1
|
Munafò I, Costa D, Milano G, Munaò G. Absorption of Polypropylene in Dipalmitoylphosphatidylcholine Membranes: The Role of Molecular Weight and Initial Configuration of Polymer Chains. J Phys Chem B 2024; 128:9905-9916. [PMID: 39322978 DOI: 10.1021/acs.jpcb.4c05035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
We study by molecular dynamics simulations the absorption of polypropylene (PP) chains within a dipalmitoylphosphatidylcholine (DPPC) lipid membrane in aqueous solvent. DPPC represents the most abundant phospholipid in biological membranes, while PP is one of the most common synthetic polymers diffused in the anthropic environment. By following in detail the absorption process, and the corresponding structural modification undergone by the membrane, we show how the initial configuration and the PP molecular weight determine the overall behavior of the system. Specifically, if PP chains initially lie on the DPPC surface, they are fully absorbed; likewise, polymers initially included within the membrane cannot escape from. On the other hand, if polymers are placed sufficiently apart from the membrane, they have time to join together and coalesce into a few nanoparticles. At contact, such nanoparticles may completely dissolve (for low molecular weight) and then be absorbed. For high molecular weight, not all of them dissolve, and therefore the system attains a condition in which some of the chains are absorbed, while others form a residual nanoparticle staying outside (but in contact with) the membrane. Such a state─albeit energetically unfavorable with respect to a condition in which all PP chains are absorbed─remains stable, at the least over a substantial simulation time, extending in our study up to 1.6 μs. The tendency for polymers to spontaneously form aggregates, which then prefer to stay in contact with the membrane, is further corroborated by calculation of the DPPC-nanoparticle potential of mean force.
Collapse
Affiliation(s)
- Isabella Munafò
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Dino Costa
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giuseppe Milano
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Napoli, Italy
| | - Gianmarco Munaò
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
2
|
Schwörer F, Trapp M, Silvi L, Gutfreund P, Steitz R, Dahint R. Location of Polyelectrolytes in Swollen Lipid Oligobilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14958-14968. [PMID: 37815275 DOI: 10.1021/acs.langmuir.3c01792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Osteoarthritis is caused by degeneration of the cartilage, which covers the bone ends of the joints and is decorated with an oligolamellar phospholipid (PL) bilayer. The gap between the bone ends is filled with synovial fluid mainly containing hyaluronic acid (HA). HA and PLs are supposed to reduce friction and protect the cartilage from wear in joint movement. However, a detailed understanding of the molecular mechanisms of joint lubrication is still missing. Previously, we found that aqueous solutions of HA and poly(allylamine hydrochloride) (PAH), the latter serving as a polymeric analogue to HA, adsorb onto the headgroups of surface-bound 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) oligobilayers and significantly enhance their stability with respect to shear forces, typically occurring in joint movement. We now investigated the precise location of PAH chains across the lipid films in neutron reflectivity measurements, as bridging of the oligobilayers by polyelectrolytes (PEs) might be the cause for their improved mechanical stability. In a first set of experiments, we used hydrogenated PAH and chain-deuterated DMPC (DMPC-d54) to improve the contrast between the lipids and potentially intruding PAH. However, due to difficulties in distinguishing between incorporation of water and PAH, penetration into the lipid chain region could hardly be proven quantitatively. Therefore, we designed a more elaborate experiment based on mixed films of DMPC-d54 and hydrogenated DMPC, which is insensitive to water penetration into the films. Beside facilitating a detailed structural characterization of the oligolamellar system, this elaborate approach showed that PAH adsorbs to the DMPC heads and penetrates the lipid tail strata. No PAH was found in the lipid head strata, which excludes bridging of several lipid bilayers by the PE chains. The data are consistent with the assumption that PAH bridges are formed between the headgroups of two adjacent bilayers and contribute to the enhanced mechanical stability.
Collapse
Affiliation(s)
- Felicitas Schwörer
- Applied Physical Chemistry, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 253, Heidelberg 69120, Germany
| | - Marcus Trapp
- Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin 14109, Germany
| | - Luca Silvi
- Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin 14109, Germany
| | | | - Roland Steitz
- Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin 14109, Germany
| | - Reiner Dahint
- Applied Physical Chemistry, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 253, Heidelberg 69120, Germany
| |
Collapse
|
3
|
Agha A, Waheed W, Stiharu I, Nerguizian V, Destgeer G, Abu-Nada E, Alazzam A. A review on microfluidic-assisted nanoparticle synthesis, and their applications using multiscale simulation methods. NANOSCALE RESEARCH LETTERS 2023; 18:18. [PMID: 36800044 PMCID: PMC9936499 DOI: 10.1186/s11671-023-03792-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/07/2023] [Indexed: 05/24/2023]
Abstract
Recent years have witnessed an increased interest in the development of nanoparticles (NPs) owing to their potential use in a wide variety of biomedical applications, including drug delivery, imaging agents, gene therapy, and vaccines, where recently, lipid nanoparticle mRNA-based vaccines were developed to prevent SARS-CoV-2 causing COVID-19. NPs typically fall into two broad categories: organic and inorganic. Organic NPs mainly include lipid-based and polymer-based nanoparticles, such as liposomes, solid lipid nanoparticles, polymersomes, dendrimers, and polymer micelles. Gold and silver NPs, iron oxide NPs, quantum dots, and carbon and silica-based nanomaterials make up the bulk of the inorganic NPs. These NPs are prepared using a variety of top-down and bottom-up approaches. Microfluidics provide an attractive synthesis alternative and is advantageous compared to the conventional bulk methods. The microfluidic mixing-based production methods offer better control in achieving the desired size, morphology, shape, size distribution, and surface properties of the synthesized NPs. The technology also exhibits excellent process repeatability, fast handling, less sample usage, and yields greater encapsulation efficiencies. In this article, we provide a comprehensive review of the microfluidic-based passive and active mixing techniques for NP synthesis, and their latest developments. Additionally, a summary of microfluidic devices used for NP production is presented. Nonetheless, despite significant advancements in the experimental procedures, complete details of a nanoparticle-based system cannot be deduced from the experiments alone, and thus, multiscale computer simulations are utilized to perform systematic investigations. The work also details the most common multiscale simulation methods and their advancements in unveiling critical mechanisms involved in nanoparticle synthesis and the interaction of nanoparticles with other entities, especially in biomedical and therapeutic systems. Finally, an analysis is provided on the challenges in microfluidics related to nanoparticle synthesis and applications, and the future perspectives, such as large-scale NP synthesis, and hybrid formulations and devices.
Collapse
Affiliation(s)
- Abdulrahman Agha
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE
| | - Waqas Waheed
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE
- System on Chip Center, Khalifa University, Abu Dhabi, UAE
| | | | | | - Ghulam Destgeer
- Department of Electrical Engineering, School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Eiyad Abu-Nada
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE
| | - Anas Alazzam
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE.
- System on Chip Center, Khalifa University, Abu Dhabi, UAE.
| |
Collapse
|
4
|
Multiscale Dynamics of Lipid Vesicles in Polymeric Microenvironment. MEMBRANES 2022; 12:membranes12070640. [PMID: 35877843 PMCID: PMC9318666 DOI: 10.3390/membranes12070640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 02/06/2023]
Abstract
Understanding dynamic and complex interaction of biological membranes with extracellular matrices plays a crucial role in controlling a variety of cell behavior and functions, from cell adhesion and growth to signaling and differentiation. Tremendous interest in tissue engineering has made it possible to design polymeric scaffolds mimicking the topology and mechanical properties of the native extracellular microenvironment; however, a fundamental question remains unanswered: that is, how the viscoelastic extracellular environment modifies the hierarchical dynamics of lipid membranes. In this work, we used aqueous solutions of poly(ethylene glycol) (PEG) with different molecular weights to mimic the viscous medium of cells and nearly monodisperse unilamellar DMPC/DMPG liposomes as a membrane model. Using small-angle X-ray scattering (SAXS), dynamic light scattering, temperature-modulated differential scanning calorimetry, bulk rheology, and fluorescence lifetime spectroscopy, we investigated the structural phase map and multiscale dynamics of the liposome–polymer mixtures. The results suggest an unprecedented dynamic coupling between polymer chains and phospholipid bilayers at different length/time scales. The microviscosity of the lipid bilayers is directly influenced by the relaxation of the whole chain, resulting in accelerated dynamics of lipids within the bilayers in the case of short chains compared to the polymer-free liposome case. At the macroscopic level, the gel-to-fluid transition of the bilayers results in a remarkable thermal-stiffening behavior of polymer–liposome solutions that can be modified by the concentration of the liposomes and the polymer chain length.
Collapse
|
5
|
Lee H. Molecular Simulations of PEGylated Biomolecules, Liposomes, and Nanoparticles for Drug Delivery Applications. Pharmaceutics 2020; 12:E533. [PMID: 32531886 PMCID: PMC7355693 DOI: 10.3390/pharmaceutics12060533] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Since the first polyethylene glycol (PEG)ylated protein was approved by the FDA in 1990, PEGylation has been successfully applied to develop drug delivery systems through experiments, but these experimental results are not always easy to interpret at the atomic level because of the limited resolution of experimental techniques. To determine the optimal size, structure, and density of PEG for drug delivery, the structure and dynamics of PEGylated drug carriers need to be understood close to the atomic scale, as can be done using molecular dynamics simulations, assuming that these simulations can be validated by successful comparisons to experiments. Starting with the development of all-atom and coarse-grained PEG models in 1990s, PEGylated drug carriers have been widely simulated. In particular, recent advances in computer performance and simulation methodologies have allowed for molecular simulations of large complexes of PEGylated drug carriers interacting with other molecules such as anticancer drugs, plasma proteins, membranes, and receptors, which makes it possible to interpret experimental observations at a nearly atomistic resolution, as well as help in the rational design of drug delivery systems for applications in nanomedicine. Here, simulation studies on the following PEGylated drug topics will be reviewed: proteins and peptides, liposomes, and nanoparticles such as dendrimers and carbon nanotubes.
Collapse
Affiliation(s)
- Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin 16890, Korea
| |
Collapse
|
6
|
Sahu S, Talele P, Patra B, Verma RS, Mishra AK. A Multiparametric Fluorescence Probe to Understand the Physicochemical Properties of Small Unilamellar Lipid Vesicles in Poly(ethylene glycol)-Water Medium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4842-4852. [PMID: 32283935 DOI: 10.1021/acs.langmuir.9b03902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
FDAPT (2-formyl-5-(4'-N,N-dimethylaminophenyl)thiophene) efficiently senses the minimum alteration of lipid bilayer microenvironment with all six different fluorescence parameters namely emission wavelength, fluorescence intensity, steady-state anisotropy, and their corresponding time-dependent parameters (Sahu et al., J. Phys. Chem. B 2018, 122, 7308-7318). In the present work, the effect of poly(ethylene glycol) on the small unilamellar vesicle is demonstrated with the emission behavior of the FDAPT probe. A medium and a high molecular weight PEG were chosen to perturb the lipid vesicles. The alteration of the bilayer polarity, water content inside bilayer, lipid packing density in the perturbed vesicles reflect significant changes in different fluorescence parameters of FDAPT probe. The effect of PEG on the unilamellar vesicle was rationalized with the alteration of the emission behavior, fluorescence lifetime, steady-state anisotropy and anisotropy decay of the probe. The simple and convenient fluorescence measurements provide new insights into the effect of PEG on the packing density, water volume, micro polarity, and microviscosity of the small unilamellar vesicle. The physiological understanding was extended to rationalize the cryoprotecting behavior of PEG.
Collapse
Affiliation(s)
- Saugata Sahu
- Department of Chemistry, Indian Institute of Technology Madras, Sardar Patel Road, Adyar, Chennai-600036, Tamil Nadu India
| | - Paurnima Talele
- Department of Chemistry, Indian Institute of Technology Madras, Sardar Patel Road, Adyar, Chennai-600036, Tamil Nadu India
| | - Bamadeb Patra
- Department of Biotechnology, Indian Institute of Technology Madras, Sardar Patel Road, Adyar, Chennai-600036, Tamil Nadu India
| | - Rama Shanker Verma
- Department of Biotechnology, Indian Institute of Technology Madras, Sardar Patel Road, Adyar, Chennai-600036, Tamil Nadu India
| | - Ashok Kumar Mishra
- Department of Chemistry, Indian Institute of Technology Madras, Sardar Patel Road, Adyar, Chennai-600036, Tamil Nadu India
| |
Collapse
|
7
|
Mahamuni-Badiger PP, Patil PM, Patel PR, Dhanavade MJ, Badiger MV, Marathe YN, Bohara RA. Electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/polyethylene oxide (PEO) microfibers reinforced with ZnO nanocrystals for antibacterial and antibiofilm wound dressing applications. NEW J CHEM 2020. [DOI: 10.1039/d0nj01384f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biocompatible and biodegradable polymers for designing wound dressing materials.
Collapse
Affiliation(s)
| | - Pooja M. Patil
- Centre for Interdisciplinary Research
- D.Y. Patil University
- Kolhapur
- India
| | | | | | | | | | | |
Collapse
|
8
|
Mamusa M, Salvatore A, Berti D. Structural Modifications of DPPC Bilayers upon Inclusion of an Antibacterial Cationic Bolaamphiphile. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8952-8961. [PMID: 29976066 DOI: 10.1021/acs.langmuir.8b01689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The emergence of antibiotic-resistant bacterial strains has fostered fundamental research to develop alternative antimicrobial strategies. Among the several systems proposed so far, the association complexes (nanoplexes) formed by transcription factor decoys (TFDs), i.e., short oligonucleotides targeting a crucial bacterial transcription factor, and a bolaform cationic amphiphile, 10,10'-(dodecane-1,12-diyl)-bis-(9-amino-1,2,3,4-tetrahydroacridinium) chloride (12-bis-THA), have demonstrated their potential in vitro and in vivo. The application of these nanoplexes is hampered by a scarce colloidal stability, which can be addressed by including the bolaamphiphile in a liposomal carrier, which is then associated to the TFD. The present study reports an investigation on the effects of 12-bis-THA on the structure of synthetic lipid bilayers to assess the morphology of the mixed assemblies, gain insight into the location of the host within the bilayer, and determine the loading capacity of the carrier. Our results demonstrate that 12-bis-THA promptly inserts within 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC) bilayers, bending its C-12 spacer chain to adopt a conelike shape and shifting the gel-liquid crystalline transition of the chains to lower temperatures. The host liposomal structure is retained for a bolaamphiphile concentration of up to 3.2% mol to DPPC, whereas higher concentrations lead to the destabilization by means of a detergency-like mechanism, with the simultaneous existence of different lamellar-based structures, such as liposomes, bicelles, and rafts, in which DPPC and 12-bis-THA could be present in different molar ratios. Overall, these results shed light on the interaction of the bolaamphiphile with a lipid bilayer and provide valuable insight to better formulate the antimicrobial amphiphile in liposomal carriers to circumvent the colloidal instability of nanoplexes.
Collapse
Affiliation(s)
- M Mamusa
- CSGI and Department of Chemistry "Ugo Schiff" , University of Florence , Sesto Fiorentino (FI) 50019 , Italy
| | - A Salvatore
- CSGI and Department of Chemistry "Ugo Schiff" , University of Florence , Sesto Fiorentino (FI) 50019 , Italy
| | - D Berti
- CSGI and Department of Chemistry "Ugo Schiff" , University of Florence , Sesto Fiorentino (FI) 50019 , Italy
| |
Collapse
|
9
|
Vitiello G, Musumeci D, Koutsioubas A, Paduano L, Montesarchio D, D'Errico G. Ionophores at work: Exploring the interaction of guanosine-based amphiphiles with phospholipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2392-2401. [DOI: 10.1016/j.bbamem.2017.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 01/21/2023]
|
10
|
Xiang Y, Xu RG, Leng Y. Molecular Dynamics Simulations of a Poly(ethylene glycol)-Grafted Polyamide Membrane and Its Interaction with a Calcium Alginate Gel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4424-4433. [PMID: 27094047 DOI: 10.1021/acs.langmuir.6b00348] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Molecular dynamics simulations are carried out to investigate the antifouling property of a polyethylene glycol (PEG)-grafted polyamide (PA) membrane. Our specific interest is the computational study of the interaction between a grafted PEG coating and an alginate gel foulant by a steered molecular dynamics approach. Simulation results show that the PEG coating can hold a tightly bound hydration water layer. When the alginate gel is dragged to approach the PEG coating surface, a strong repulsive hydration force is observed due to the compression of this hydration layer. Detailed calculations of the potential of mean force (PMF) show that the repulsive interaction between the alginate gel and the hydration water layer around the PEG coating has a dominant contribution to the total repulsive PMF. We have also studied the effect of the PEG coverage on the membrane-foulant interactions. We find that the alginate gel has a strong tendency to drift to the uncovered PA membrane surfaces (namely, the PEG hollows). However, direct attachment of the gel to the PA membrane surface can be avoided if the gel size is slightly larger than the PEG hollow site.
Collapse
Affiliation(s)
- Yuan Xiang
- Department of Mechanical & Aerospace Engineering, The George Washington University , Washington, DC 20052, United States
| | - Rong-Guang Xu
- Department of Mechanical & Aerospace Engineering, The George Washington University , Washington, DC 20052, United States
| | - Yongsheng Leng
- Department of Mechanical & Aerospace Engineering, The George Washington University , Washington, DC 20052, United States
| |
Collapse
|
11
|
Rossi G, Monticelli L. Modeling the effect of nano-sized polymer particles on the properties of lipid membranes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:503101. [PMID: 25388874 DOI: 10.1088/0953-8984/26/50/503101] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The interaction between polymers and biological membranes has recently gained significant interest in several research areas. On the biomedical side, dendrimers, linear polyelectrolytes, and neutral copolymers find application as drug and gene delivery agents, as biocidal agents, and as platforms for biological sensors. On the environmental side, plastic debris is often disposed of in the oceans and gets degraded into small particles; therefore concern is raising about the interaction of small plastic particles with living organisms. From both perspectives, it is crucial to understand the processes driving the interaction between polymers and cell membranes. In recent times progress in computer technology and simulation methods has allowed computational predictions on the molecular mechanism of interaction between polymeric materials and lipid membranes. Here we review the computational studies on the interaction between lipid membranes and different classes of polymers: dendrimers, linear charged polymers, polyethylene glycol (PEG) and its derivatives, polystyrene, and some generic models of polymer chains. We conclude by discussing some of the technical challenges in this area and future developments.
Collapse
Affiliation(s)
- Giulia Rossi
- Department of Physics, University of Genoa, Genoa, Italy
| | | |
Collapse
|
12
|
De Nicola A, Hezaveh S, Zhao Y, Kawakatsu T, Roccatano D, Milano G. Micellar drug nanocarriers and biomembranes: how do they interact? Phys Chem Chem Phys 2014; 16:5093-105. [DOI: 10.1039/c3cp54242d] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Choi E, Mondal J, Yethiraj A. Coarse-grained models for aqueous polyethylene glycol solutions. J Phys Chem B 2013; 118:323-9. [PMID: 24350686 DOI: 10.1021/jp408392b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new coarse-grained force field is developed for polyethylene glycol (PEG) in water. The force field is based on the MARTINI model but with the big multipole water (BMW) model for the solvent. The polymer force field is reparameterized using the MARTINI protocol. The new force field removes the ring-like conformations seen in simulations of short chains with the MARTINI force field; these conformations are not observed in atomistic simulations. We also investigate the effect of using parameters for the end-group that are different from those for the repeat units, with the MARTINI and BMW/MARTINI models. We find that the new BMW/MARTINI force field removes the ring-like conformations seen in the MARTINI models and has more accurate predictions for the density of neat PEG. However, solvent-separated-pairs between chain ends and slow dynamics of the PEG reflect its own artifacts. We also carry out fine-grained simulations of PEG with bundled water clusters and show that the water bundling can lead to ring-like conformations of the polymer molecules. The simulations emphasize the pitfalls of coarse-graining several molecules into one site and suggest that polymer-solvent systems might be a stringent test for coarse-grained force fields.
Collapse
Affiliation(s)
- Eunsong Choi
- Department of Physics, and ‡Department of Chemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | | | | |
Collapse
|
14
|
Samanta S, Hezaveh S, Roccatano D. Theoretical Study of Binding and Permeation of Ether-Based Polymers through Interfaces. J Phys Chem B 2013; 117:14723-31. [DOI: 10.1021/jp4028832] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Susruta Samanta
- School of Engineering and
Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Samira Hezaveh
- School of Engineering and
Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Danilo Roccatano
- School of Engineering and
Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
15
|
Hezaveh S, Samanta S, Milano G, Roccatano D. Molecular dynamics simulation study of solvent effects on conformation and dynamics of polyethylene oxide and polypropylene oxide chains in water and in common organic solvents. J Chem Phys 2012; 136:124901. [DOI: 10.1063/1.3694736] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Samanta S, Hezaveh S, Milano G, Roccatano D. Diffusion of 1,2-Dimethoxyethane and 1,2-Dimethoxypropane through Phosphatidycholine Bilayers: A Molecular Dynamics Study. J Phys Chem B 2012; 116:5141-51. [DOI: 10.1021/jp211564x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Susruta Samanta
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen,
Germany
| | - Samira Hezaveh
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen,
Germany
| | - Giuseppe Milano
- Department of Chemistry, University of Salerno, I-84084 Fisciano (Salerno),
Italy
| | - Danilo Roccatano
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen,
Germany
| |
Collapse
|
17
|
De Nicola A, Zhao Y, Kawakatsu T, Roccatano D, Milano G. Validation of a hybrid MD-SCF coarse-grained model for DPPC in non-lamellar phases. Theor Chem Acc 2012. [DOI: 10.1007/s00214-012-1167-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Hezaveh S, Samanta S, Milano G, Roccatano D. Structure and dynamics of 1,2-dimethoxyethane and 1,2-dimethoxypropane in aqueous and non-aqueous solutions: A molecular dynamics study. J Chem Phys 2011; 135:164501. [DOI: 10.1063/1.3643417] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
De Nicola A, Zhao Y, Kawakatsu T, Roccatano D, Milano G. Hybrid Particle-Field Coarse-Grained Models for Biological Phospholipids. J Chem Theory Comput 2011; 7:2947-62. [DOI: 10.1021/ct200132n] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Antonio De Nicola
- Dipartimento di Chimica e Biologia, Università di Salerno, I-84084 via Ponte don Melillo Fisciano (SA), Italy
- IMAST Scarl-Technological District in Polymer and Composite Engineering, P.le Fermi 1, 80055 Portici (NA), Italy
| | - Ying Zhao
- Dipartimento di Chimica e Biologia, Università di Salerno, I-84084 via Ponte don Melillo Fisciano (SA), Italy
| | - Toshihiro Kawakatsu
- Department of Physics, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Danilo Roccatano
- Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Giuseppe Milano
- Dipartimento di Chimica e Biologia, Università di Salerno, I-84084 via Ponte don Melillo Fisciano (SA), Italy
- IMAST Scarl-Technological District in Polymer and Composite Engineering, P.le Fermi 1, 80055 Portici (NA), Italy
| |
Collapse
|
20
|
Du H, Qian X. Molecular dynamics simulations of PNIPAM-co
-PEGMA copolymer hydrophilic to hydrophobic transition in NaCl solution. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/polb.22280] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Wilson JT, Cui W, Kozlovskaya V, Kharlampieva E, Pan D, Qu Z, Krishnamurthy VR, Mets J, Kumar V, Wen J, Song Y, Tsukruk VV, Chaikof EL. Cell surface engineering with polyelectrolyte multilayer thin films. J Am Chem Soc 2011; 133:7054-64. [PMID: 21491937 DOI: 10.1021/ja110926s] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Layer-by-layer assembly of polyelectrolyte multilayer (PEM) films represents a bottom-up approach for re-engineering the molecular landscape of cell surfaces with spatially continuous and molecularly uniform ultrathin films. However, fabricating PEMs on viable cells has proven challenging owing to the high cytotoxicity of polycations. Here, we report the rational engineering of a new class of PEMs with modular biological functionality and tunable physicochemical properties which have been engineered to abrogate cytotoxicity. Specifically, we have discovered a subset of cationic copolymers that undergoes a conformational change, which mitigates membrane disruption and facilitates the deposition of PEMs on cell surfaces that are tailorable in composition, reactivity, thickness, and mechanical properties. Furthermore, we demonstrate the first successful in vivo application of PEM-engineered cells, which maintained viability and function upon transplantation and were used as carriers for in vivo delivery of PEMs containing biomolecular payloads. This new class of polymeric film and the design strategies developed herein establish an enabling technology for cell transplantation and other therapies based on engineered cells.
Collapse
Affiliation(s)
- John T Wilson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Liu G, Fu L, Zhang G. Role of Hydrophobic Interactions in the Adsorption of Poly(ethylene glycol) Chains on Phospholipid Membranes Investigated with a Quartz Crystal Microbalance. J Phys Chem B 2009; 113:3365-9. [DOI: 10.1021/jp810304f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guangming Liu
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, P. R. China
| | - Li Fu
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, P. R. China
| | - Guangzhao Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, P. R. China
| |
Collapse
|
23
|
Shang BZ, Wang Z, Larson RG. Molecular dynamics simulation of interactions between a sodium dodecyl sulfate micelle and a poly(ethylene oxide) polymer. J Phys Chem B 2008; 112:2888-900. [PMID: 18275181 DOI: 10.1021/jp0773841] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have performed atomistic molecular dynamics simulations of an anionic sodium dodecyl sulfate (SDS) micelle and a nonionic poly(ethylene oxide) (PEO) polymer in aqueous solution. The micelle consisted of 60 surfactant molecules, and the polymer chain lengths varied from 20 to 40 monomers. The force field parameters for PEO were adjusted by using 1,2-dimethoxymethane (DME) as a model compound and matching its hydration enthalpy and conformational behavior to experiment. Excellent agreement with previous experimental and simulation work was obtained through these modifications. The simulated scaling behavior of the PEO radius of gyration was also in close agreement with experimental results. The SDS-PEO simulations show that the polymer resides on the micelle surface and at the hydrocarbon-water interface, leading to a selective reduction in the hydrophobic contribution to the solvent-accessible surface area of the micelle. The association is mainly driven by hydrophobic interactions between the polymer and surfactant tails, while the interaction between the polymer and sulfate headgroups on the micelle surface is weak. The 40-monomer chain is mostly wrapped around the micelle, and nearly 90% of the monomers are adsorbed at low PEO concentration. Simulations were also performed with multiple 20-monomer chains, and gradual addition of polymer indicates that about 120 monomers are required to saturate the micelle surface. The stoichiometry of the resulting complex is in close agreement with experimental results, and the commonly accepted "beaded necklace" structure of the SDS-PEO complex is recovered by our simulations.
Collapse
Affiliation(s)
- Barry Z Shang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2136, USA
| | | | | |
Collapse
|