1
|
Umumararungu T, Gahamanyi N, Mukiza J, Habarurema G, Katandula J, Rugamba A, Kagisha V. Proline, a unique amino acid whose polymer, polyproline II helix, and its analogues are involved in many biological processes: a review. Amino Acids 2024; 56:50. [PMID: 39182198 PMCID: PMC11345334 DOI: 10.1007/s00726-024-03410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/06/2024] [Indexed: 08/27/2024]
Abstract
Proline is a unique amino acid in that its side-chain is cyclised to the backbone, thus giving proline an exceptional rigidity and a considerably restricted conformational space. Polyproline forms two well-characterized helical structures: a left-handed polyproline helix (PPII) and a right-handed polyproline helix (PPI). Usually, sequences made only of prolyl residues are in PPII conformation, but even sequences not rich in proline but which are rich in glycine, lysine, glutamate, or aspartate have also a tendency to form PPII helices. Currently, the only way to study unambiguously PPII structure in solution is to use spectroscopies based on optical activity such as circular dichroism, vibrational circular dichroism and Raman optical activity. The importance of the PPII structure is emphasized by its ubiquitous presence in different organisms from yeast to human beings where proline-rich motifs and their binding domains are believed to be involved in vital biological processes. Some of the domains that are bound by proline-rich motifs include SH3 domains, WW domains, GYF domains and UEV domains, etc. The PPII structure has been demonstrated to be essential to biological activities such as signal transduction, transcription, cell motility, and immune response.
Collapse
Affiliation(s)
- Théoneste Umumararungu
- Department of Industrial Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda.
| | - Noël Gahamanyi
- Department of Biology, School of Science, College of Science and Technology, University of Rwanda, Kigali, Rwanda
- Rwanda Biomedical Center, Microbiology Unit, National Reference Laboratory, Kigali, Rwanda
| | - Janvier Mukiza
- Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Gratien Habarurema
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Kigali, Rwanda
| | - Jonathan Katandula
- Department of Pharmacology and Toxicology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Alexis Rugamba
- Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Vedaste Kagisha
- Department of Pharmaceuticals and Biomolecules Analysis, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| |
Collapse
|
2
|
Waly SMA, Benniston AC, Harriman A. Deducing the conformational space for an octa-proline helix. Chem Sci 2024; 15:1657-1671. [PMID: 38303943 PMCID: PMC10829019 DOI: 10.1039/d3sc05287g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024] Open
Abstract
A molecular dyad, PY-P8-PER, comprising a proline octamer sandwiched between pyrene and perylene terminals has been synthesized in order to address the dynamics of electronic energy transfer (EET) along the oligo-proline chain. A simple pyrene-based control compound equipped with a bis-proline attachment serves as a reference for spectroscopic studies. The N-H NMR signal at the terminal pyrene allows distinction between cis and trans amides and, although the crystal structure for the control has the trans conformation, temperature-dependent NMR studies provide clear evidence for trans/cis isomerisation in D6-DMSO. Polar solvents tend to stabilise the trans structure for the pyrene amide group, even for longer oligo-proline units. Circular dichroism shows that the proline spacer for PY-P8-PER exists mainly in the all-trans geometry in methanol. Preferential excitation of the pyrene chromophore is possible at wavelengths in the 320-350 nm range and, for the dyad, is followed by efficacious EET to the perylene emitter. The probability for intramolecular EET, obtained from analysis of steady-state spectroscopic data, is ca. 80-90% in solvents of disparate polarity. Comparison with the Förster critical distance suggests the terminals are ca. 18 Å apart. Time-resolved fluorescence spectroscopy, in conjunction with DFT calculations, indicates the dyad exists as a handful of conformers displaying a narrow range of EET rates. Optimisation of a distributive model allows accurate simulation of the EET dynamics in terms of reasonable structures based on isomerisation of certain amide groups.
Collapse
Affiliation(s)
- Sara M A Waly
- Molecular Photonics Laboratory, Bedson Building, School of Natural and Environmental Sciences, Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Andrew C Benniston
- Molecular Photonics Laboratory, Bedson Building, School of Natural and Environmental Sciences, Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Anthony Harriman
- Molecular Photonics Laboratory, Bedson Building, School of Natural and Environmental Sciences, Newcastle University Newcastle upon Tyne NE1 7RU UK
| |
Collapse
|
3
|
Pollastrini M, Pasquinelli L, Górecki M, Balzano F, Cupellini L, Lipparini F, Uccello Barretta G, Marchetti F, Pescitelli G, Angelici G. A Unique and Stable Polyproline I Helix Sorted out from Conformational Equilibrium by Solvent Polarity. J Org Chem 2022; 87:13715-13725. [PMID: 36242553 PMCID: PMC9639007 DOI: 10.1021/acs.joc.2c01377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Polyproline I helical structures are often considered as the hidden face of their most famous geminal sibling, Polyproline II, as PPI is generally spotted only within a conformational equilibrium. We designed and synthesized a stable Polyproline I structure exploiting the striking tendency of (S)-indoline-2-carboxylic acid to drive the peptide bond conformation toward the cis amide isomer, when dissolved in polar solvents. The cooperative effect of only four amino acidic units is sufficient to form a preferential structure in solution. We shed light on this rare secondary structure with a thorough analysis of the spectroscopic and chiroptical properties of the tetramer, supported by X-ray crystallography and computational studies.
Collapse
Affiliation(s)
- Matteo Pollastrini
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Luca Pasquinelli
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Marcin Górecki
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy,Institute
of Organic Chemistry, Polish Academy of
Sciences, ul. Kasprzaka
44/52, Warsaw 01-224, Poland
| | - Federica Balzano
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Lorenzo Cupellini
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Filippo Lipparini
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Gloria Uccello Barretta
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Fabio Marchetti
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Gennaro Pescitelli
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy,
| | - Gaetano Angelici
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy,
| |
Collapse
|
4
|
Kashif Khan R, Meanwell NA, Hager HH. Pseudoprolines as stereoelectronically tunable proline isosteres. Bioorg Med Chem Lett 2022; 75:128983. [PMID: 36096342 DOI: 10.1016/j.bmcl.2022.128983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022]
Abstract
The cyclic structure of proline (Pro) confers unique conformational properties on this natural amino acid that influences polypeptide structure and function. Pseudoprolines are a family of Pro isosteres that incorporate a heteroatom, most prominently oxygen or sulfur but also silicon and selenium, to replace the Cβ or Cγ carbon atom of the pyrrolidine ring. These readily synthetically accessible structural motifs can facilitate facile molecular editing in a fashion that allows modulation of the amide bond topology of dipeptide elements and influence over ring pucker. While the properties of pseudoprolines have been exploited most prominently in the design of oligopeptide analogues, they have potential application in the design and optimization of small molecules. In this Digest, we summarize the physicochemical properties of pseudoprolines and illustrate their potential in drug discovery by surveying examples of applications in the design of bioactive molecules.
Collapse
Affiliation(s)
- R Kashif Khan
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, 100 Binney Street, Cambridge, MA 02142, USA.
| | - Nicholas A Meanwell
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, NJ 08543-4000, USA.
| | - Harry H Hager
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, 200 Cambridgepark Drive, Cambridge, MA 02140, USA.
| |
Collapse
|
5
|
Shimizu S, Takada M, Wada K, Ikake H, Muroga Y. Conformational transition of Poly-L-proline studied by IR, NMR, and SAXS. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Kubyshkin V, Budisa N. The Alanine World Model for the Development of the Amino Acid Repertoire in Protein Biosynthesis. Int J Mol Sci 2019; 20:ijms20215507. [PMID: 31694194 PMCID: PMC6862034 DOI: 10.3390/ijms20215507] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/01/2019] [Accepted: 11/03/2019] [Indexed: 12/13/2022] Open
Abstract
A central question in the evolution of the modern translation machinery is the origin and chemical ethology of the amino acids prescribed by the genetic code. The RNA World hypothesis postulates that templated protein synthesis has emerged in the transition from RNA to the Protein World. The sequence of these events and principles behind the acquisition of amino acids to this process remain elusive. Here we describe a model for this process by following the scheme previously proposed by Hartman and Smith, which suggests gradual expansion of the coding space as GC–GCA–GCAU genetic code. We point out a correlation of this scheme with the hierarchy of the protein folding. The model follows the sequence of steps in the process of the amino acid recruitment and fits well with the co-evolution and coenzyme handle theories. While the starting set (GC-phase) was responsible for the nucleotide biosynthesis processes, in the second phase alanine-based amino acids (GCA-phase) were recruited from the core metabolism, thereby providing a standard secondary structure, the α-helix. In the final phase (GCAU-phase), the amino acids were appended to the already existing architecture, enabling tertiary fold and membrane interactions. The whole scheme indicates strongly that the choice for the alanine core was done at the GCA-phase, while glycine and proline remained rudiments from the GC-phase. We suggest that the Protein World should rather be considered the Alanine World, as it predominantly relies on the alanine as the core chemical scaffold.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Department of Chemistry, University of Manitoba, Dysart Rd. 144, Winnipeg, MB R3T 2N2, Canada
- Correspondence: (V.K.); or (N.B.); Tel.: +1-204-474-9321 or +49-30-314-28821 (N.B.)
| | - Nediljko Budisa
- Department of Chemistry, University of Manitoba, Dysart Rd. 144, Winnipeg, MB R3T 2N2, Canada
- Department of Chemistry, Technical University of Berlin, Müller-Breslau-Str. 10, 10623 Berlin, Germany
- Correspondence: (V.K.); or (N.B.); Tel.: +1-204-474-9321 or +49-30-314-28821 (N.B.)
| |
Collapse
|
7
|
Park HS, Kang YK. Which DFT levels of theory are appropriate in predicting the prolyl cis–trans isomerization in solution? NEW J CHEM 2019. [DOI: 10.1039/c9nj02946j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
DFTs were assessed for the conformational preferences of the peptides containing Pro and its derivatives in chloroform and water.
Collapse
Affiliation(s)
- Hae Sook Park
- Department of Nursing
- Cheju Halla University
- Cheju 63092
- Republic of Korea
| | - Young Kee Kang
- Department of Chemistry
- Chungbuk National University
- Cheongju
- Republic of Korea
| |
Collapse
|
8
|
Kubyshkin V, Budisa N. Exploring hydrophobicity limits of polyproline helix with oligomeric octahydroindole-2-carboxylic acid. J Pept Sci 2018; 24:e3076. [PMID: 29582506 DOI: 10.1002/psc.3076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022]
Abstract
The polyproline-II helix is the most extended naturally occurring helical structure and is widely present in polar, exposed stretches and "unstructured" denatured regions of polypeptides. Can it be hydrophobic? In this study, we address this question using oligomeric peptides formed by a hydrophobic proline analogue, (2S,3aS,7aS)-octahydroindole-2-carboxylic acid (Oic). Previously, we found the molecular principles underlying the structural stability of the polyproline-II conformation in these oligomers, whereas the hydrophobicity of the peptide constructs remains to be examined. Therefore, we investigated the octan-1-ol/water partitioning and inclusion in detergent micelles of the oligo-Oic peptides. The results showed that the hydrophobicity is remarkably enhanced in longer oligomeric sequences, and the oligo-Oic peptides with 3 to 4 residues and higher are specific towards hydrophobic environments. This contrasts significantly to the parent oligoproline peptides, which were moderately hydrophilic. With these findings, we have demonstrated that the polyproline-II structure is compatible with nonpolar media, whereas additional manipulations of the terminal functionalities feature solubility in extremely nonpolar solvents such as hexane.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Str. 10, Berlin, 10623, Germany
| | - Nediljko Budisa
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Str. 10, Berlin, 10623, Germany
| |
Collapse
|
9
|
Sairenji S, Akine S, Nabeshima T. Response speed control of helicity inversion based on a "regulatory enzyme"-like strategy. Sci Rep 2018; 8:137. [PMID: 29317654 PMCID: PMC5760571 DOI: 10.1038/s41598-017-16503-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/14/2017] [Indexed: 02/07/2023] Open
Abstract
In biological systems, there are many signal transduction cascades in which a chemical signal is transferred as a series of chemical events. Such successive reaction systems are advantageous because the efficiency of the functions can be finely controlled by regulatory enzymes at an earlier stage. However, most of artificial responsive molecules developed so far rely on single-step conversion, whose response speeds have been difficult to be controlled by external stimuli. In this context, developing artificial conversion systems that have a regulation step similar to the regulatory enzymes has been anticipated. Here we report a novel artificial two-step structural conversion system in which the response speed can be controlled based on a regulatory enzyme-like strategy. In this system, addition of fluoride ion caused desilylation of the siloxycarboxylate ion attached to a helical complex, resulting in the subsequent helicity inversion. The response speeds of the helicity inversion depended on the reactivity of the siloxycarboxylate ions; when a less-reactive siloxycarboxylate ion was used, the helicity inversion rate was governed by the desilylation rate. This is the first artificial responsive molecule in which the overall response speed can be controlled at the regulation step separated from the function step.
Collapse
Affiliation(s)
- Shiho Sairenji
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology / Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| | - Tatsuya Nabeshima
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan.
| |
Collapse
|
10
|
Chaume G, Simon J, Lensen N, Pytkowicz J, Brigaud T, Miclet E. Homochiral versus Heterochiral Trifluoromethylated Pseudoproline Containing Dipeptides: A Powerful Tool to Switch the Prolyl-Amide Bond Conformation. J Org Chem 2017; 82:13602-13608. [DOI: 10.1021/acs.joc.7b01944] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Grégory Chaume
- Laboratoire de Chimie Biologique (LCB), Université de Cergy-Pontoise, EA 4505, 5 Mail Gay-Lussac, 95000 Cergy-Pontoise, France
- Sorbonne Universités, UPMC Univ. Paris 06, École normale supérieure, PSL Research University, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, 75005 Paris, France
| | - Julien Simon
- Laboratoire de Chimie Biologique (LCB), Université de Cergy-Pontoise, EA 4505, 5 Mail Gay-Lussac, 95000 Cergy-Pontoise, France
| | - Nathalie Lensen
- Laboratoire de Chimie Biologique (LCB), Université de Cergy-Pontoise, EA 4505, 5 Mail Gay-Lussac, 95000 Cergy-Pontoise, France
| | - Julien Pytkowicz
- Laboratoire de Chimie Biologique (LCB), Université de Cergy-Pontoise, EA 4505, 5 Mail Gay-Lussac, 95000 Cergy-Pontoise, France
| | - Thierry Brigaud
- Laboratoire de Chimie Biologique (LCB), Université de Cergy-Pontoise, EA 4505, 5 Mail Gay-Lussac, 95000 Cergy-Pontoise, France
| | - Emeric Miclet
- Sorbonne Universités, UPMC Univ. Paris 06, École normale supérieure, PSL Research University, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, 75005 Paris, France
| |
Collapse
|
11
|
Das S, Pal U, Chatterjee M, Pramanik SK, Banerji B, Maiti NC. Envisaging Structural Insight of a Terminally Protected Proline Dipeptide by Raman Spectroscopy and Density Functional Theory Analyses. J Phys Chem A 2016; 120:9829-9840. [PMID: 27973793 DOI: 10.1021/acs.jpca.6b10017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Supriya Das
- Structural Biology & Bio-informatics Division and ‡Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology; 4, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Uttam Pal
- Structural Biology & Bio-informatics Division and ‡Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology; 4, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Moumita Chatterjee
- Structural Biology & Bio-informatics Division and ‡Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology; 4, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Sumit Kumar Pramanik
- Structural Biology & Bio-informatics Division and ‡Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology; 4, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Biswadip Banerji
- Structural Biology & Bio-informatics Division and ‡Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology; 4, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Nakul C. Maiti
- Structural Biology & Bio-informatics Division and ‡Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology; 4, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| |
Collapse
|
12
|
Yang B, Li X, Zhang C, Yan S, Wei W, Wang X, Deng X, Qian H, Lin H, Huang W. Design, synthesis and biological evaluation of novel peptide MC2 analogues from Momordica charantia as potential anti-diabetic agents. Org Biomol Chem 2016; 13:4551-61. [PMID: 25778708 DOI: 10.1039/c5ob00333d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Three series of Momordica charantia (MC)2 analogues were designed, synthesized and evaluated for their anti-hyperglycaemic effects. Alanine scanning focusing on the peptide MC2 indicated the importance of the residues proline (Pro)(3), serine (Ser)(6), isoleucine (Ile)(7) and Ser(10) for anti-hyperglycaemic effects. Among the first series of MC2 analogues, peptide I-4 exhibited a better anti-hyperglycaemic effect and was chosen for further modification. A further two series of conformationally constrained analogues were designed by scanning the residues Pro(3), Ser(6), Ile(7), and Ser(10) with an i - (i + 2) lactam bridge consisting of a glutamic acid-Xaa-lysine (Glu-Xaa-Lys) scaffold and a diproline fragment. By screening in normal mice and mice with diabetes mellitus, peptides II-1, II-2 and III-3 showed a significant improvement in anti-hyperglycaemic and anti-oxidative activities compared with I-4. These data suggest that II-1, II-2 and III-3 could be candidates for future treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Baowei Yang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yang B, Zhang C, Li X, Yan S, Wei W, Wang X, Deng X, Huang W, Qian H. Design, Synthesis, and Biological Evaluation of Novel Peptide Gly3-MC62 Analogues as Potential Antidiabetic Agents. Chem Biol Drug Des 2015; 86:979-89. [DOI: 10.1111/cbdd.12564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/23/2015] [Accepted: 03/28/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Baowei Yang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines; China Pharmaceutical University; 24 Tongjiaxiang Nanjing Jiangsu 210009 China
- Medical and Health Management Department; Jiangsu Food & Pharmaceutical Science College; 4 Meicheng Road, Higher Education Area Huaian Jiangsu 223003 China
| | - Chenyu Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines; China Pharmaceutical University; 24 Tongjiaxiang Nanjing Jiangsu 210009 China
| | - Xue Li
- Center of Drug Discovery, State Key Laboratory of Natural Medicines; China Pharmaceutical University; 24 Tongjiaxiang Nanjing Jiangsu 210009 China
| | - Sijia Yan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines; China Pharmaceutical University; 24 Tongjiaxiang Nanjing Jiangsu 210009 China
| | - Wei Wei
- Center of Drug Discovery, State Key Laboratory of Natural Medicines; China Pharmaceutical University; 24 Tongjiaxiang Nanjing Jiangsu 210009 China
| | - Xuekun Wang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines; China Pharmaceutical University; 24 Tongjiaxiang Nanjing Jiangsu 210009 China
| | - Xin Deng
- Center of Drug Discovery, State Key Laboratory of Natural Medicines; China Pharmaceutical University; 24 Tongjiaxiang Nanjing Jiangsu 210009 China
| | - Wenlong Huang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines; China Pharmaceutical University; 24 Tongjiaxiang Nanjing Jiangsu 210009 China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines; China Pharmaceutical University; 24 Tongjiaxiang Nanjing Jiangsu 210009 China
| |
Collapse
|
14
|
Suzuki Y, Miyagi Y, Shiotsuki M, Inai Y, Masuda T, Sanda F. Synthesis and helical structures of poly(ω-alkynamide)s having chiral side chains: effect of solvent on their screw-sense inversion. Chemistry 2014; 20:15131-43. [PMID: 25264082 DOI: 10.1002/chem.201402628] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Indexed: 11/06/2022]
Abstract
New ω-alkynamides, (S)-HC≡CCH2CONHCH2CH(CH3)CH2CH3 (1) and (S)-HC≡CCH2CH2CONHCH(CH3)CH2CH2CH2CH2CH3 (2) were synthesized and polymerized with a rhodium catalyst in CHCl3 to obtain cis-stereoregular poly(ω-alkynamide)s (poly(1) and poly(2)). Polarimetric, CD, and IR spectroscopic studies revealed that in solution the polymers adopted predominantly one-handed helical structures stabilized by intramolecular hydrogen bonds between the pendent amide groups. This behavior was similar to that of the corresponding poly(N-alkynylamide) counterparts (poly(3) and poly(4)) reported previously, whereas the helical senses were opposite to each other. The helical structures of the poly(ω-alkynamide)s were stable upon heating similar to those of the poly(N-alkynylamide)s, but the solvent response was completely different. An increase in MeOH content in CHCl3/MeOH resulted in inversion of the predominant screw-sense for poly(1) and poly(2). Conversely, poly(3) was transformed into a random coil, and poly(4) maintained the predominant screw-sense irrespective of MeOH content. The solvent dependence of predominant screw-sense for poly(1) and poly(2) was reasonably explained by molecular orbital studies using the conductor-like screening model (COSMO).
Collapse
Affiliation(s)
- Yuji Suzuki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto 615-8510 (Japan)
| | | | | | | | | | | |
Collapse
|
15
|
Shi L, Holliday AE, Shi H, Zhu F, Ewing MA, Russell DH, Clemmer DE. Characterizing Intermediates Along the Transition from Polyproline I to Polyproline II Using Ion Mobility Spectrometry-Mass Spectrometry. J Am Chem Soc 2014; 136:12702-11. [DOI: 10.1021/ja505899g] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Liuqing Shi
- Department
of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Alison E. Holliday
- Department
of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Huilin Shi
- Department
of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Feifei Zhu
- Department
of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Michael A. Ewing
- Department
of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David E. Clemmer
- Department
of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
16
|
Abstract
![]()
The Crk adaptor proteins play a central
role as a molecular timer
for the formation of protein complexes including various growth and
differentiation factors. The loss of regulation of Crk results in
many kinds of cancers. A self-regulatory mechanism for Crk was recently
proposed, which involves domain–domain rearrangement. It is
initiated by a cis–trans isomerization of a specific proline
residue (Pro238 in chicken Crk II) and can be accelerated by Cyclophilin
A. To understand how the proline switch controls the autoinhibition
at the molecular level, we performed large-scale molecular dynamics
and metadynamics simulations in the context of short peptides and
multidomain constructs of chicken Crk II. We found that the equilibrium
and kinetic properties of the macrostates are regulated not only by
the local environments of specified prolines but also by the global
organization of multiple domains. We observe the two macrostates (cis
closed/autoinhibited and trans open/uninhibited) consistent with NMR
experiments and predict barriers. We also propose an intermediate
state, the trans closed state, which interestingly was reported to
be a prevalent state in human Crk II. The existence of this macrostate
suggests that the rate of switching off the autoinhibition by Cyp
A may be limited by the relaxation rate of this intermediate state.
Collapse
Affiliation(s)
- Junchao Xia
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey , 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | | |
Collapse
|
17
|
Kang YK, Park HS. Conformational preferences of the 2-methylproline residue and its role in stabilizing β-turn and polyproline II structures of peptides. NEW J CHEM 2014. [DOI: 10.1039/c4nj00072b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Torres Á, Albericio F, Royo M. Polyproline-OEG Co-Oligomeric Dendrimers: A Family of Highly Branched Polyproline Macromolecules. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Naziga EB, Schweizer F, Wetmore SD. Solvent interactions stabilize the polyproline II conformation of glycosylated oligoprolines. J Phys Chem B 2013; 117:2671-81. [PMID: 23363073 DOI: 10.1021/jp312487v] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In nature, proline residues carry several post-translational modifications (PTMs), including 4R hydroxylation and glycosylation. A recent study synthesized contiguously hydroxylated and glycosylated nonaproline peptides and revealed that both PTMs lead to a significant increase in the thermal stability of PPII relative to the unmodified oligoproline. The increased stability of the hydroxylated peptide can be explained by increased stability of the trans isomer due to stereoelectronic effects. However, the effects of glycosylation cannot be completely explained by stereoelectronics since previous experimental results indicate that 4R-glycosylation does not produce observable changes in the trans preference compared to 4R-hydroxylation. We therefore used sophisticated molecular modeling techniques to determine the reason for the further increase in thermal stability upon glycosylation. Free energy estimates obtained from adaptively biased molecular dynamics calculations in implicit (explicit) solvent are -9 kcal mol(-1) (-20 kcal mol(-1)) for the hydroxylated compound and -9 kcal mol(-1) (-46 kcal mol(-1)) for the glycosylated compound, indicating that direct solvent-peptide interactions are vital for explaining the glycosylation effects on PPII stability. Our data reveals for the first time that interactions between the hydroxyl groups in the glycosylated compound and water act in a complementary fashion with stereoelectronic effects to stabilize the PPII conformation in these substituted oligoproline peptides.
Collapse
Affiliation(s)
- Emmanuel B Naziga
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | | | | |
Collapse
|
20
|
Moradi M, Babin V, Sagui C, Roland C. Recipes for free energy calculations in biomolecular systems. Methods Mol Biol 2013; 924:313-37. [PMID: 23034754 DOI: 10.1007/978-1-62703-017-5_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
During the last decade, several methods for sampling phase space and calculating various free energies in biomolecular systems have been devised or refined for molecular dynamics (MD) simulations. Thus, state-of-the-art methodology and the ever increasing computer power allow calculations that were forbidden a decade ago. These calculations, however, are not trivial as they require knowledge of the methods, insight into the system under study, and, quite often, an artful combination of different methodologies in order to avoid the various traps inherent in an unknown free energy landscape. In this chapter, we illustrate some of these concepts with two relatively simple systems, a sugar ring and proline oligopeptides, whose free energy landscapes still offer considerable challenges. In order to explore the configurational space of these systems, and to surmount the various free energy barriers, we combine three complementary methods: a nonequilibrium umbrella sampling method (adaptively biased MD, or ABMD), replica-exchange molecular dynamics (REMD), and steered molecular dynamics (SMD). In particular, ABMD is used to compute the free energy surface of a set of collective variables; REMD is used to improve the performance of ABMD, to carry out sampling in space complementary to the collective variables, and to sample equilibrium configurations directly; and SMD is used to study different transition mechanisms.
Collapse
Affiliation(s)
- Mahmoud Moradi
- Department of Physics, Center for High Performance Simulations, North Carolina State University, Raleigh, NC, USA
| | | | | | | |
Collapse
|
21
|
Bessonov K, Vassall KA, Harauz G. Parameterization of the proline analogue Aze (azetidine-2-carboxylic acid) for molecular dynamics simulations and evaluation of its effect on homo-pentapeptide conformations. J Mol Graph Model 2012; 39:118-25. [PMID: 23261881 DOI: 10.1016/j.jmgm.2012.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/11/2012] [Accepted: 11/17/2012] [Indexed: 12/24/2022]
Abstract
We have parameterized and evaluated the proline homologue Aze (azetidine-2-carboxylic acid) for the gromos56a3 force-field for use in molecular dynamics simulations using GROMACS. Using bi-phasic cyclohexane/water simulation systems and homo-pentapeptides, we measured the Aze solute interaction potential energies, ability to hydrogen bond with water, and overall compaction, for comparison to Pro, Gly, and Lys. Compared to Pro, Aze has a slightly higher H-bonding potential, and stronger electrostatic but weaker non-electrostatic interactions with water. The 20-ns simulations revealed the preferential positioning of Aze and Pro at the interface of the water and cyclohexane layers, with Aze spending more time in the aqueous layer. We also demonstrated through simulations of the homo-pentapeptides that Aze has a greater propensity than Pro to undergo trans→cis peptide bond isomerization, which results in a severe 180° bend in the polypeptide chain. The results provide evidence for the hypothesis that the misincorporation of Aze within proline-rich regions of proteins could disrupt the formation of poly-proline type II structures and compromise events such as recognition and binding by SH3-domains.
Collapse
Affiliation(s)
- Kyrylo Bessonov
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada
| | | | | |
Collapse
|
22
|
Poly-proline-based chiral stationary phases: A molecular dynamics study of triproline, tetraproline, pentaproline and hexaproline interfaces. J Chromatogr A 2012; 1265:70-87. [DOI: 10.1016/j.chroma.2012.09.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/14/2012] [Accepted: 09/17/2012] [Indexed: 11/22/2022]
|
23
|
Kubyshkin VS, Mykhailiuk PK, Afonin S, Ulrich AS, Komarov IV. Incorporation of cis- and trans-4,5-Difluoromethanoprolines into Polypeptides. Org Lett 2012; 14:5254-7. [DOI: 10.1021/ol302412a] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vladimir S. Kubyshkin
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry and CFN, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany, KIT, Institute of Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany, Kyiv National Taras Shevchenko University, Vul.Volodymyrska 64, 01601 Kyiv, Ukraine, and Enamine Ltd., Vul. Oleksandra Matrosova 23, 01103 Kyiv, Ukraine
| | - Pavel K. Mykhailiuk
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry and CFN, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany, KIT, Institute of Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany, Kyiv National Taras Shevchenko University, Vul.Volodymyrska 64, 01601 Kyiv, Ukraine, and Enamine Ltd., Vul. Oleksandra Matrosova 23, 01103 Kyiv, Ukraine
| | - Sergii Afonin
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry and CFN, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany, KIT, Institute of Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany, Kyiv National Taras Shevchenko University, Vul.Volodymyrska 64, 01601 Kyiv, Ukraine, and Enamine Ltd., Vul. Oleksandra Matrosova 23, 01103 Kyiv, Ukraine
| | - Anne S. Ulrich
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry and CFN, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany, KIT, Institute of Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany, Kyiv National Taras Shevchenko University, Vul.Volodymyrska 64, 01601 Kyiv, Ukraine, and Enamine Ltd., Vul. Oleksandra Matrosova 23, 01103 Kyiv, Ukraine
| | - Igor V. Komarov
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry and CFN, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany, KIT, Institute of Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany, Kyiv National Taras Shevchenko University, Vul.Volodymyrska 64, 01601 Kyiv, Ukraine, and Enamine Ltd., Vul. Oleksandra Matrosova 23, 01103 Kyiv, Ukraine
| |
Collapse
|
24
|
Katarzyńska J, Mazur A, Wolf WM, Teat SJ, Jankowski S, Leplawy MT, Zabrocki J. 4-Methylpseudoproline derived from α-methylserine – synthesis and conformational studies. Org Biomol Chem 2012; 10:6705-16. [DOI: 10.1039/c2ob25732g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Banerji B, Pramanik SK, Pal U, Maiti NC. Conformation and cytotoxicity of a tetrapeptide constellated with alternative d- and l-proline. RSC Adv 2012. [DOI: 10.1039/c2ra20616a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
26
|
Profant V, Baumruk V, Li X, Šafařík M, Bouř P. Tracking of the Polyproline Folding by Density Functional Computations and Raman Optical Activity Spectra. J Phys Chem B 2011; 115:15079-89. [DOI: 10.1021/jp207706p] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Václav Profant
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116, Prague 2, Czech Republic
| | - Vladimír Baumruk
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116, Prague 2, Czech Republic
| | - Xiaojun Li
- Department of Chemistry, Centre for Theoretical and Computational Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | - Martin Šafařík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| |
Collapse
|
27
|
Ashtari M, Cann N. Proline-based chiral stationary phases: A molecular dynamics study of the interfacial structure. J Chromatogr A 2011; 1218:6331-47. [DOI: 10.1016/j.chroma.2011.06.096] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/24/2011] [Accepted: 06/27/2011] [Indexed: 10/18/2022]
|
28
|
Kang YK, Byun BJ, Park HS. Conformational preference and cis-trans isomerization of 4-methylproline residues. Biopolymers 2011; 95:51-61. [PMID: 20725948 DOI: 10.1002/bip.21534] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Conformational preferences and prolyl cis-trans isomerizations of the (2S,4S)-4-methylproline (4S-MePro) and (2S,4R)-4-methylproline (4R-MePro) residues are explored at the M06-2X/cc-pVTZ//M06-2X/6-31+G(d) level of theory in the gas phase and in water, where solvation free energies were calculated using the implicit SMD model. In the gas phase, the down-puckered γ-turn structure with the trans prolyl peptide bond is most preferred for both Ac-4S-MePro-NHMe and Ac-4R-MePro-NHMe, in which the C(7) hydrogen bond between two terminal groups seems to play a role, as found for Ac-Pro-NHMe. Because of the C(7) hydrogen bonds weakened by the favorable direct interactions between the backbone C==O and H--N groups and water molecules, the 4S-MePro residue has a strong preference of the up-puckered polyproline II (PP(II)) structure over the down-puckered PP(II) structure in water, whereas the latter somewhat prevails over the former for the 4R-MePro residue. However, these two structures are nearly equally populated for Ac-Pro-NHMe. The calculated populations for the backbone structures of Ac-4S-MePro-NHMe and Ac-4R-MePro-NHMe in water are reasonably consistent with CD and NMR experiments. In particular, our calculated results on the puckering preference of the 4S-MePro and 4R-MePro residues with the PP(II) structures are in accord with the observed results for the stability of the (X-Y-Gly)(7) triple helix with X = 4R-MePro or Pro and Y = 4S-MePro or Pro. The calculated rotational barriers indicate that the cis-trans isomerization may in common proceed through the anticlockwise rotation for Ac-4S-MePro-NHMe, Ac-4R-MePro-NHMe, and Ac-Pro-NHMe in water. The lowest rotational barriers become higher by 0.24-1.43 kcal/mol for Ac-4S-MePro-NHMe and Ac-4R-MePro-NHMe than those for Ac-Pro-NHMe in water.
Collapse
Affiliation(s)
- Young Kee Kang
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea.
| | | | | |
Collapse
|
29
|
Peptide Bond cis/trans Isomerases: A Biocatalysis Perspective of Conformational Dynamics in Proteins. Top Curr Chem (Cham) 2011; 328:35-67. [DOI: 10.1007/128_2011_151] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Moradi M, Babin V, Roland C, Sagui C. A classical molecular dynamics investigation of the free energy and structure of short polyproline conformers. J Chem Phys 2010; 133:125104. [DOI: 10.1063/1.3481087] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
31
|
Butterfoss GL, Renfrew PD, Kuhlman B, Kirshenbaum K, Bonneau R. A preliminary survey of the peptoid folding landscape. J Am Chem Soc 2010; 131:16798-807. [PMID: 19919145 DOI: 10.1021/ja905267k] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present an analysis of the conformational preferences of N-substituted glycine peptoid oligomers. We survey the backbone conformations observed in experimentally determined peptoid structures and provide a comparison with high-level quantum mechanics calculations of short peptoid oligomers. The dominant sources of structural variation derive from: side-chain dependent cis/trans isomerization of backbone amide bonds, side chain stereochemistry, and flexibility in the psi dihedral angle. We find good agreement between the clustering of experimentally determined peptoid torsion angles and local torsional minima predicted by theory for a disarcosine model. The calculations describe a well-defined conformational map featuring distinct energy minima. The general features of the peptoid backbone conformational landscape are consistent across a range of N-alkyl glycine side chains. Alteration of side chain types, however, creates subtle but potentially significant variations in local folding propensities. We identify a limited number of low energy local conformations, which may be preferentially favored by incorporation of particular monomer units. Greater variation in backbone dihedral angles are accessible in peptoids featuring trans amide bond geometries. These results confirm that computational approaches can play a valuable role in guiding the design of complex peptoid architectures and may lead to strategies for introducing constraints that select among a limited number of low energy local conformations.
Collapse
Affiliation(s)
- Glenn L Butterfoss
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA.
| | | | | | | | | |
Collapse
|
32
|
SOUMA H, KUROSU H, SHOJI A. Precise Structural Analysis of Polypeptides by Quantum Chemical Calculation. KOBUNSHI RONBUNSHU 2010. [DOI: 10.1295/koron.67.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hiroyuki SOUMA
- Department of Chemistry and Chemical Biology, Graduate School of Engineering, Gunma University
| | - Hiromichi KUROSU
- Graduate School of Humanities and Sciences, Nara Women's University
| | - Akira SHOJI
- Department of Chemistry and Chemical Biology, Graduate School of Engineering, Gunma University
| |
Collapse
|
33
|
Kang YK, Park HS. Conformational preferences and cis-trans isomerization of L-3,4-dehydroproline residue. Biopolymers 2009; 92:387-98. [PMID: 19373924 DOI: 10.1002/bip.21203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The conformational study of N-acetyl-N'-methylamide of L-3,4-dehydroproline (Ac-Dhp-NHMe, the Dhp dipeptide) is carried out using hybrid density functional methods with the self-consistent reaction field method in the gas phase and in solution (chloroform and water). The incorporation of a double bond between C(beta) and C(gamma) into the prolyl ring results in the puckering, backbone population, and barriers to prolyl cis-trans isomerization different from those of the Pro dipeptide. For local minima of the Dhp dipeptide in the gas phase and in water, the C(beta)-C(gamma) bonds become shorter by approximately 0.2 A and the bond angles C(alpha)-C(beta)-C(gamma) and C(beta)-C(gamma)-C(delta) are widened by approximately 8 degrees than those of the Pro dipeptide, and the puckering amplitude is computed to be 0.01-0.07 A, indicating that the 3,4-dehydroprolyl ring is quite less puckered. However, polyproline-like conformations become preferred and the relative stability of the conformation tC with a C(7) intramolecular hydrogen bond decreases as the solvent polarity increases, as found for the Pro dipeptide. The barriers to cis-trans isomerization of the Ac-Dhp peptide bond increase with the increase of solvent polarity and the isomerization is likely to proceed through the clockwise rotation in water, as found for the prolyl peptide bond. The hydrogen bond between the prolyl nitrogen and the following amide N-H group seems to contribute in stabilizing the transition state structures.
Collapse
Affiliation(s)
- Young Kee Kang
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| | | |
Collapse
|
34
|
Abstract
The structure of the proline amino acid allows folded polyproline peptides to exist as both left- (PPII) and right-handed (PPI) helices. We have characterized the free energy landscapes of hexamer, nanomer, and tridecamer polyproline peptides in gas phase and implicit water as well as explicit hexane and 1-propanol for the nanomer. To enhance the sampling provided by regular molecular dynamics, we used the recently developed adaptively biased molecular dynamics method, which describes Landau free energy maps in terms of relevant collective variables. These maps, as a function of the collective variables of handedness, radius of gyration, and three others based on the peptide torsion angle omega, were used to determine the relative stability of the different structures, along with an estimate of the transition pathways connecting the different minima. Results show the existence of several metastable isomers and therefore provide a complementary view to experimental conclusions based on photo-induced electron transfer experiments with regard to the existence of stable heterogeneous subpopulations in PPII polyproline.
Collapse
|
35
|
Janssen P, Ruiz-Carretero A, González-Rodríguez D, Meijer E, Schenning A. pH-Switchable Helicity of DNA-Templated Assemblies. Angew Chem Int Ed Engl 2009; 48:8103-6. [DOI: 10.1002/anie.200903507] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Janssen P, Ruiz-Carretero A, González-Rodríguez D, Meijer E, Schenning A. pH-Switchable Helicity of DNA-Templated Assemblies. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200903507] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
Kuemin M, Schweizer S, Ochsenfeld C, Wennemers H. Effects of Terminal Functional Groups on the Stability of the Polyproline II Structure: A Combined Experimental and Theoretical Study. J Am Chem Soc 2009; 131:15474-82. [DOI: 10.1021/ja906466q] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Michael Kuemin
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland, and Institute for Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 8, D-72076 Tübingen, Germany
| | - Sabine Schweizer
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland, and Institute for Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 8, D-72076 Tübingen, Germany
| | - Christian Ochsenfeld
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland, and Institute for Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 8, D-72076 Tübingen, Germany
| | - Helma Wennemers
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland, and Institute for Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 8, D-72076 Tübingen, Germany
| |
Collapse
|
38
|
Flores-Ortega A, Casanovas J, Nussinov R, Alemán C. Conformational preferences of beta- and gamma-aminated proline analogues. J Phys Chem B 2008; 112:14045-55. [PMID: 18842022 PMCID: PMC2836598 DOI: 10.1021/jp807638p] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quantum mechanical calculations have been used to investigate how the incorporation of an amino group to the Cbeta- or Cgamma-positions of the pyrrolidine ring affects the intrinsic conformational properties of the proline. Specifically, a conformational study of the N-acetyl-N'-methylamide derivatives of four isomers of aminoproline, which differ not only in the beta- or gamma-position of the substituent but also in its cis or trans relative disposition, has been performed. To further understand the role of the intramolecular hydrogen bonds between the backbone carbonyl groups and the amino side group, a conformational study was also performed on the corresponding four analogues of (dimethylamino)proline. In addition, the effects of solvation on aminoproline and (dimethylamino)proline dipeptides have been evaluated using a self-consistent reaction field model, and considering four different solvents (carbon tetrachloride, chloroform, methanol and water). Results indicate that the incorporation of the amino substituent into the pyrrolidine ring affects the conformational properties, with backbone...side chain intramolecular hydrogen bonds detected when it is incorporated in a cis relative disposition. In general, the incorporation of the amino side group tends to stabilize those structures where the peptide bond involving the pyrrolidine nitrogen is arranged in cis. The aminoproline isomer with the substituent attached to the Cgamma-position with a cis relative disposition is the most stable in the gas phase and in chloroform, methanol and water solutions. Replacement of the amino side group by the dimethylamino substituent produces significant changes in the potential energy surfaces of the four investigated (dimethylamino)proline-containing dipeptides. Thus, these changes affect not only the number of minima, which increases considerably, but also the backbone and pseudorotational preferences. In spite of these effects, comparison of the conformational preferences, i.e., the more favored conformers, calculated for different isomers of aminoproline and (dimethylamino)proline dipeptides showed a high degree of consistency for the two families of compounds.
Collapse
Affiliation(s)
- Alejandra Flores-Ortega
- Departament d'Enginyeria Química, E. T. S. d'Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Avda. Diagonal n° 647, 08028 Barcelona, Spain
| | - Jordi Casanovas
- Departament de Química, Escola Politècnica Superior, Universitat de Lleida, c/Jaume II n° 69, 25001 Lleida, Spain
| | - Ruth Nussinov
- Basic Research Program, SAIC-Frederick, Inc. Center for Cancer Research Nanobiology Program, NCI, Frederick, MD 21702, USA
- Department of Human Genetics Sackler, Medical School, Tel Aviv University, Tel Aviv 69978, Israel
| | - Carlos Alemán
- Departament d'Enginyeria Química, E. T. S. d'Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Avda. Diagonal n° 647, 08028 Barcelona, Spain
| |
Collapse
|
39
|
Souma H, Shoji A, Kurosu H. Conformational analysis of α-helical polypeptide included l-proline residue by high-resolution solid-state NMR measurement and quantum chemical calculation. J Mol Struct 2008. [DOI: 10.1016/j.molstruc.2008.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Miyake H, Kamon H, Miyahara I, Sugimoto H, Tsukube H. Time-Programmed Peptide Helix Inversion of a Synthetic Metal Complex Triggered by an Achiral NO3- Anion. J Am Chem Soc 2007; 130:792-3. [DOI: 10.1021/ja0768385] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hiroyuki Miyake
- Department of Chemistry, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Hiroshi Kamon
- Department of Chemistry, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Ikuko Miyahara
- Department of Chemistry, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Hideki Sugimoto
- Department of Chemistry, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Hiroshi Tsukube
- Department of Chemistry, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
41
|
Zhang A, Schlüter A. Multigram Solution-Phase Synthesis of Three Diastereomeric Tripeptidic Second-Generation Dendrons Based on (2S,4S)-, (2S,4R)-, and (2R,4S)-4-Aminoprolines. Chem Asian J 2007; 2:1540-8. [DOI: 10.1002/asia.200700207] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Kang YK, Park HS. Conformational Preferences of Pseudoproline Residues. J Phys Chem B 2007; 111:12551-62. [DOI: 10.1021/jp074128f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Young Kee Kang
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea, and Department of Radiotechnology, Cheju-halla College, Cheju 690-708, Republic of Korea
| | - Hae Sook Park
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea, and Department of Radiotechnology, Cheju-halla College, Cheju 690-708, Republic of Korea
| |
Collapse
|
43
|
Flores-Ortega A, Casanovas J, Zanuy D, Nussinov R, Alemán C. Conformations of proline analogues having double bonds in the ring. J Phys Chem B 2007; 111:5475-82. [PMID: 17458993 DOI: 10.1021/jp0712001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The intrinsic conformational preferences of proline analogues having double bonds between carbon atoms in their rings have been investigated using quantum mechanical calculations at the B3LYP/6-31+G(d,p) level. For this purpose, the potential energy surface of the N-acety-N'-methylamide derivatives of three dehydroprolines (proline analogues unsaturated at alpha,beta; beta,gamma; and gamma,delta) and pyrrole (proline analogue with unsaturations at both alpha,beta and gamma,delta) have been explored, and the results are compared with those obtained for the derivative of the nonmodified proline. We found that the double bonds affect the ring puckering and the geometric internal parameters, even though the backbone conformation was influenced the most. Results indicate that the formation of double bonds between carbon atoms in the pyrrolidine ring should be considered as an effective procedure to restrict the conformational flexibility of prolines. Interestingly, we also found that the N-acetyl-N'-methylamide derivative of pyrrole shows a high probability of having a cis peptide bond preceding the proline analogue.
Collapse
Affiliation(s)
- Alejandra Flores-Ortega
- Departament d'Enginyeria Química, E. T. S. d'Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, Barcelona E-08028, Spain
| | | | | | | | | |
Collapse
|
44
|
Kang YK, Byun BJ. Conformational Preferences and cis−trans Isomerization of Azaproline Residue. J Phys Chem B 2007; 111:5377-85. [PMID: 17439267 DOI: 10.1021/jp067826t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conformational study of N-acetyl-N'-methylamide of azaproline (Ac-azPro-NHMe, the azPro dipeptide) is carried out using ab initio HF and density functional methods with the self-consistent reaction field method to explore the effects of the replacement of the backbone CHalpha group by the nitrogen atom on the conformational preferences and prolyl cis-trans isomerization in the gas phase and in solution (chloroform and water). The incorporation of the Nalpha atom into the prolyl ring results in the different puckering, backbone population, and barriers to prolyl cis-trans isomerization from those of Ac-Pro-NHMe (the Pro dipeptide). In particular, the azPro dipeptide has a dominant backbone conformation D (beta2) with the cis peptide bond preceding the azPro residue in both the gas phase and solution. This may be ascribed to the favorable electrostatic interaction or intramolecular hydrogen bond between the prolyl nitrogen and the amide hydrogen following the azPro residue and to the absence of the unfavorable interactions between electron lone pairs of the acetyl carbonyl oxygen and the prolyl Nalpha. This calculated higher population of the cis peptide bond is consistent with the results from X-ray and NMR experiments. As the solvent polarity increases, the conformations B and B* with the trans peptide bond become more populated and the cis population decreases more, which is opposite to the results for the Pro dipeptide. The conformation B lies between conformations D and A (alpha) and conformation B* is a mirror image of the conformation B on the phi-psi map. The barriers to prolyl cis-trans isomerization for the azPro dipeptide increase with the increase of solvent polarity, and the cis-trans isomerization proceeds through only the clockwise rotation with omega' approximately +120 degrees about the prolyl peptide bond for the azPro dipeptide in the gas phase and in solution, as seen for the Pro dipeptide. The pertinent distance d(N...H-NNHMe) and the pyramidality of imide nitrogen can describe the role of this hydrogen bond in stabilizing the transition state structure and the lower rotational barriers for the azPro dipeptide than those for the Pro dipeptide in the gas phase and in solution.
Collapse
Affiliation(s)
- Young Kee Kang
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 361-763, South Korea
| | | |
Collapse
|