1
|
Kwiatos N, Atila D, Puchalski M, Kumaravel V, Steinbüchel A. Cyanophycin modifications for applications in tissue scaffolding. Appl Microbiol Biotechnol 2024; 108:264. [PMID: 38489042 PMCID: PMC10943155 DOI: 10.1007/s00253-024-13088-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Cyanophycin (CGP) is a polypeptide consisting of amino acids-aspartic acid in the backbone and arginine in the side chain. Owing to its resemblance to cell adhesive motifs in the body, it can be considered suitable for use in biomedical applications as a novel component to facilitate cell attachment and tissue regeneration. Although it has vast potential applications, starting with nutrition, through drug delivery and tissue engineering to the production of value-added chemicals and biomaterials, CGP has not been brought to the industry yet. To develop scaffolds using CGP powder produced by bacteria, its properties (e.g., biocompatibility, morphology, biodegradability, and mechanical strength) should be tailored in terms of the requirements of the targeted tissue. Crosslinking commonly stands for a primary modification method for renovating biomaterial features to these extents. Herein, we aimed to crosslink CGP for the first time and present a comparative study of different methods of CGP crosslinking including chemical, physical, and enzymatic methods by utilizing glutaraldehyde (GTA), UV exposure, genipin, 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS), and monoamine oxidase (MAO). Crosslinking efficacy varied among the samples crosslinked via the different crosslinking methods. All crosslinked CGP were non-cytotoxic to L929 cells, except for the groups with higher GTA concentrations. We conclude that CGP is a promising candidate for scaffolding purposes to be used as part of a composite with other biomaterials to maintain the integrity of scaffolds. The initiative study demonstrated the unknown characteristics of crosslinked CGP, even though its feasibility for biomedical applications should be confirmed by further examinations. KEY POINTS: • Cyanophycin was crosslinked by 5 different methods • Crosslinked cyanophycin is non-cytotoxic to L929 cells • Crosslinked cyanophycin is a promising new material for scaffolding purposes.
Collapse
Affiliation(s)
- Natalia Kwiatos
- International Centre for Research on Innovative Biobased Materials-International Research Agenda (ICRI-BioM), Lodz University of Technology, Stefanowskiego 2/22, Łódź, Poland.
| | - Deniz Atila
- International Centre for Research on Innovative Biobased Materials-International Research Agenda (ICRI-BioM), Lodz University of Technology, Stefanowskiego 2/22, Łódź, Poland
| | - Michał Puchalski
- Institute of Material Science of Textile and Polymer Composites, Lodz University of Technology, Żeromskiego 116, Łódź, Poland
| | - Vignesh Kumaravel
- International Centre for Research on Innovative Biobased Materials-International Research Agenda (ICRI-BioM), Lodz University of Technology, Stefanowskiego 2/22, Łódź, Poland.
| | - Alexander Steinbüchel
- International Centre for Research on Innovative Biobased Materials-International Research Agenda (ICRI-BioM), Lodz University of Technology, Stefanowskiego 2/22, Łódź, Poland
| |
Collapse
|
2
|
Toomey R, Powell J, Cheever J, Harper JK. Distinguishing between COOH, COO - , and hydrogen disordered COOH sites in solids with 13 C chemical shift anisotropy and T 1 measurements. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:190-197. [PMID: 38237932 DOI: 10.1002/mrc.5425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/24/2023] [Accepted: 12/21/2023] [Indexed: 02/13/2024]
Abstract
Since 1993, it has been known that 13 C chemical shift tensor (i.e., δ11 , δ22 , and δ33 ) provides information sufficient to distinguish between COOH and COO- sites. Herein, four previously unreported metrics are proposed for differentiating COOH/COO- moieties. A new relationship is also introduced that correlates the asymmetry (i.e., δ11 -δ22 ) of COOH sites to the proximity of hydrogen bond donating partners within 2.6 Å with high accuracy (±0.05 Å). Conversely, a limitation to all proposed metrics is that they fail to distinguish between COO- and hydrogen disordered COOH sites. To reconcile this omission, a new approach is proposed based on T1 measurements of both 1 H and 13 C. The 13 C T1 values are particularly sensitive with the T1 for hydrogen disordered COOH moieties found to be nearly six times smaller than T1 's from COO- sites.
Collapse
Affiliation(s)
- Ryan Toomey
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Jacob Powell
- Department of Chemistry, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jacob Cheever
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - James K Harper
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
3
|
Silva IDA, Bartalucci E, Bolm C, Wiegand T. Opportunities and Challenges in Applying Solid-State NMR Spectroscopy in Organic Mechanochemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304092. [PMID: 37407000 DOI: 10.1002/adma.202304092] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
In recent years it is shown that mechanochemical strategies can be beneficial in directed conversions of organic compounds. Finding new reactions proved difficult, and due to the lack of mechanistic understanding of mechanochemical reaction events, respective efforts have mostly remained empirical. Spectroscopic techniques are crucial in shedding light on these questions. In this overview, the opportunities and challenges of solid-state nuclear magnetic resonance (NMR) spectroscopy in the field of organic mechanochemistry are discussed. After a brief discussion of the basics of high-resolution solid-state NMR under magic-angle spinning (MAS) conditions, seven opportunities for solid-state NMR in the field of organic mechanochemistry are presented, ranging from ex situ approaches to structurally elucidated reaction products obtained by milling to the potential and limitations of in situ solid-state NMR approaches. Particular strengths of solid-state NMR, for instance in differentiating polymorphs, in NMR-crystallographic structure-determination protocols, or in detecting weak noncovalent interactions in molecular-recognition events employing proton-detected solid-state NMR experiments at fast MAS frequencies, are discussed.
Collapse
Affiliation(s)
| | - Ettore Bartalucci
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Thomas Wiegand
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
4
|
Matlahov I, Boatz JC, C.A. van der Wel P. Selective observation of semi-rigid non-core residues in dynamically complex mutant huntingtin protein fibrils. J Struct Biol X 2022; 6:100077. [PMID: 36419510 PMCID: PMC9677204 DOI: 10.1016/j.yjsbx.2022.100077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/20/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Mutant huntingtin exon 1 fibrils feature a broad range of molecular dynamics. Molecular motion is coupled to water dynamics outside the fiber core. Dynamics-based spectral editing ssNMR reveals mobile non-core residues. Intermediate-motion selection via dipolar dephasing of rigid sites. Semi-mobile glutamines outside the fiber core observed and identified.
Many amyloid-forming proteins, which are normally intrinsically disordered, undergo a disorder-to-order transition to form fibrils with a rigid β-sheet core flanked by disordered domains. Solid-state NMR (ssNMR) and cryogenic electron microscopy (cryoEM) excel at resolving the rigid structures within amyloid cores but studying the dynamically disordered domains remains challenging. This challenge is exemplified by mutant huntingtin exon 1 (HttEx1), which self-assembles into pathogenic neuronal inclusions in Huntington disease (HD). The mutant protein’s expanded polyglutamine (polyQ) segment forms a fibril core that is rigid and sequestered from the solvent. Beyond the core, solvent-exposed surface residues mediate biological interactions and other properties of fibril polymorphs. Here we deploy magic angle spinning ssNMR experiments to probe for semi-rigid residues proximal to the fibril core and examine how solvent dynamics impact the fibrils’ segmental dynamics. Dynamic spectral editing (DYSE) 2D ssNMR based on a combination of cross-polarization (CP) ssNMR with selective dipolar dephasing reveals the weak signals of solvent-mobilized glutamine residues, while suppressing the normally strong background of rigid core signals. This type of ‘intermediate motion selection’ (IMS) experiment based on cross-polarization (CP) ssNMR, is complementary to INEPT- and CP-based measurements that highlight highly flexible or highly rigid protein segments, respectively. Integration of the IMS-DYSE element in standard CP-based ssNMR experiments permits the observation of semi-rigid residues in a variety of contexts, including in membrane proteins and protein complexes. We discuss the relevance of semi-rigid solvent-facing residues outside the fibril core to the latter’s detection with specific dyes and positron emission tomography tracers.
Collapse
|
5
|
Szell PMJ, Nilsson Lill SO, Blade H, Brown SP, Hughes LP. A toolbox for improving the workflow of NMR crystallography. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2021; 116:101761. [PMID: 34736104 DOI: 10.1016/j.ssnmr.2021.101761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
NMR crystallography is a powerful tool with applications in structural characterization and crystal structure verification, to name two. However, applying this tool presents several challenges, especially for industrial users, in terms of consistency, workflow, time consumption, and the requirement for a high level of understanding of experimental solid-state NMR and GIPAW-DFT calculations. Here, we have developed a series of fully parameterized scripts for use in Materials Studio and TopSpin, based on the .magres file format, with a focus on organic molecules (e.g. pharmaceuticals), improving efficiency, robustness, and workflow. We separate these tools into three major categories: performing the DFT calculations, extracting & visualizing the results, and crystallographic modelling. These scripts will rapidly submit fully parameterized CASTEP jobs, extract data from the calculations, assist in visualizing the results, and expedite the process of structural modelling. Accompanied with these tools is a description on their functionality, documentation on how to get started and use the scripts, and links to video tutorials for guiding new users. Through the use of these tools, we hope to facilitate NMR crystallography and to harmonize the process across users.
Collapse
Affiliation(s)
| | - Sten O Nilsson Lill
- Early Product Development and Manufacturing, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Helen Blade
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Steven P Brown
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK.
| | - Leslie P Hughes
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK.
| |
Collapse
|
6
|
Corlett EK, Blade H, Hughes LP, Sidebottom PJ, Walker D, Walton RI, Brown SP. 5-amino-2-methylpyridinium hydrogen fumarate: An XRD and NMR crystallography analysis. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:1026-1035. [PMID: 32187751 DOI: 10.1002/mrc.5021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/04/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
Single-crystal X-ray diffraction structures of the 5-amino-2-methylpyridinium hydrogen fumarate salt have been solved at 150 and 300 K (CCDC 1952142 and 1952143). A base-acid-base-acid ring is formed through pyridinium-carboxylate and amine-carboxylate hydrogen bonds that hold together chains formed from hydrogen-bonded hydrogen fumarate ions. 1 H and 13 C chemical shifts as well as 14 N shifts that additionally depend on the quadrupolar interaction are determined by experimental magic angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) and gauge-including projector-augmented wave (GIPAW) calculation. Two-dimensional homonuclear 1 H-1 H double-quantum (DQ) MAS and heteronuclear 1 H-13 C and 14 N-1 H spectra are presented. Only small differences of up to 0.1 and 0.6 ppm for 1 H and 13 C are observed between GIPAW calculations starting with the two structures solved at 150 and 300 K (after geometry optimisation of atomic positions, but not unit cell parameters). A comparison of GIPAW-calculated 1 H chemical shifts for isolated molecules and the full crystal structures is indicative of hydrogen bonding strength.
Collapse
Affiliation(s)
| | - Helen Blade
- Pharmaceutical Development, AstraZeneca, Macclesfield, UK
| | | | | | - David Walker
- Department of Physics, University of Warwick, Coventry, UK
| | | | - Steven P Brown
- Department of Physics, University of Warwick, Coventry, UK
| |
Collapse
|
7
|
Blade H, Blundell CD, Brown SP, Carson J, Dannatt HRW, Hughes LP, Menakath AK. Conformations in Solution and in Solid-State Polymorphs: Correlating Experimental and Calculated Nuclear Magnetic Resonance Chemical Shifts for Tolfenamic Acid. J Phys Chem A 2020; 124:8959-8977. [DOI: 10.1021/acs.jpca.0c07000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Helen Blade
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | | | - Steven P. Brown
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| | - Jake Carson
- Department of Statistics, University of Warwick, Coventry CV4 7AL, U.K
| | | | - Leslie P. Hughes
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | | |
Collapse
|
8
|
Hodgkinson P. NMR crystallography of molecular organics. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 118-119:10-53. [PMID: 32883448 DOI: 10.1016/j.pnmrs.2020.03.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/25/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
Developments of NMR methodology to characterise the structures of molecular organic structures are reviewed, concentrating on the previous decade of research in which density functional theory-based calculations of NMR parameters in periodic solids have become widespread. With a focus on demonstrating the new structural insights provided, it is shown how "NMR crystallography" has been used in a spectrum of applications from resolving ambiguities in diffraction-derived structures (such as hydrogen atom positioning) to deriving complete structures in the absence of diffraction data. As well as comprehensively reviewing applications, the different aspects of the experimental and computational techniques used in NMR crystallography are surveyed. NMR crystallography is seen to be a rapidly maturing subject area that is increasingly appreciated by the wider crystallographic community.
Collapse
Affiliation(s)
- Paul Hodgkinson
- Department of Chemistry, Durham University, Stockton Road, Durham DH1 3LE, UK.
| |
Collapse
|
9
|
Martins ICB, Sardo M, Čendak T, Gomes JRB, Rocha J, Duarte MT, Mafra L. Hydrogen bonding networks in gabapentin protic pharmaceutical salts: NMR and in silico studies. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:243-255. [PMID: 30475406 DOI: 10.1002/mrc.4809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
Hydrogen bonds (HBs) play a key role in the supramolecular arrangement of crystalline solids and, although they have been extensively studied, the influence of their strength and geometry on crystal packing remains poorly understood. Here we describe the crystal structures of two novel protic gabapentin (GBP) pharmaceutical salts prepared with the coformers methanesulfonic acid (GBP:METHA) and ethanesulfonic acid (GBP:ETHA). This study encompasses experimental and computational electronic structure analyses of 1 H NMR chemical shifts (CSs), upon in silico HB cleavage. GBP:METHA and GBP:ETHA crystal packing comprise two main structural domains: an ionic layer (characterized by the presence of charge-assisted + NHGBP ⋯O-METHA/ETHA HB interactions) and a neutral layer generated in a different way for each salt, mainly due to the presence of bifurcated HB interactions. A comprehensive study of HB networks is presented for GBP:METHA, by isolating molecular fragments involved in distinct HB types (NH⋯O, OH⋯O, and CH⋯O) obtained from in silico disassembling of an optimized three-dimensional packing structure. Formation of HB leads to calculated 1 H NMR CS changes from 0.4 to ~5.8 ppm. This study further attempts to assess how 1 H NMR CS of protons engaged in certain HB are affected when other nearby HB, involving bifurcated or geminal/vicinal hydrogen atoms, are removed.
Collapse
Affiliation(s)
- Inês C B Martins
- CQE - Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Mariana Sardo
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Tomaž Čendak
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - José R B Gomes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - João Rocha
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - M Teresa Duarte
- CQE - Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Luís Mafra
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
10
|
Dale BL, Halcovitch NR, Peach MJG, Griffin JM. Investigation of structure and dynamics in a photochromic molecular crystal by NMR crystallography. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:230-242. [PMID: 30452093 DOI: 10.1002/mrc.4805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/01/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
A photochromic anil, N-(3,5-di-t-butylsalicylidene)-4-amino-pyridine, has been studied by single-crystal X-ray diffraction, multinuclear magic-angle spinning NMR, and first-principles density functional theory (DFT) calculations. Interpretation of the solid-state NMR data on the basis of calculated chemical shifts confirms the structure is primarily composed of molecules in the ground-state enol tautomer, whereas thermally activated cis-keto and photoisomerised trans-keto states exist as low-level defects with populations that are too low to detect experimentally. Variable temperature 13 C NMR data reveal evidence for solid-state dynamics, which is found to be associated with fast rotational motion of t-butyl groups and 180° flips of the pyridine ring, contrasting the time-averaged structure obtained by X-ray diffraction. Comparison of calculated chemical shifts for the full crystal structure and an isolated molecule also reveals evidence for an intermolecular hydrogen bond involving the pyridine ring and an adjacent imine carbon, which facilitates the flipping motion. The DFT calculations also reveal that the molecular conformation in the crystal structure is very close to the energetic minimum for an isolated molecule, indicating that the ring dynamics arise as a result of considerable steric freedom of the pyridine ring and which also allows the molecule to adopt a favourable conformation for photochromism.
Collapse
Affiliation(s)
- Benjamin L Dale
- Department of Chemistry, Lancaster University, Lancaster, UK
| | | | | | - John M Griffin
- Department of Chemistry, Lancaster University, Lancaster, UK
- Materials Science Institute, Lancaster University, Lancaster, UK
| |
Collapse
|
11
|
Zilka M, Yates JR, Brown SP. An NMR crystallography investigation of furosemide. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:191-199. [PMID: 30141257 PMCID: PMC6492277 DOI: 10.1002/mrc.4789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 07/16/2018] [Accepted: 08/06/2018] [Indexed: 05/04/2023]
Abstract
This paper presents an NMR crystallography study of three polymorphs of furosemide. Experimental magic-angle spinning (MAS) solid-state NMR spectra are reported for form I of furosemide, and these are assigned using density-functional theory (DFT)-based gauge-including projector augmented wave (GIPAW) calculations. Focusing on the three known polymorphs, we examine the changes to the NMR parameters due to crystal packing effects. We use a recently developed formalism to visualise which regions are responsible for the chemical shielding of particular sites and hence understand the variation in NMR parameters between the three polymorphs.
Collapse
Affiliation(s)
- Miri Zilka
- Department of PhysicsUniversity of WarwickCoventryUnited Kingdom
| | | | - Steven P. Brown
- Department of PhysicsUniversity of WarwickCoventryUnited Kingdom
| |
Collapse
|
12
|
Corlett EK, Blade H, Hughes LP, Sidebottom PJ, Walker D, Walton RI, Brown SP. An XRD and NMR crystallographic investigation of the structure of 2,6-lutidinium hydrogen fumarate. CrystEngComm 2019. [DOI: 10.1039/c9ce00633h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A crystallographic study highlighting the benefits of a combined XRD and NMR approach in investigating both stability and variation within an organic multicomponent crystal.
Collapse
Affiliation(s)
| | - Helen Blade
- Pharmaceutical Development
- AstraZeneca
- Macclesfield
- UK
| | | | | | - David Walker
- Department of Physics
- University of Warwick
- Coventry
- UK
| | | | | |
Collapse
|
13
|
Cuny J, Jolibois F, Gerber IC. Evaluation of Gas-to-Liquid 17O Chemical Shift of Water: A Test Case for Molecular and Periodic Approaches. J Chem Theory Comput 2018; 14:4041-4051. [DOI: 10.1021/acs.jctc.8b00243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jérôme Cuny
- Laboratoire de Chimie et Physique Quantiques (LCPQ/IRSAMC), Université de Toulouse and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Franck Jolibois
- LPCNO, Université Fédérale de Toulouse Midi-Pyrénées, INSA-CNRS-UPS, 135 avenue de Rangueil, 31077 Cedex 4 Toulouse, France
| | - Iann C. Gerber
- LPCNO, Université Fédérale de Toulouse Midi-Pyrénées, INSA-CNRS-UPS, 135 avenue de Rangueil, 31077 Cedex 4 Toulouse, France
| |
Collapse
|
14
|
Wang L, Uribe-Romo FJ, Mueller LJ, Harper JK. Predicting anisotropic thermal displacements for hydrogens from solid-state NMR: a study on hydrogen bonding in polymorphs of palmitic acid. Phys Chem Chem Phys 2018; 20:8475-8487. [PMID: 29431770 PMCID: PMC5878182 DOI: 10.1039/c7cp06724k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The hydrogen-bonding environments at the COOH moiety in eight polycrystalline polymorphs of palmitic acid are explored using solid-state NMR. Although most phases have no previously reported crystal structure, measured 13C chemical shift tensors for COOH moieties, combined with DFT modeling establish that all phases crystallize with a cyclic dimer (R22(8)) hydrogen bonding arrangement. Phases A2, Bm and Em have localized OH hydrogens while phase C has a dynamically disordered OH hydrogen. The phase designated As is a mix of five forms, including 27.4% of Bm and four novel phases not fully characterized here due to insufficient sample mass. For phases A2, Bm, Em, and C the anisotropic uncertainties in the COOH hydrogen atom positions are established using a Monte Carlo sampling scheme. Sampled points are retained or rejected at the ±1σ level based upon agreement of DFT computed 13COOH tensors with experimental values. The collection of retained hydrogen positions bear a remarkable resemblance to the anisotropic displacement parameters (i.e. thermal ellipsoids) from diffraction studies. We posit that this similarity is no mere coincidence and that the two are fundamentally related. The volumes of NMR-derived anisotropic displacement ellipsoids for phases with localized OH hydrogens are 4.1 times smaller than those derived from single crystal X-ray diffraction and 1.8 times smaller than the volume of benchmark single crystal neutron diffraction values.
Collapse
Affiliation(s)
- Luther Wang
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA.
| | | | | | | |
Collapse
|
15
|
Sebastiani D. Ab-Initio Molecular Dynamics Simulations and Calculations of Spectroscopic Parameters in Hydrogen-Bonding Liquids in Confinement (Project 8). Z PHYS CHEM 2017. [DOI: 10.1515/zpch-2017-1006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
We investigate the effect of several nanoscale confinements on structural and dynamical properties of liquid water and binary aqueous mixtures. By means of molecular dynamics simulations based on density functional theory and atomistic force fields. Our main focus is on the dependence on the structure and the hydrogen-bonding-network of the liquids near the confinement interface at atomistic resolution. As a complementary aspect, spatially resolved profiles of the proton NMR chemical shift values are used to quantify the local strength of the hydrogen-bond-network.
Collapse
Affiliation(s)
- Daniel Sebastiani
- Institute of Chemistry , Martin-Luther-Universität Halle-Wittenberg , von-Danckelmann-Platz 4 , 06120 Halle , Germany
| |
Collapse
|
16
|
Zilka M, Sturniolo S, Brown SP, Yates JR. Visualising crystal packing interactions in solid-state NMR: Concepts and applications. J Chem Phys 2017; 147:144203. [DOI: 10.1063/1.4996750] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Miri Zilka
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Simone Sturniolo
- Scientific Computing Department, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX,
United Kingdom
| | - Steven P. Brown
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jonathan R. Yates
- Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
| |
Collapse
|
17
|
Damron JT, Kersten KM, Pandey MK, Nishiyama Y, Matzger A, Ramamoorthy A. Role of Anomalous Water Constraints in the Efficacy of Pharmaceuticals Probed by 1H Solid-State NMR. ChemistrySelect 2017; 2:6797-6800. [PMID: 31544131 PMCID: PMC6754108 DOI: 10.1002/slct.201701547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/07/2017] [Indexed: 11/06/2022]
Abstract
Water plays a complex and central role in determining the structural and reactive properties in numerous chemical systems. In crystalline materials with structural water, the primary focus is often to relate hydrogen bonding motifs to functional properties such as solubility, which is highly relevant in pharmaceutical applications. Nevertheless, understanding the full electrostatic landscape is necessary for a complete structure-function picture. Herein, a combination of tools including 1H magic angle spinning NMR and X-ray crystallography are employed to evaluate the local landscape of water in crystalline hydrates. Two hydrates of an anti-leukemia drug mercaptopurine, which exhibit dramatically different dehydration temperatures (by 90°C) and a three-fold difference in the in vivo bioavailability, are compared. The results identify an electrosteric caging mechanism for a kinetically trapped water in the hemihydrate form, which is responsible for the dramatic differences in properties.
Collapse
Affiliation(s)
- Joshua T Damron
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109-1055, USA
| | - Kortney M Kersten
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109-1055, USA
| | - Manoj Kumar Pandey
- RIKEN CLST-JEOL, Collaboration Center RIKEN Yokohama, Kanagawa 230-0045, Japan
| | - Yusuke Nishiyama
- RIKEN CLST-JEOL, Collaboration Center RIKEN Yokohama, Kanagawa 230-0045, Japan
- JEOL RESONANCE Inc Musashino, Akishima, Tokyo 186-8558, Japan
| | - Adam Matzger
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109-1055, USA
- Macromolecular Science and Engineering, University of Michigan, 2300 Hayward Avenue, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109-1055, USA
- Biophysics Program, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
18
|
Pöppler AC, Corlett EK, Pearce H, Seymour MP, Reid M, Montgomery MG, Brown SP. Single-crystal X-ray diffraction and NMR crystallography of a 1:1 cocrystal of dithianon and pyrimethanil. Acta Crystallogr C Struct Chem 2017; 73:149-156. [PMID: 28257008 PMCID: PMC5391860 DOI: 10.1107/s2053229617000870] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/17/2017] [Indexed: 11/11/2022] Open
Abstract
A single-crystal X-ray diffraction structure of a 1:1 cocrystal of two fungicides, namely dithianon (DI) and pyrimethanil (PM), is reported [systematic name: 5,10-dioxo-5H,10H-naphtho[2,3-b][1,4]dithiine-2,3-dicarbonitrile-4,6-dimethyl-N-phenylpyrimidin-2-amine (1/1), C14H4N2O2S2·C12H13N2]. Following an NMR crystallography approach, experimental solid-state magic angle spinning (MAS) NMR spectra are presented together with GIPAW (gauge-including projector augmented wave) calculations of NMR chemical shieldings. Specifically, experimental 1H and 13C chemical shifts are determined from two-dimensional 1H-13C MAS NMR correlation spectra recorded with short and longer contact times so as to probe one-bond C-H connectivities and longer-range C...H proximities, whereas H...H proximities are identified in a 1H double-quantum (DQ) MAS NMR spectrum. The performing of separate GIPAW calculations for the full periodic crystal structure and for isolated molecules allows the determination of the change in chemical shift upon going from an isolated molecule to the full crystal structure. For the 1H NMR chemical shifts, changes of 3.6 and 2.0 ppm correspond to intermolecular N-H...O and C-H...O hydrogen bonding, while changes of -2.7 and -1.5 ppm are due to ring current effects associated with C-H...π interactions. Even though there is a close intermolecular S...O distance of 3.10 Å, it is of note that the molecule-to-crystal chemical shifts for the involved sulfur or oxygen nuclei are small.
Collapse
Affiliation(s)
- Ann-Christin Pöppler
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
- Department of Organic Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Emily K. Corlett
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
- Molecular Analytical Science Centre for Doctoral Training, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Harriet Pearce
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
- Molecular Analytical Science Centre for Doctoral Training, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Mark P. Seymour
- International Research Centre, Syngenta, Jealott’s Hill, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Matthew Reid
- International Research Centre, Syngenta, Jealott’s Hill, Bracknell, Berkshire RG42 6EY, United Kingdom
- Afton Chemical, London Road, Bracknell, Berkshire RG12 2UW, United Kingdom
| | - Mark G. Montgomery
- International Research Centre, Syngenta, Jealott’s Hill, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Steven P. Brown
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
19
|
Pöppler AC, Walker D, Brown SP. A combined NMR crystallographic and PXRD investigation of the structure-directing role of water molecules in orotic acid and its lithium and magnesium salts. CrystEngComm 2017. [DOI: 10.1039/c6ce02101h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Reddy GNM, Malon M, Marsh A, Nishiyama Y, Brown SP. Fast Magic-Angle Spinning Three-Dimensional NMR Experiment for Simultaneously Probing H—H and N—H Proximities in Solids. Anal Chem 2016; 88:11412-11419. [DOI: 10.1021/acs.analchem.6b01869] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | - Michal Malon
- JEOL RESONANCE Inc., Musashino, Akishima,
Tokyo 196-8558, Japan
- RIKEN CLST-JEOL Collaboration Centre, Yokohama, Kanagawa 230-0045, Japan
| | | | - Yusuke Nishiyama
- JEOL RESONANCE Inc., Musashino, Akishima,
Tokyo 196-8558, Japan
- RIKEN CLST-JEOL Collaboration Centre, Yokohama, Kanagawa 230-0045, Japan
| | | |
Collapse
|
21
|
Hansen MR, Graf R, Spiess HW. Interplay of Structure and Dynamics in Functional Macromolecular and Supramolecular Systems As Revealed by Magnetic Resonance Spectroscopy. Chem Rev 2015; 116:1272-308. [DOI: 10.1021/acs.chemrev.5b00258] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Michael Ryan Hansen
- Max Planck Institute for Polymer Research, P.O. Box 3148, 55021 Mainz, Germany
| | - Robert Graf
- Max Planck Institute for Polymer Research, P.O. Box 3148, 55021 Mainz, Germany
| | | |
Collapse
|
22
|
Chan-Huot M, Wimperis S, Gervais C, Bodenhausen G, Duma L. Deuterium MAS NMR Studies of Dynamics on Multiple Timescales: Histidine and Oxalic Acid. Chemphyschem 2014; 16:204-15. [DOI: 10.1002/cphc.201402506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Indexed: 11/11/2022]
|
23
|
Kins CF, Sengupta E, Kaltbeitzel A, Wagner M, Lieberwirth I, Spiess HW, Hansen MR. Morphological Anisotropy and Proton Conduction in Multiblock Copolyimide Electrolyte Membranes. Macromolecules 2014. [DOI: 10.1021/ma500253s] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christoph F. Kins
- Max Planck Institute
for Polymer Research, Ackermannweg
10, D-55128 Mainz, Germany
| | - Esha Sengupta
- Max Planck Institute
for Polymer Research, Ackermannweg
10, D-55128 Mainz, Germany
| | - Anke Kaltbeitzel
- Max Planck Institute
for Polymer Research, Ackermannweg
10, D-55128 Mainz, Germany
| | - Manfred Wagner
- Max Planck Institute
for Polymer Research, Ackermannweg
10, D-55128 Mainz, Germany
| | - Ingo Lieberwirth
- Max Planck Institute
for Polymer Research, Ackermannweg
10, D-55128 Mainz, Germany
| | - Hans Wolfgang Spiess
- Max Planck Institute
for Polymer Research, Ackermannweg
10, D-55128 Mainz, Germany
| | - Michael Ryan Hansen
- Max Planck Institute
for Polymer Research, Ackermannweg
10, D-55128 Mainz, Germany
- Interdisciplinary
Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| |
Collapse
|
24
|
Graf R, Hansen MR, Hinderberger D, Muennemann K, Spiess HW. Advanced magnetic resonance strategies for the elucidation of nanostructured soft matter. Phys Chem Chem Phys 2014; 16:9700-12. [DOI: 10.1039/c3cp54614d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Watermann T, Elgabarty H, Sebastiani D. Phycocyanobilin in solution – a solvent triggered molecular switch. Phys Chem Chem Phys 2014; 16:6146-52. [DOI: 10.1039/c3cp54307b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chromophore phycocyanobilin changes its spectroscopic behaviour upon solvent change. Our calculations trace this effect back to conformational switching, induced by changes in the hydrogen bonding pattern.
Collapse
Affiliation(s)
- Tobias Watermann
- Institute of Chemistry
- Martin Luther University Halle-Wittenberg
- 06120 Halle (Saale), Germany
| | - Hossam Elgabarty
- Institute of Physical Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz, Germany
| | - Daniel Sebastiani
- Institute of Chemistry
- Martin Luther University Halle-Wittenberg
- 06120 Halle (Saale), Germany
| |
Collapse
|
26
|
Czernek J, Brus J. Theoretical predictions of the two-dimensional solid-state NMR spectra: A case study of the 13C–1H correlations in metergoline. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Thureau P, Mollica G, Ziarelli F, Viel S. Selective measurements of long-range homonuclear J-couplings in solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 231:90-94. [PMID: 23608042 DOI: 10.1016/j.jmr.2013.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/17/2013] [Accepted: 03/23/2013] [Indexed: 06/02/2023]
Abstract
We demonstrate here that the principle of frequency-selective spin-echoes can be extended to the measurements of long-range homonuclear scalar J-couplings in the solid-state. Singly or doubly frequency-selective pulses were used to generate either a J-modulated experiment (S) or a reference experiment (S0). The combination of these two distinct experiments provides experimental data that, in favorable cases, are insensitive to incoherent relaxation effects, and which can be used to estimate long-range homonuclear J-couplings in multiple spin-systems. The concept is illustrated in the case of a uniformly (13)C and (15)N labeled sample of L-histidine, where the absolute value of homonuclear J-couplings between two spins separated by one, two or three covalent bonds are measured. Moreover, we show that a (2)J((15)N-C-(15)N) coupling as small as 0.9 Hz can be precisely measured with the method presented here.
Collapse
Affiliation(s)
- Pierre Thureau
- Aix-Marseille Univ., CNRS, UMR 7273: Institut de Chimie Radicalaire, 13397 Marseille, France.
| | | | | | | |
Collapse
|
28
|
Bouzková K, Babinský M, Novosadová L, Marek R. Intermolecular Interactions in Crystalline Theobromine as Reflected in Electron Deformation Density and 13C NMR Chemical Shift Tensors. J Chem Theory Comput 2013; 9:2629-38. [DOI: 10.1021/ct400209b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kateřina Bouzková
- CEITEC—Central
European Institute of Technology, ‡National Center for Biomolecular Research, and §Department of
Chemistry, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czech Republic
| | - Martin Babinský
- CEITEC—Central
European Institute of Technology, ‡National Center for Biomolecular Research, and §Department of
Chemistry, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czech Republic
| | - Lucie Novosadová
- CEITEC—Central
European Institute of Technology, ‡National Center for Biomolecular Research, and §Department of
Chemistry, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czech Republic
| | - Radek Marek
- CEITEC—Central
European Institute of Technology, ‡National Center for Biomolecular Research, and §Department of
Chemistry, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czech Republic
| |
Collapse
|
29
|
Niedzialek D, Lemaur V, Dudenko D, Shu J, Hansen MR, Andreasen JW, Pisula W, Müllen K, Cornil J, Beljonne D. Probing the relation between charge transport and supramolecular organization down to ångström resolution in a benzothiadiazole-cyclopentadithiophene copolymer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:1939-1947. [PMID: 22711500 DOI: 10.1002/adma.201201058] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Indexed: 06/01/2023]
Abstract
Molecular modeling shows that longitudinal displacement of the backbones by a couple of ångströms has a profound impact on the electronic coupling mediating charge transport in a conjugated copolymer. These changes can be probed by monitoring the calculated X-ray scattering patterns and NMR chemical shifts as a function of sliding of the polymer chains and comparing them to experiment.
Collapse
Affiliation(s)
- Dorota Niedzialek
- Laboratory for Chemistry of Novel Materials, Center for Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (Umons), 20 Place du Parc, 7000 Mons, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Percec V, Sun HJ, Leowanawat P, Peterca M, Graf R, Spiess HW, Zeng X, Ungar G, Heiney PA. Transformation from Kinetically into Thermodynamically Controlled Self-Organization of Complex Helical Columns with 3D Periodicity Assembled from Dendronized Perylene Bisimides. J Am Chem Soc 2013; 135:4129-48. [DOI: 10.1021/ja400639q] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Hao-Jan Sun
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania
19104-6396, United States
| | - Pawaret Leowanawat
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Mihai Peterca
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania
19104-6396, United States
| | - Robert Graf
- Max-Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Hans W. Spiess
- Max-Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Xiangbing Zeng
- Department of Materials Science
and Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Goran Ungar
- Department of Materials Science
and Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
- WCU C2E2, School of Chemical and Biological
Engineering, Seoul National University,
Seoul 151-744, Korea
| | - Paul A. Heiney
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania
19104-6396, United States
| |
Collapse
|
31
|
Tatton AS, Pham TN, Vogt FG, Iuga D, Edwards AJ, Brown SP. Probing Hydrogen Bonding in Cocrystals and Amorphous Dispersions Using 14N–1H HMQC Solid-State NMR. Mol Pharm 2013; 10:999-1007. [DOI: 10.1021/mp300423r] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrew S. Tatton
- Department
of Physics, University of Warwick, Coventry
CV4 7AL, United Kingdom
| | - Tran N. Pham
- GlaxoSmithKline plc, Product Development, Gunnels Wood Road, Stevenage
SG1 2NY, United Kingdom
| | - Frederick G. Vogt
- GlaxoSmithKline plc, Product Development, 709 Swedeland
Road, King of Prussia, Pennsylvania
19406, United States
| | - Dinu Iuga
- Department
of Physics, University of Warwick, Coventry
CV4 7AL, United Kingdom
| | - Andrew J. Edwards
- GlaxoSmithKline plc, Product Development, Gunnels Wood Road, Stevenage
SG1 2NY, United Kingdom
| | - Steven P. Brown
- Department
of Physics, University of Warwick, Coventry
CV4 7AL, United Kingdom
| |
Collapse
|
32
|
Babinský M, Bouzková K, Pipíška M, Novosadová L, Marek R. Interpretation of crystal effects on NMR chemical shift tensors: electron and shielding deformation densities. J Phys Chem A 2013; 117:497-503. [PMID: 23253123 DOI: 10.1021/jp310967b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The relationship between the NMR observables and the supramolecular structure of any system is not straightforward. In this work we examine the influence of the crystal packing for three purine derivatives (hypoxanthine, theobromine, and 6-(2-methoxy)benzylaminopurine) on the principal components of the NMR chemical shift tensors (CSTs). We employ density functional calculations to obtain various molecular properties (the ground-state electron density, the magnitudes and orientations of the components of NMR chemical shift tensor, and the spatial distribution of the isotropic magnetic shielding) for the isolated molecules and for the molecules embedded in supramolecular clusters modeling the crystal environment and evaluate their differences. The concept has enabled us to rationalize the effect of the crystal packing on the NMR CSTs in terms of the redistribution of the ground-state electron density induced by intermolecular interactions in the solid state.
Collapse
Affiliation(s)
- Martin Babinský
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5/A4, 62500 Brno, Czech Republic
| | | | | | | | | |
Collapse
|
33
|
Schmidt M, Zehe CS, Siegel R, Heigl JU, Steinlein C, Schmidt HW, Senker J. NMR-crystallographic study of two-dimensionally self-assembled cyclohexane-based low-molecular-mass organic compounds. CrystEngComm 2013. [DOI: 10.1039/c3ce41158c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Dudenko DV, Yates JR, Harris KDM, Brown SP. An NMR crystallography DFT-D approach to analyse the role of intermolecular hydrogen bonding and π–π interactions in driving cocrystallisation of indomethacin and nicotinamide. CrystEngComm 2013. [DOI: 10.1039/c3ce41240g] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Wu J, Jasinska-Walc L, Dudenko D, Rozanski A, Hansen MR, van Es D, Koning CE. An Investigation of Polyamides Based on Isoidide-2,5-dimethyleneamine as a Green Rigid Building Block with Enhanced Reactivity. Macromolecules 2012. [DOI: 10.1021/ma302126b] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Wu
- Laboratory of Polymer
Materials, Eindhoven University of Technology, Den Dolech 2, P.O.
Box 513, 5600 MB Eindhoven, The Netherlands
- Dutch Polymer Institute DPI, PO Box 902, 5600 AX Eindhoven, The Netherlands
- Food & Biobased Research, Wageningen University and Research Center, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Lidia Jasinska-Walc
- Laboratory of Polymer
Materials, Eindhoven University of Technology, Den Dolech 2, P.O.
Box 513, 5600 MB Eindhoven, The Netherlands
- Dutch Polymer Institute DPI, PO Box 902, 5600 AX Eindhoven, The Netherlands
- Department of Polymer Technology, Chemical Faculty, Gdansk University of Technology, G. Narutowicza Str.
11/12, 80-952 Gdansk, Poland
| | - Dmytro Dudenko
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Artur Rozanski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363
Lodz, Poland
| | - Michael Ryan Hansen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Daan van Es
- Dutch Polymer Institute DPI, PO Box 902, 5600 AX Eindhoven, The Netherlands
- Food & Biobased Research, Wageningen University and Research Center, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Cor E. Koning
- Laboratory of Polymer
Materials, Eindhoven University of Technology, Den Dolech 2, P.O.
Box 513, 5600 MB Eindhoven, The Netherlands
- Dutch Polymer Institute DPI, PO Box 902, 5600 AX Eindhoven, The Netherlands
- DSM Coating Resins, Ceintuurbaan 5, Zwolle, The Netherlands
| |
Collapse
|
36
|
Bonhomme C, Gervais C, Babonneau F, Coelho C, Pourpoint F, Azaïs T, Ashbrook SE, Griffin JM, Yates JR, Mauri F, Pickard CJ. First-principles calculation of NMR parameters using the gauge including projector augmented wave method: a chemist's point of view. Chem Rev 2012; 112:5733-79. [PMID: 23113537 DOI: 10.1021/cr300108a] [Citation(s) in RCA: 326] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Christian Bonhomme
- Laboratoire de Chimie de la Matière Condensée de Paris, Université Pierre et Marie Curie, CNRS UMR, Collège de France, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Guo XY, Watermann T, Keane S, Allolio C, Sebastiani D. First Principles Calculations of NMR Chemical Shifts of Liquid Water at an Amorphous Silica Interface. ACTA ACUST UNITED AC 2012. [DOI: 10.1524/zpch.2012.0290] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
We investigate the anomalous structure and hydrogen bond network of water molecules confined inside a silica nanopore (MCM-41 type). In addition to geometric data, we use proton NMR chemical shifts as a measure for the strength of the H-bonding network. We compute the 1H NMR shifts of confined water based on a first principle approach in the framework of density functional perturbation theory under periodic boundary conditions. The hydrophilic character of the silica is well manifested in the water density profile. Our calculations illustrate both the modifications of the 1H NMR chemical shifts of the water with respect to bulk water and a considerable slowing down of water diffusion. In the vicinity of silanols, weakly hydrogen bonded liquid water is observed, while at the center region of the pore, the hydrogen bonding network is enhanced with respect to bulk water.
Collapse
Affiliation(s)
- Xiang Yang Guo
- Freie Universität Berlin, Physics Department, Berlin, Deutschland
| | - Tobias Watermann
- Freie Universität Berlin, Physics Department, Berlin, Deutschland
| | - Shane Keane
- Freie Universität Berlin, Physics Department, Berlin, Deutschland
| | | | | |
Collapse
|
38
|
Aono S, Sakaki S. Proposal of new QM/MM approach for geometry optimization of periodic molecular crystal: Self-consistent point charge representation for crystalline effect on target QM molecule. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.06.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Bradley JP, Pickard CJ, Burley JC, Martin DR, Hughes LP, Cosgrove SD, Brown SP. Probing Intermolecular Hydrogen Bonding in Sibenadet Hydrochloride Polymorphs by High-Resolution 1H Double-Quantum Solid-State NMR Spectroscopy. J Pharm Sci 2012; 101:1821-30. [DOI: 10.1002/jps.23078] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 01/09/2012] [Accepted: 01/20/2012] [Indexed: 01/18/2023]
|
40
|
|
41
|
Brown SP. Applications of high-resolution 1H solid-state NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2012; 41:1-27. [PMID: 22177472 DOI: 10.1016/j.ssnmr.2011.11.006] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 11/15/2011] [Accepted: 11/16/2011] [Indexed: 05/25/2023]
Abstract
This article reviews the large increase in applications of high-resolution (1)H magic-angle spinning (MAS) solid-state NMR, in particular two-dimensional heteronuclear and homonuclear (double-quantum and spin-diffusion NOESY-like exchange) experiments, in the last five years. These applications benefit from faster MAS frequencies (up to 80 kHz), higher magnetic fields (up to 1 GHz) and pulse sequence developments (e.g., homonuclear decoupling sequences applicable under moderate and fast MAS). (1)H solid-state NMR techniques are shown to provide unique structural insight for a diverse range of systems including pharmaceuticals, self-assembled supramolecular structures and silica-based inorganic-organic materials, such as microporous and mesoporous materials and heterogeneous organometallic catalysts, for which single-crystal diffraction structures cannot be obtained. The power of NMR crystallography approaches that combine experiment with first-principles calculations of NMR parameters (notably using the GIPAW approach) are demonstrated, e.g., to yield quantitative insight into hydrogen-bonding and aromatic CH-π interactions, as well as to generate trial three-dimensional packing arrangements. It is shown how temperature-dependent changes in the (1)H chemical shift, linewidth and DQ-filtered signal intensity can be analysed to determine the thermodynamics and kinetics of molecular level processes, such as the making and breaking of hydrogen bonds, with particular application to proton-conducting materials. Other applications to polymers and biopolymers, inorganic compounds and bioinorganic systems, paramagnetic compounds and proteins are presented. The potential of new technological advances such as DNP methods and new microcoil designs is described.
Collapse
Affiliation(s)
- Steven P Brown
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
42
|
Bjornsson R, Bühl M. Modeling Molecular Crystals by QM/MM: Self-Consistent Electrostatic Embedding for Geometry Optimizations and Molecular Property Calculations in the Solid. J Chem Theory Comput 2012; 8:498-508. [DOI: 10.1021/ct200824r] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ragnar Bjornsson
- School of Chemistry, North Haugh, University of St. Andrews, St. Andrews, Fife, UK KY16 9ST, United Kingdom
| | - Michael Bühl
- School of Chemistry, North Haugh, University of St. Andrews, St. Andrews, Fife, UK KY16 9ST, United Kingdom
| |
Collapse
|
43
|
Tatton AS, Pham TN, Vogt FG, Iuga D, Edwards AJ, Brown SP. Probing intermolecular interactions and nitrogen protonation in pharmaceuticals by novel 15N-edited and 2D 14N-1H solid-state NMR. CrystEngComm 2012. [DOI: 10.1039/c2ce06547a] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
44
|
Ihrig AC, Schiffmann C, Sebastiani D. Specific quantum mechanical/molecular mechanical capping-potentials for biomolecular functional groups. J Chem Phys 2011; 135:214107. [DOI: 10.1063/1.3664300] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
45
|
Webber AL, Masiero S, Pieraccini S, Burley JC, Tatton AS, Iuga D, Pham TN, Spada GP, Brown SP. Identifying guanosine self assembly at natural isotopic abundance by high-resolution 1H and 13C solid-state NMR spectroscopy. J Am Chem Soc 2011; 133:19777-95. [PMID: 22034827 DOI: 10.1021/ja206516u] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
By means of the (1)H chemical shifts and the proton-proton proximities as identified in (1)H double-quantum (DQ) combined rotation and multiple-pulse spectroscopy (CRAMPS) solid-state NMR correlation spectra, ribbon-like and quartet-like self-assembly can be identified for guanosine derivatives without isotopic labeling for which it was not possible to obtain single crystals suitable for diffraction. Specifically, characteristic spectral fingerprints are observed for dG(C10)(2) and dG(C3)(2) derivatives, for which quartet-like and ribbon-like self-assembly has been unambiguously identified by (15)N refocused INADEQUATE spectra in a previous study of (15)N-labeled derivatives (Pham, T. N.; et al. J. Am. Chem. Soc.2005, 127, 16018). The NH (1)H chemical shift is observed to be higher (13-15 ppm) for ribbon-like self-assembly as compared to 10-11 ppm for a quartet-like arrangement, corresponding to a change from NH···N to NH···O intermolecular hydrogen bonding. The order of the two NH(2)(1)H chemical shifts is also inverted, with the NH(2) proton closest in space to the NH proton having a higher or lower (1)H chemical shift than that of the other NH(2) proton for ribbon-like as opposed to quartet-like self-assembly. For the dG(C3)(2) derivative for which a single-crystal diffraction structure is available, the distinct resonances and DQ peaks are assigned by means of gauge-including projector-augmented wave (GIPAW) chemical shift calculations. In addition, (14)N-(1)H correlation spectra obtained at 850 MHz under fast (60 kHz) magic-angle spinning (MAS) confirm the assignment of the NH and NH(2) chemical shifts for the dG(C3)(2) derivative and allow longer range through-space N···H proximities to be identified, notably to the N7 nitrogens on the opposite hydrogen-bonding face.
Collapse
Affiliation(s)
- Amy L Webber
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Percec V, Hudson SD, Peterca M, Leowanawat P, Aqad E, Graf R, Spiess HW, Zeng X, Ungar G, Heiney PA. Self-Repairing Complex Helical Columns Generated via Kinetically Controlled Self-Assembly of Dendronized Perylene Bisimides. J Am Chem Soc 2011; 133:18479-94. [DOI: 10.1021/ja208501d] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Steven D. Hudson
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8544, United States
| | - Mihai Peterca
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396, United States
| | - Pawaret Leowanawat
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Emad Aqad
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Robert Graf
- Max-Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Hans W. Spiess
- Max-Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Xiangbing Zeng
- Department of Materials Engineering and Science, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Goran Ungar
- Department of Materials Engineering and Science, University of Sheffield, Sheffield S1 3JD, United Kingdom
- WCU C2E2, School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Korea
| | - Paul A. Heiney
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396, United States
| |
Collapse
|
47
|
Percec V, Peterca M, Tadjiev T, Zeng X, Ungar G, Leowanawat P, Aqad E, Imam MR, Rosen BM, Akbey U, Graf R, Sekharan S, Sebastiani D, Spiess HW, Heiney PA, Hudson SD. Self-Assembly of Dendronized Perylene Bisimides into Complex Helical Columns. J Am Chem Soc 2011; 133:12197-219. [DOI: 10.1021/ja204366b] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Mihai Peterca
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396, United States
| | - Timur Tadjiev
- Department of Materials Engineering and Science, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Xiangbing Zeng
- Department of Materials Engineering and Science, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Goran Ungar
- Department of Materials Engineering and Science, University of Sheffield, Sheffield S1 3JD, United Kingdom
- WCU C2E2, School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Korea
| | - Pawaret Leowanawat
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Emad Aqad
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Mohammad R. Imam
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Brad M. Rosen
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Umit Akbey
- Max-Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Robert Graf
- Max-Planck Institute for Polymer Research, 55128 Mainz, Germany
| | | | | | - Hans W. Spiess
- Max-Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Paul A. Heiney
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396, United States
| | - Steven D. Hudson
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8544, United States
| |
Collapse
|
48
|
Schiffmann C, Sebastiani D. Artificial Bee Colony Optimization of Capping Potentials for Hybrid Quantum Mechanical/Molecular Mechanical Calculations. J Chem Theory Comput 2011; 7:1307-15. [DOI: 10.1021/ct1007108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Christoph Schiffmann
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Daniel Sebastiani
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
49
|
Dračínský M, Jansa P, Ahonen K, Buděšínský M. Tautomerism and the Protonation/Deprotonation of Isocytosine in Liquid- and Solid-States Studied by NMR Spectroscopy and Theoretical Calculations. European J Org Chem 2011. [DOI: 10.1002/ejoc.201001534] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Webber AL, Emsley L, Claramunt RM, Brown SP. NMR crystallography of campho[2,3-c]pyrazole (Z' = 6): combining high-resolution 1H-13C solid-state MAS NMR spectroscopy and GIPAW chemical-shift calculations. J Phys Chem A 2011; 114:10435-42. [PMID: 20815383 DOI: 10.1021/jp104901j] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
(1)H-(13)C two-dimensional magic-angle spinning (MAS) solid-state NMR correlation spectra, recorded with the MAS-J-HMQC experiment, are presented for campho[2,3-c]pyrazole. For each (13)C moiety, there are six resonances associated with the six distinct molecules in the asymmetric unit cell (Z' = 6). The one-bond C-H correlations observed in the 2D (1)H-(13)C MAS-J-HMQC spectra allow the experimental determination of the (1)H and (13)C chemical shifts associated with the separate CH, CH(2), and CH(3) groups. (1)H and (13)C chemical shifts calculated by using the GIPAW (Gauge Including Projector Augmented Waves) plane-wave pseudopotential approach are presented. Calculations for the whole unit cell (12 × 29 = 348 atoms, with geometry optimization of all atoms) allow the assignment of the experimental (1)H and (13)C chemical shifts to the six distinct molecules. The calculated chemical shifts for the full crystal structure are compared with those for isolated molecules as extracted from the geometry-optimized crystal structure. In this way, the effect of intermolecular interactions on the observed chemical shifts is quantified. In particular, the calculations are sufficiently precise to differentiate the small (<1 ppm) differences between the (1)H chemical shifts of the six resonances associated with each distinct CH or CH(2) moiety.
Collapse
Affiliation(s)
- Amy L Webber
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | | | | | | |
Collapse
|