(s)
- Iván González-Veloso
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Física
- Universidade de Santiago de Compostela
- Galicia
- Spain
| | - Jesús Rodríguez-Otero
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Física
- Universidade de Santiago de Compostela
- Galicia
- Spain
| | - Enrique M. Cabaleiro-Lago
- Departamento de Química Física
- Facultad de Ciencias
- Universidade de Santiago de Compostela
- Campus de Lugo
- 27002 Lugo
| |
Collapse
|
19
|
Jin F, Yang S, Troyanov SI. New Isolated-Pentagon-Rule Isomers of Fullerene C 98 Captured as Chloro Derivatives. Inorg Chem 2017; 56:4780-4783. [PMID: 28414221 DOI: 10.1021/acs.inorgchem.7b00568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fullerene C98 possesses 259 isomers obeying the isolated pentagon rule (IPR), from which two, nos. 116 and 248, have been confirmed earlier as chloro derivatives. High-temperature chlorination of C98-containing mixtures afforded crystals of several chloro derivatives, and their structure elucidation by X-ray crystallography revealed the presence of new isomers, nos. 107, 109, and 120, in the fullerene soot. Evidence for an isomer of no. 111 is also presented. In addition, a new chloride of the known isomer 248 has been isolated and structurally studied. The chlorination patterns of the chlorides are discussed in terms of the formation of isolated C═C bonds and aromatic substructures on the fullerene cages.
Collapse
Affiliation(s)
- Fei Jin
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China (USTC) , Hefei 230026, China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China (USTC) , Hefei 230026, China
| | - Sergey I Troyanov
- Chemistry Department, Moscow State University , Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
20
|
Jin F, Yang S, Fritz MA, Kemnitz E, Troyanov SI. Chloro Derivatives of Isomers of a Giant Fullerene C 104 : C 104 (234)Cl 16/18 , C 104 (812)Cl 12/24 , and C 104 (811)Cl 28. Chemistry 2017; 23:4761-4764. [PMID: 28252251 DOI: 10.1002/chem.201700079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Indexed: 02/01/2023]
Abstract
The chemistry of a giant fullerene, C104 , has been extended by the synthesis and structural study of several chloro derivatives of three isolated pentagon rule (IPR) isomers of C104 nos. 234, 812, and 811. In the structure of C104 (234)Cl16/18 , two molecules with 16 and 18 attached Cl atoms occupy the same crystallographic site with an occupancy ratio of 61/39. The structures of C104 (812)Cl12 and C104 (812)Cl24 demonstrate substructure relationships of their chlorination patterns with single and double Cl attachments to 12 cage pentagons. The structure of C104 (811)Cl28 is compared with the known C104 (811)Cl24 thus revealing dramatic changes in the chlorination pattern, which occur with relatively small increases in the degree of chlorination.
Collapse
Affiliation(s)
- Fei Jin
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Maria A Fritz
- Institute of Chemistry, Humboldt University Berlin, Brook-Taylor.-Str.2, 12489, Berlin, Germany
| | - Erhard Kemnitz
- Institute of Chemistry, Humboldt University Berlin, Brook-Taylor.-Str.2, 12489, Berlin, Germany
| | - Sergey I Troyanov
- Department of Chemistry, Moscow State University, 119991, Moscow, Leninskie gory, Russia
| |
Collapse
|
21
|
Wang Y, Díaz-Tendero S, Alcamí M, Martín F. Generalized structural motif model for studying the thermodynamic stability of fullerenes: from C60to graphene passing through giant fullerenes. Phys Chem Chem Phys 2017; 19:19646-19655. [DOI: 10.1039/c7cp01598d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A generalized motif model to describe the stability of neutral fullerenes, covering the full range of cage sizes, starting from C60, going through giant fullerenes, and ultimately leading to graphene.
Collapse
Affiliation(s)
- Yang Wang
- Departamento de Química
- Módulo 13
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - Sergio Díaz-Tendero
- Departamento de Química
- Módulo 13
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - Manuel Alcamí
- Departamento de Química
- Módulo 13
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - Fernando Martín
- Departamento de Química
- Módulo 13
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| |
Collapse
|
22
|
Chilingarov NS, Troyanov SI. Unstable Isomer of C90Fullerene Isolated as Chloro Derivatives, C90(1)Cl10/12. Chem Asian J 2016; 11:1896-9. [DOI: 10.1002/asia.201600713] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Indexed: 11/10/2022]
Affiliation(s)
| | - Sergey I. Troyanov
- Chemistry Department; Moscow State University; Leninskie Gory 119991 Moscow Russia
| |
Collapse
|
23
|
Wang S, Yang S, Kemnitz E, Troyanov SI. New Giant Fullerenes Identified as Chloro Derivatives: Isolated-Pentagon-Rule C108(1771)Cl12 and C106(1155)Cl24 as well as Nonclassical C104Cl24. Inorg Chem 2016; 55:5741-3. [PMID: 27276659 DOI: 10.1021/acs.inorgchem.6b00809] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High temperature chlorination of HPLC fractions of higher fullerenes followed by single crystal X-ray diffraction with the use of synchrotron radiation resulted in the structure determination of IPR C106(1155)Cl24 and IPR C108(1771)Cl12. C106(1155)Cl24 is cocrystallized with C104Cl24, a chloride of the nonclassical isomer of C104. The moderately stable isomer C106(1155) and the most stable C108(1771) represent so far the largest pristine fullerenes with known cages.
Collapse
Affiliation(s)
- Song Wang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion & Department of Materials Science and Engineering, University of Science and Technology of China (USTC) , Hefei 230026, China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion & Department of Materials Science and Engineering, University of Science and Technology of China (USTC) , Hefei 230026, China
| | - Erhard Kemnitz
- Institute of Chemistry, Humboldt University of Berlin , Brook-Taylor.-Str.2, 12489 Berlin, Germany
| | - Sergey I Troyanov
- Chemistry Department, Moscow State University , Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
24
|
Wang S, Yang S, Kemnitz E, Troyanov SI. The First Experimentally Confirmed Isolated Pentagon Rule (IPR) Isomers of Higher Fullerene C98 Captured as Chlorides, C98(248)Cl22 and C98(116)Cl20. Chemistry 2016; 22:5138-41. [PMID: 26919123 DOI: 10.1002/chem.201504556] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Indexed: 11/11/2022]
Abstract
High-temperature chlorination of pristine C98 fullerene isomers separated by HPLC from the fullerene soot afforded crystals of C98Cl22 and C98Cl20. An X-ray structure elucidation revealed, respectively, the presence of carbon cages of the most stable C2-C98(248) and rather unstable C1-C98(116), which represent the first isolated pentagon rule (IPR) isomers of fullerene C98 confirmed experimentally. The chlorination patterns of the chlorides are discussed in terms of the formation of isolated C=C bonds and aromatic substructures on the fullerene cages.
Collapse
Affiliation(s)
- Song Wang
- CAS Key Laboratory of Materials for Energy Conversion & Department of Material Science and Engineering, University of Science and Technology of China (USTC), Hefei, 230026, China
| | - Shangfeng Yang
- CAS Key Laboratory of Materials for Energy Conversion & Department of Material Science and Engineering, University of Science and Technology of China (USTC), Hefei, 230026, China.
| | - Erhard Kemnitz
- Institute of Chemistry, Humboldt University of Berlin, Brook-Taylor-Str.2, 12489, Berlin, Germany.
| | - Sergey I Troyanov
- Chemistry Department, Moscow State University, 119991, Moscow, Leninskie gory, Russia.
| |
Collapse
|
25
|
Wang S, Yang S, Kemnitz E, Troyanov SI. New Isolated-Pentagon-Rule and Skeletally Transformed Isomers of C100
Fullerene Identified by Structure Elucidation of their Chloro Derivatives. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Song Wang
- Hefei National Laboratory for Physical Sciences at Microscale; CAS Key Laboratory of Materials for Energy Conversion; Department of Materials Science and Engineering; University of Science and Technology of China; Hefei 230026 China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale; CAS Key Laboratory of Materials for Energy Conversion; Department of Materials Science and Engineering; University of Science and Technology of China; Hefei 230026 China
| | - Erhard Kemnitz
- Institute of Chemistry; Humboldt University Berlin; Brook-Taylor.-Str.2 12489 Berlin Germany
| | - Sergey I. Troyanov
- Department of Chemistry; Moscow State University; 119991 Moscow, Leninskie gory Russia
| |
Collapse
|
26
|
Wang S, Yang S, Kemnitz E, Troyanov SI. New Isolated-Pentagon-Rule and Skeletally Transformed Isomers of C100 Fullerene Identified by Structure Elucidation of their Chloro Derivatives. Angew Chem Int Ed Engl 2016; 55:3451-4. [PMID: 26848074 DOI: 10.1002/anie.201511928] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Indexed: 12/28/2022]
Abstract
High-temperature chlorination of C100 fullerene followed by X-ray structure determination of the chloro derivatives enabled the identification of three isomers of C100 from the fullerene soot, specifically numbers 18, 425, and 417, which obey the isolated pentagon rule (IPR). Among them, isomers C1-C100 (425) and C2-C100 (18) afforded C1-C100 (425)Cl22 and C2-C100 (18)Cl28/30 compounds, respectively, which retain their IPR cage connectivities. In contrast, isomer C2v -C100 (417) gives Cs -C100 (417)Cl28 which undergoes a skeletal transformation by the loss of a C2 fragment, resulting in the formation of a nonclassical (NC) C1-C98 (NC)Cl26 with a heptagon in the carbon cage. Most probably, two nonclassical C1-C100 (NC)Cl18/22 chloro derivatives originate from the IPR isomer C1-C100 (382), although both C1-C100 (344) and even nonclassical C1-C100 (NC) can be also considered as the starting isomers.
Collapse
Affiliation(s)
- Song Wang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| | - Erhard Kemnitz
- Institute of Chemistry, Humboldt University Berlin, Brook-Taylor.-Str.2, 12489, Berlin, Germany.
| | - Sergey I Troyanov
- Department of Chemistry, Moscow State University, 119991, Moscow, Leninskie gory, Russia.
| |
Collapse
|
27
|
Fritz MA, Kemnitz E, Troyanov SI. Capturing an unstable C100 fullerene as chloride, C100(1)Cl12, with a nanotubular carbon cage. Chem Commun (Camb) 2015; 50:14577-80. [PMID: 25308237 DOI: 10.1039/c4cc06825d] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chlorination of a HPLC C100 fraction afforded C100(1)Cl12 with an unprecedented nanotubular carbon cage of a highly unstable D5d-C100 fullerene.
Collapse
Affiliation(s)
- Maria A Fritz
- Institute of Chemistry, Humboldt University of Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | | | | |
Collapse
|
28
|
Schwerdtfeger P, Wirz LN, Avery J. The topology of fullerenes. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2014; 5:96-145. [PMID: 25678935 PMCID: PMC4313690 DOI: 10.1002/wcms.1207] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fullerenes are carbon molecules that form polyhedral cages. Their bond structures are exactly the planar cubic graphs that have only pentagon and hexagon faces. Strikingly, a number of chemical properties of a fullerene can be derived from its graph structure. A rich mathematics of cubic planar graphs and fullerene graphs has grown since they were studied by Goldberg, Coxeter, and others in the early 20th century, and many mathematical properties of fullerenes have found simple and beautiful solutions. Yet many interesting chemical and mathematical problems in the field remain open. In this paper, we present a general overview of recent topological and graph theoretical developments in fullerene research over the past two decades, describing both solved and open problems. WIREs Comput Mol Sci 2015, 5:96-145. doi: 10.1002/wcms.1207 Conflict of interest: The authors have declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Peter Schwerdtfeger
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland Auckland, New Zealand ; Fachbereich Chemie, Philipps-Universität Marburg Marburg, Germany
| | - Lukas N Wirz
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland Auckland, New Zealand
| | - James Avery
- Niels Bohr Institute, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
29
|
Yang S, Wang S, Troyanov SI. The most stable isomers of giant fullerenes C102 and C104 captured as chlorides, C102(603)Cl18/20 and C104(234)Cl16/18/20/22. Chemistry 2014; 20:6875-8. [PMID: 24788989 DOI: 10.1002/chem.201402028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Indexed: 11/06/2022]
Abstract
The chlorination of HPLC fractions with pristine giant fullerenes, C102 and C104, followed by X-ray crystallographic study of chlorides, C102(603)Cl18/20 and C104(234)Cl16-22, confirmed the presence of the most stable IPR (IPR = Isolated Pentagon Rule) isomers, C102(603) and C104(234), in the fullerene soot. The discussion concerns the chlorination patterns of polychlorides and relative stability of pristine isomers of C102 and C104 fullerenes.
Collapse
Affiliation(s)
- Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion & Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei 230026 (P.R. China), Fax: (+86) 551-63601750.
| | | | | |
Collapse
|
30
|
Yang S, Wang S, Kemnitz E, Troyanov SI. Chlorination of IPR C100 fullerene affords unconventional C96 Cl20 with a nonclassical cage containing three heptagons. Angew Chem Int Ed Engl 2014; 53:2460-3. [PMID: 24474701 DOI: 10.1002/anie.201310099] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Indexed: 11/11/2022]
Abstract
Chlorination of C100 fullerene with a mixture of VCl4 and SbCl5 afforded C96Cl20 with a strongly unconventional structure. In contrast to the classical fullerenes containing only hexagonal and pentagonal rings, the C96 cage contains three heptagonal rings and, therefore, should be classified as a fullerene with a nonclassical cage (NCC). There are several types of pentagon fusions in the C96 cage including pentagon pairs and pentagon triples. The three-step pathway from isolated-pentagon-rule (IPR) C100 to C96(NCC-3hp) includes two C2 losses, which create two cage heptagons, and one Stone-Wales rotation under formation of the third heptagon. Structural reconstruction established C100 isomer no. 18 from 450 topologically possible IPR isomers as the starting C100 fullerene. Until now, no pristine C100 isomers have been confirmed based on the experimental results.
Collapse
Affiliation(s)
- Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026 (China).
| | | | | | | |
Collapse
|
31
|
Yang S, Wang S, Kemnitz E, Troyanov SI. Chlorination of IPR C100Fullerene Affords Unconventional C96Cl20with a Nonclassical Cage Containing Three Heptagons. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310099] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Yang S, Wei T, Wang S, Ignat'eva DV, Kemnitz E, Troyanov SI. The first structural confirmation of a C102 fullerene as C102Cl20 containing a non-IPR carbon cage. Chem Commun (Camb) 2013; 49:7944-6. [PMID: 23900537 DOI: 10.1039/c3cc44386h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chlorination of a pristine C102 fullerene separated by HPLC from fullerene soot afforded crystals of C102Cl20 with a non-IPR (IPR = isolated pentagon rule) cage containing two pairs of fused pentagons; structural reconstruction of a two-step Stone-Wales rearrangement revealed the starting IPR isomer (no. 19) of C102.
Collapse
Affiliation(s)
- Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion & Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei 230026, China.
| | | | | | | | | | | |
Collapse
|
33
|
Yang S, Wei T, Kemnitz E, Troyanov SI. Four isomers of C96 fullerene structurally proven as C96Cl22 and C96Cl24. Angew Chem Int Ed Engl 2012; 51:8239-42. [PMID: 22764124 DOI: 10.1002/anie.201201775] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | | | | | | |
Collapse
|
34
|
Yang S, Wei T, Kemnitz E, Troyanov SI. Four Isomers of C96 Fullerene Structurally Proven as C96Cl22 and C96Cl24. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201775] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Tang L, Sai L, Zhao J, Qiu R. Nonclassical Cn (n=30–40, 50) fullerenes containing five-, six-, seven-member rings. COMPUT THEOR CHEM 2011. [DOI: 10.1016/j.comptc.2011.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
|
37
|
Rodríguez-Fortea A, Irle S, Poblet JM. Fullerenes: formation, stability, and reactivity. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2011. [DOI: 10.1002/wcms.21] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Remarkable diversity of carbon–carbon bonds: structures and properties of fullerenes, carbon nanotubes, and graphene. Struct Chem 2010. [DOI: 10.1007/s11224-010-9670-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Killblane C, Gao Y, Shao N, Zeng XC. Search for lowest-energy nonclassical fullerenes III: C22. J Phys Chem A 2009; 113:8839-44. [PMID: 19719300 DOI: 10.1021/jp9016745] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Density functional and second-order Møller-Plesset perturbation (MP2) methods were employed in the investigation of low-lying C22 isomers. All cage structures with four-, five-, six-, and seven-membered rings were examined with the monocyclic ring, bowl, and other noncage structures. Cage isomers were first identified via graph theoretical methods, and noncages were identified by basin-hopping methods. Initial isomer screenings were carried out at the PBE/DND level of theory. Low-lying isomers, within 0.6 eV of the predicted lowest-energy isomer, were further evaluated at the PBE1PBE/cc-pVTZ and MP2/cc-pVTZ levels. Our results confirm that the cage structures are more stable than the ring structure and the bowl structure. The lowest-energy structure for C22 is predicted to be the C22-1 cage containing one four-membered ring. Anion photoelectron and optical spectra of the six lowest-lying isomers are also computed.
Collapse
Affiliation(s)
- Chad Killblane
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | | | | | | |
Collapse
|
40
|
|
41
|
Troyanov SI, Tamm NB. Cage connectivities of C88 (33) and C92 (82) fullerenes captured as trifluoromethyl derivatives, C88(CF3)18 and C92(CF3)16. Chem Commun (Camb) 2009:6035-7. [DOI: 10.1039/b912839e] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Calaminici P, Geudtner G, Köster AM. First-Principle Calculations of Large Fullerenes. J Chem Theory Comput 2008; 5:29-32. [DOI: 10.1021/ct800347u] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Patrizia Calaminici
- Departamento de Química, CINVESTAV, Avenida Instituto Politecnico Nacional 2508, A.P. 14-740, Mexico D.F. 07000, Mexico
| | - Gerald Geudtner
- Departamento de Química, CINVESTAV, Avenida Instituto Politecnico Nacional 2508, A.P. 14-740, Mexico D.F. 07000, Mexico
| | - Andreas M. Köster
- Departamento de Química, CINVESTAV, Avenida Instituto Politecnico Nacional 2508, A.P. 14-740, Mexico D.F. 07000, Mexico
| |
Collapse
|
43
|
Yoo S, Shao N, Zeng XC. Structures and relative stability of medium- and large-sized silicon clusters. VI. Fullerene cage motifs for low-lying clusters Si39, Si40, Si50, Si60, Si70, and Si80. J Chem Phys 2008; 128:104316. [DOI: 10.1063/1.2841080] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|