1
|
Xie Y, Gu B. Exploiting Quantum Light-Matter Interaction for Probing and Controlling Molecules. J Phys Chem Lett 2025:2608-2613. [PMID: 40032611 DOI: 10.1021/acs.jpclett.4c03152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Quantum mechanical properties of light, such as time-energy entanglement, quadrature squeezing, and non-Poisson statistics, can be exploited to develop novel spectroscopic signals that enhance the signal strength and spectrotemporal resolution. Moreover, quantum light also provides nonclassical control knobs for controlling the outcome of a chemical reaction. Here, we provide a perspective on how quantum light-matter interaction can be exploited to probe and control molecular events.
Collapse
Affiliation(s)
- Yujuan Xie
- Department of Chemistry and Department of Physics, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Bing Gu
- Department of Chemistry and Department of Physics, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
2
|
Scholes GD, Olaya-Castro A, Mukamel S, Kirrander A, Ni KK, Hedley GJ, Frank NL. The Quantum Information Science Challenge for Chemistry. J Phys Chem Lett 2025; 16:1376-1396. [PMID: 39879081 PMCID: PMC11808782 DOI: 10.1021/acs.jpclett.4c02955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 01/31/2025]
Abstract
We discuss the goals and the need for quantum information science (QIS) in chemistry. It is important to identify concretely how QIS matters to chemistry, and we articulate some of the most pressing and interesting research questions at the interface between chemistry and QIS, that is, "chemistry-centric" research questions relevant to QIS. We propose in what ways and in what new directions the field should innovate, in particular where a chemical perspective is essential. Examples of recent research in chemistry that inspire scrutiny from a QIS perspective are provided, and we conclude with a wish list of open research problems.
Collapse
Affiliation(s)
- Gregory D. Scholes
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Alexandra Olaya-Castro
- Department
of Physics and Astronomy, University College
London, Gower Street, London WC1E
6BT, United Kingdom
| | - Shaul Mukamel
- Department
of Chemistry, University of California, Irvine, California 92697-2025, United
States
| | - Adam Kirrander
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Kang-Kuen Ni
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford St, Cambridge, Massachusetts 02138, United States
| | - Gordon J. Hedley
- School of
Chemistry, University of Glasgow, Joseph Black Building, University
Avenue, Glasgow G12 8QQ, United Kingdom
| | - Natia L. Frank
- Department
of Chemistry, College of Science, University
of Nevada, Reno, Nevada 89557, United States
| |
Collapse
|
3
|
Varnavski O, Johnson P, Liu T, Pal D, Mashour GA, Goodson T. Imaging Brain Tissue with Quantum Light at Low Power. J Phys Chem B 2024; 128:11516-11524. [PMID: 39536763 DOI: 10.1021/acs.jpcb.4c03225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Light-induced tissue damage is a crucial limitation for traditional microscopy of the living brain, underscoring the need for new techniques that minimize exposure of samples to light. Here, we tested the hypothesis that quantum light, i.e., entangled photons, could detect brain structures at a lower excitation energy. In a proof of principle, we show microscopic images of fixed brain tissue in the hippocampus area created by fluorescence selective excitation in the process of entangled two-photon absorption in a scanning microscope. Quantum-enhanced entangled two-photon microscopy (TPM) had brain imaging capabilities at an unprecedented low excitation intensity of ∼3.6 × 107 photons/s, orders of magnitude lower than the excitation level for the classical two-photon fluorescence image obtained in the same microscope. The extremely low light probe intensity demonstrated in entangled TPM is of critical importance in the investigation of neural activity to minimize heating and photobleaching during repetitive imaging. It may have important functional implications in optogenetic technology, removing unintended heating and accumulated photodamage effects. This technology also opens avenues in spatially resolved brain tissue investigations with quantum light, providing new capabilities in local spectroscopy.
Collapse
Affiliation(s)
- O Varnavski
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - P Johnson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - T Liu
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - D Pal
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center for Consciousness Science, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - G A Mashour
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center for Consciousness Science, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - T Goodson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Applied Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Mandal H, Giri SK, Jovanovski S, Varnavski O, Zagorska M, Ganczarczyk R, Chiang TM, Schatz GC, Goodson T. Impact of Classical and Quantum Light on Donor-Acceptor-Donor Molecules. J Phys Chem Lett 2024; 15:9493-9501. [PMID: 39255459 DOI: 10.1021/acs.jpclett.4c01948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Investigations of entangled and classical two-photon absorption have been carried out for six donor (D)-acceptor (A)-donor (D) compounds containing the dithieno pyrrole (DTP) unit as donor and acceptors with systematically varied electronic properties. Comparing ETPA (quantum) and TPA (classical) results reveals that the ETPA cross section decreases with increasing TPA cross section for molecules with highly off-resonant excited states for single-photon excitation. Theory (TDDFT) results are in semiquantitative agreement with this anticorrelated behavior due to the dependence of the ETPA cross section but not TPA on the two-photon excited state lifetime. The largest cross section is found for a DTP derivative that has a single photon excitation energy closest to resonance with half the two-photon excitation energy. These results are important for the possible use of quantum light for low-intensity energy-conversion applications.
Collapse
Affiliation(s)
- Haraprasad Mandal
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sajal Kumar Giri
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sara Jovanovski
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Oleg Varnavski
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Malgorzata Zagorska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Roman Ganczarczyk
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Tse-Min Chiang
- Applied Physics Program, Northwestern University, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Applied Physics Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Theodore Goodson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Spennato D, Leone J, Gundhardt C, Varnavski O, Fabbri R, Caprini M, Zamboni R, Benfenati V, Goodson T. Investigations of Astrocyte Calcium Signaling and Imaging with Classical and Nonclassical Light. J Phys Chem B 2024; 128:7966-7977. [PMID: 39133203 DOI: 10.1021/acs.jpcb.4c03251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The application of light in studying and influencing cellular behavior with improved temporal and spatial resolution remains a key objective in fields such as chemistry, physics, medicine, and engineering. In the brain, nonexcitable cells called astrocytes play essential roles in regulating homeostasis and cognitive function through complex calcium signaling pathways. Understanding these pathways is vital for deciphering brain physiology and neurological disorders like Parkinson's and Alzheimer's. Despite challenges in selectively targeting astrocyte signaling pathways due to shared molecular equipment with neurons, recent advancements in laser technology offer promising avenues. However, the effort to use laser light properties to study astroglial cell function is still limited. This work aims to exploit an in-depth pharmacological analysis of astrocyte calcium channels to determine the physiological mechanism induced by exposure to classical nanosecond-pulsed light. We herein report molecular clues supporting the use of visible-nanosecond laser pulses as a promising approach to excite primary rat neocortical astrocytes and unprecedentedly report on the implementation of entangled two-photon microscopy to image them.
Collapse
Affiliation(s)
- Diletta Spennato
- Istituto per la Sintesi Organica e Fotoreattività, Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129 Bologna, Italy
| | - Josephine Leone
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Carolyn Gundhardt
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Oleg Varnavski
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Roberta Fabbri
- Istituto per la Sintesi Organica e Fotoreattività, Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129 Bologna, Italy
| | - Marco Caprini
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, 40126 Bologna, Italy
| | - Roberto Zamboni
- Istituto per la Sintesi Organica e Fotoreattività, Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129 Bologna, Italy
| | - Valentina Benfenati
- Istituto per la Sintesi Organica e Fotoreattività, Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129 Bologna, Italy
| | - Theodor Goodson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Fan JJ, Ou ZY, Zhang Z. Entangled photons enabled ultrafast stimulated Raman spectroscopy for molecular dynamics. LIGHT, SCIENCE & APPLICATIONS 2024; 13:163. [PMID: 39004616 PMCID: PMC11247098 DOI: 10.1038/s41377-024-01492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 07/16/2024]
Abstract
Quantum entanglement has emerged as a great resource for studying the interactions between molecules and radiation. We propose a new scheme of stimulated Raman scattering with entangled photons. A quantum ultrafast Raman spectroscopy is developed for condensed-phase molecules, to monitor the exciton populations and coherences. Analytic results are obtained, showing an entanglement-enabled time-frequency scale not attainable by classical light. The Raman signal presents an unprecedented selectivity of molecular correlation functions, as a result of the Hong-Ou-Mandel interference. Our work suggests a new paradigm of using an unconventional interferometer as part of spectroscopy, with the potential to unveil advanced information about complex materials.
Collapse
Affiliation(s)
- Jiahao Joel Fan
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Zhe-Yu Ou
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| | - Zhedong Zhang
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
- City University of Hong Kong, Shenzhen Research Institute, Shenzhen, Guangdong, China.
| |
Collapse
|
7
|
Schlawin F. Two-photon absorption cross sections of pulsed entangled beams. J Chem Phys 2024; 160:144117. [PMID: 38619059 DOI: 10.1063/5.0196817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024] Open
Abstract
Entangled two-photon absorption (ETPA) could form the basis of nonlinear quantum spectroscopy at very low photon fluxes, since, at sufficiently low photon fluxes, ETPA scales linearly with the photon flux. When different pairs start to overlap temporally, accidental coincidences are thought to give rise to a "classical" quadratic scaling that dominates the signal at large photon fluxes and, thus, recovers a supposedly classical regime, where any quantum advantage is thought to be lost. Here, we scrutinize this assumption and demonstrate that quantum-enhanced absorption cross sections can persist even for very large photon numbers. To this end, we use a minimal model for quantum light, which can interpolate continuously between the entangled pair and a high-photon-flux limit, to analytically derive ETPA cross sections and the intensity crossover regime. We investigate the interplay between spectral and spatial degrees of freedom and how linewidth broadening of the sample impacts the experimentally achievable enhancement.
Collapse
Affiliation(s)
- Frank Schlawin
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany; University of Hamburg, Luruper Chaussee 149, Hamburg, Germany; and The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| |
Collapse
|
8
|
Triana-Arango F, Ramírez-Alarcón R, Ramos-Ortiz G. Entangled Two-Photon Absorption in Transmission-Based Experiments: Deleterious Effects from Linear Optical Losses. J Phys Chem A 2024; 128:2210-2219. [PMID: 38446597 DOI: 10.1021/acs.jpca.3c06863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Recently different experimental schemes have been proposed to study the elusive phenomenon of entangled two-photon absorption (ETPA) in nonlinear materials. The attempts to detect ETPA using transmission-based schemes have led to results whose validity is currently under debate because the ETPA signal can be corrupted or emulated by artifacts associated with linear optical losses. The present work addresses the issue of linear losses and the corresponding artifacts in transmission-based ETPA experiments through a new approach that exploits the properties of a Hong-Ou-Mandel (HOM) interferogram. Here, we analyze solutions of rhodamine B (RhB), commonly used as a model of a nonlinear medium in ETPA studies. Then, by using the HOM interferometer as a sensing device, we first demonstrate the equivalence of the standard transmission vs pump power ETPA experiments, presented in many reports, with our novel approach of transmission vs two-photon temporal delay. Second, a detailed study of the effects of optical losses, unrelated to ETPA, over the HOM interferogram is carried out by: (1) characterizing RhB in solutions prepared with different solvents and (2) considering scattering losses introduced by silica nanoparticles used as a controlled linear loss mechanism. Our results clearly expose the deleterious effects of linear optical losses over the ETPA signal when standard transmission experiments are employed and show how, by using the HOM interferogram as a sensing device, it is possible to detect the presence of such losses. Finally, once we showed that the HOM interferogram discriminates properly linear losses, our study also reveals that under the specific experimental conditions considered here, which are the same as those employed in many reported works, the ETPA was not unequivocally detected.
Collapse
Affiliation(s)
- Freiman Triana-Arango
- Centro de Investigaciones en Óptica A. C., A. P. 1-948, 37000 León, Guanajuato, México
| | | | - Gabriel Ramos-Ortiz
- Centro de Investigaciones en Óptica A. C., A. P. 1-948, 37000 León, Guanajuato, México
| |
Collapse
|
9
|
Fujihashi Y, Ishizaki A, Shimizu R. Pathway selectivity in time-resolved spectroscopy using two-photon coincidence counting with quantum entangled photons. J Chem Phys 2024; 160:104201. [PMID: 38456524 DOI: 10.1063/5.0189134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
Ultrafast optical spectroscopy is a powerful technique for studying the dynamic processes of molecular systems in condensed phases. However, in molecular systems containing many dye molecules, the spectra can become crowded and difficult to interpret owing to the presence of multiple nonlinear optical contributions. In this work, we theoretically propose time-resolved spectroscopy based on the coincidence counting of two entangled photons generated via parametric down-conversion with a monochromatic laser. We demonstrate that the use of two-photon counting detection of entangled photon pairs enables the selective elimination of the excited-state absorption signal. This selective elimination cannot be realized with classical coherent light. We anticipate that the proposed spectroscopy will help simplify the spectral interpretation of complex molecular and material systems comprising multiple molecules.
Collapse
Affiliation(s)
- Yuta Fujihashi
- Department of Engineering Science, The University of Electro-Communications, Chofu 182-8585, Japan
| | - Akihito Ishizaki
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| | - Ryosuke Shimizu
- Department of Engineering Science, The University of Electro-Communications, Chofu 182-8585, Japan
- Institute for Advanced Science, The University of Electro-Communications, Chofu 182-8585, Japan
| |
Collapse
|
10
|
He M, Hickam BP, Harper N, Cushing SK. Experimental upper bounds for resonance-enhanced entangled two-photon absorption cross section of indocyanine green. J Chem Phys 2024; 160:094305. [PMID: 38445732 DOI: 10.1063/5.0193311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/15/2024] [Indexed: 03/07/2024] Open
Abstract
Resonant intermediate states have been proposed to increase the efficiency of entangled two-photon absorption (ETPA). Although resonance-enhanced ETPA (r-ETPA) has been demonstrated in atomic systems using bright squeezed vacuum, it has not been studied in organic molecules. We investigate for the first time r-ETPA in an organic molecular dye, indocyanine green (ICG), when excited by broadband entangled photons in near-IR. Similar to many reported virtual state mediated ETPA (v-ETPA) measurements, no r-ETPA signals are measured, with an experimental upper bound for the cross section placed at 6(±2) × 10-23 cm2. In addition, the classical resonance-enhanced two-photon absorption (r-TPA) cross section of ICG at 800 nm is measured for the first time to be 20(±13) GM, where 1 GM equals 10-50 cm4 s, suggesting that having a resonant intermediate state does not significantly enhance two-photon processes in ICG. The spectrotemporally resolved emission signatures of ICG excited by entangled photons are also presented to support this conclusion.
Collapse
Affiliation(s)
- Manni He
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Bryce P Hickam
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Nathan Harper
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Scott K Cushing
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
11
|
Mandal H, Ogunyemi OJ, Nicholson JL, Orr ME, Lalisse RF, Rentería-Gómez Á, Gogoi AR, Gutierrez O, Michaudel Q, Goodson T. Linear and Nonlinear Optical Properties of All- cis and All- trans Poly( p-phenylenevinylene). THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:2518-2528. [PMID: 38379916 PMCID: PMC10875663 DOI: 10.1021/acs.jpcc.3c07082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 02/22/2024]
Abstract
Poly(p-phenylenevinylene) (PPV) is a staple of the family of conjugated polymers with desirable optoelectronic properties for applications including light-emitting diodes (LEDs) and photovoltaic devices. Although the significant impact of olefin geometry on the steady-state optical properties of PPVs has been extensively studied, PPVs with precise stereochemistry have yet to be investigated using nonlinear optical spectroscopy for quantum sensing, as well as light harvesting for biological applications. Herein, we report our investigation of the influence of olefin stereochemistry on both linear and nonlinear optical properties through the synthesis of all-cis and all-trans PPV copolymers. We performed two-photon absorption (TPA) using a classical and entangled light source and compared both classical TPA and entangled two-photon absorption (ETPA) cross sections of these stereodefined PPVs. Whereas the TPA cross section of the all-trans PPV was expectedly higher than that of all-cis PPV, presumably because of the larger transition dipole moment, the opposite trend was measured via ETPA, with the all-cis PPV exhibiting the highest ETPA cross section. DFT calculations suggest that this difference might stem from the interaction of entangled photons with lower-lying electronic states in the all-cis PPV variant. Additionally, we explored the photoinduced processes for both cis and trans PPVs through time-resolved fluorescence upconversion and femtosecond transient absorption techniques. This study revealed that the sensitivity of PPVs in two-photon absorption varies with classical versus quantum light and can be modulated through the control of the geometry of the repeating alkenes, which is a key stepping stone toward their use in quantum sensing, bioimaging, and the design of polymer-based light-harvesting systems.
Collapse
Affiliation(s)
- Haraprasad Mandal
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Olusayo J Ogunyemi
- Department of Macromolecular Science & Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jake L Nicholson
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Meghan E Orr
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Remy F Lalisse
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Ángel Rentería-Gómez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Achyut R Gogoi
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Quentin Michaudel
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Theodore Goodson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science & Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
12
|
Yadalam HK, Kizmann M, Rouxel JR, Nam Y, Chernyak VY, Mukamel S. Quantum Interferometric Pathway Selectivity in Difference-Frequency-Generation Spectroscopy. J Phys Chem Lett 2023; 14:10803-10809. [PMID: 38015605 DOI: 10.1021/acs.jpclett.3c02341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Even-order spectroscopies such as sum-frequency generation (SFG) and difference-frequency generation (DFG) can serve as direct probes of molecular chirality. Such signals are usually given by the sum of several interaction pathways that carry different information about matter. Here we focus on DFG, involving impulsive optical-optical-IR interactions, where the last IR pulse probes vibrational transitions in the ground or excited electronic state manifolds, depending on the interaction pathway. Spectroscopy with classical light can use phase matching to select the two pathways. In this theoretical study, we propose a novel quantum interferometric protocol that uses entangled photons to isolate individual pathways. This additional selectivity originates from engineering the state of light using a Zou-Wang-Mandel interferometer combined with coincidence detection.
Collapse
Affiliation(s)
- Hari Kumar Yadalam
- Department of Chemistry, University of California, Irvine, California 92614, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92614, United States
| | - Matthias Kizmann
- Department of Chemistry, University of California, Irvine, California 92614, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92614, United States
| | - Jérémy R Rouxel
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Yeonsig Nam
- Department of Chemistry, University of California, Irvine, California 92614, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92614, United States
| | - Vladimir Y Chernyak
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
- Department of Mathematics, Wayne State University, 656 W. Kirby, Detroit, Michigan 48202, United States
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California 92614, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92614, United States
| |
Collapse
|
13
|
Fujihashi Y, Miwa K, Higashi M, Ishizaki A. Probing exciton dynamics with spectral selectivity through the use of quantum entangled photons. J Chem Phys 2023; 159:114201. [PMID: 37712788 DOI: 10.1063/5.0169768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
Quantum light is increasingly recognized as a promising resource for developing optical measurement techniques. Particular attention has been paid to enhancing the precision of the measurements beyond classical techniques by using nonclassical correlations between quantum entangled photons. Recent advances in the quantum optics technology have made it possible to manipulate spectral and temporal properties of entangled photons, and photon correlations can facilitate the extraction of matter information with relatively simple optical systems compared to conventional schemes. In these respects, the applications of entangled photons to time-resolved spectroscopy can open new avenues for unambiguously extracting information on dynamical processes in complex molecular and materials systems. Here, we propose time-resolved spectroscopy in which specific signal contributions are selectively enhanced by harnessing nonclassical correlations of entangled photons. The entanglement time characterizes the mutual delay between an entangled twin and determines the spectral distribution of photon correlations. The entanglement time plays a dual role as the knob for controlling the accessible time region of dynamical processes and the degrees of spectral selectivity. In this sense, the role of the entanglement time is substantially equivalent to the temporal width of the classical laser pulse. The results demonstrate that the application of quantum entangled photons to time-resolved spectroscopy leads to monitoring dynamical processes in complex molecular and materials systems by selectively extracting desired signal contributions from congested spectra. We anticipate that more elaborately engineered photon states would broaden the availability of quantum light spectroscopy.
Collapse
Affiliation(s)
- Yuta Fujihashi
- Department of Molecular Engineering, Kyoto University, Kyoto 615-8510, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Kuniyuki Miwa
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| | - Masahiro Higashi
- Department of Molecular Engineering, Kyoto University, Kyoto 615-8510, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Akihito Ishizaki
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| |
Collapse
|
14
|
Chiang TM, Schatz GC. Theory of entangled two-photon emission/absorption [E2P-EA] between molecules. J Chem Phys 2023; 159:074103. [PMID: 37581420 DOI: 10.1063/5.0156501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023] Open
Abstract
This paper presents a comprehensive study of the theory of entangled two-photon emission/absorption (E2P-EA) between a many-level cascade donor and a many-level acceptor (which could be quantum dots or molecules) using second-order perturbation theory and where the donor-acceptor pair is in a homogeneous but dispersive medium. To understand the mechanism of E2P-EA, we analyze how dipole orientation, radiative lifetime, energy detuning between intermediate states, separation distance, and entanglement time impact the E2P-EA rate. Our study shows that there are quantum interference effects in the E2P-EA rate expression that lead to oscillations in the rate as a function of entanglement time. Furthermore, we find that the E2P-EA rate for a representative system consisting of two quantum dots can be comparable to one-photon emission/absorption (OP-EA) when donor and acceptor are within a few nm. However, the E2P-EA rate falls off much more quickly with separation distance than does OP-EA.
Collapse
Affiliation(s)
- Tse-Min Chiang
- Graduate Program in Applied Physics, Northwestern University, Evanston, Illinois 60208, USA
| | - George C Schatz
- Department of Chemistry and Graduate Program in Applied Physics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| |
Collapse
|
15
|
Gu B, Sun S, Chen F, Mukamel S. Photoelectron spectroscopy with entangled photons; enhanced spectrotemporal resolution. Proc Natl Acad Sci U S A 2023; 120:e2300541120. [PMID: 37186860 PMCID: PMC10214152 DOI: 10.1073/pnas.2300541120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
In this theoretical study, we show how photoelectron signals generated by time-energy entangled photon pairs can monitor ultrafast excited state dynamics of molecules with high joint spectral and temporal resolutions, not limited by the Fourier uncertainty of classical light. This technique scales linearly, rather than quadratically, with the pump intensity, allowing the study of fragile biological samples with low photon fluxes. Since the spectral resolution is achieved by electron detection and the temporal resolution by a variable phase delay, this technique does not require scanning the pump frequency and the entanglement times, which significantly simplifies the experimental setup, making it feasible with current instrumentation. Application is made to the photodissociation dynamics of pyrrole calculated by exact nonadiabatic wave packet simulations in a reduced two nuclear coordinate space. This study demonstrates the unique advantages of ultrafast quantum light spectroscopy.
Collapse
Affiliation(s)
- Bing Gu
- Department of Chemistry, School of Science, Westlake University, Hangzhou, Zhejiang310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang310024, China
| | - Shichao Sun
- Department of Chemistry, University of California, Irvine, CA92697
- Department of Physics and Astronomy, University of California, Irvine, CA92697
| | - Feng Chen
- Department of Chemistry, University of California, Irvine, CA92697
- Department of Physics and Astronomy, University of California, Irvine, CA92697
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, CA92697
- Department of Physics and Astronomy, University of California, Irvine, CA92697
| |
Collapse
|
16
|
Lindel F, Carnio EG, Buhmann SY, Buchleitner A. Quantized Fields for Optimal Control in the Strong Coupling Regime. PHYSICAL REVIEW LETTERS 2023; 130:133601. [PMID: 37067298 DOI: 10.1103/physrevlett.130.133601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/16/2023] [Accepted: 02/16/2023] [Indexed: 06/19/2023]
Abstract
We tailor the quantum statistics of a bosonic field to deterministically drive a quantum system into a target state. Experimentally accessible states of the field achieve good control of multilevel or multiqubit systems, notably also at coupling strengths beyond the rotating-wave approximation. This extends optimal control theory to the realm of fully quantized, strongly coupled control and target degrees of freedom.
Collapse
Affiliation(s)
- Frieder Lindel
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
| | - Edoardo G Carnio
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
- EUCOR Centre for Quantum Science and Quantum Computing, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
| | - Stefan Yoshi Buhmann
- Institut für Physik, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Andreas Buchleitner
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
- EUCOR Centre for Quantum Science and Quantum Computing, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
| |
Collapse
|
17
|
Triana-Arango F, Ramos-Ortiz G, Ramírez-Alarcón R. Spectral Considerations of Entangled Two-Photon Absorption Effects in Hong-Ou-Mandel Interference Experiments. J Phys Chem A 2023; 127:2608-2617. [PMID: 36913489 DOI: 10.1021/acs.jpca.2c07356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Recently, different experimental methods intended to detect the entangled two-photon absorption (ETPA) phenomenon in a variety of materials have been reported. The present work explores a different approach in which the ETPA process is studied based on the changes induced in the visibility of a Hong-Ou-Mandel (HOM) interferogram. By using an organic solution of Rhodamine B as a model of nonlinear material interacting with entangled photons at ∼800 nm region produced by spontaneous parametric down-conversion (SPDC) Type-II, the conditions that make possible to detect changes in the visibility of a HOM interferogram upon ETPA are investigated. We support the discussion of our results by presenting a model in which the sample is considered as a spectral filtering function which fulfills the energy conservation conditions required by ETPA, allowing us to explain the experimental observations with good agreement. We believe that this work represents a new perspective to studying the ETPA interaction, by using an ultrasensitive quantum interference technique and a detailed mathematical model of the process.
Collapse
Affiliation(s)
| | - Gabriel Ramos-Ortiz
- Centro de Investigaciones en Óptica AC, Apartado Postal 37150, León, Gto, México
| | | |
Collapse
|
18
|
Giri SK, Schatz GC. Manipulating Two-Photon Absorption of Molecules through Efficient Optimization of Entangled Light. J Phys Chem Lett 2022; 13:10140-10146. [PMID: 36270000 DOI: 10.1021/acs.jpclett.2c02842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We report how the unique temporal and spectral features of pulsed entangled photons from a parametric downconversion source can be utilized for manipulating electronic excitations through the optimization of their spectral phase. A new comprehensive optimization protocol based on Bayesian optimization has been developed in this work to selectively excite electronic states accessible by two-photon absorption. Using our optimization method, the entangled two-photon absorption probability for a thiophene dendrimer can be enhanced by up to a factor of 20, while classical light turns out to be nonoptimizable. Moreover, the optimization involving photon entanglement enables selective excitation that would not be possible otherwise. In addition to optimization, we have explored entangled two-photon absorption in the small entanglement time limit showing that entangled light can excite molecular electronic states that are vanishingly small for classical light. We demonstrate these opportunities with an application to a thiophene dendrimer.
Collapse
Affiliation(s)
- Sajal Kumar Giri
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
19
|
Tabakaev D, Djorović A, La Volpe L, Gaulier G, Ghosh S, Bonacina L, Wolf JP, Zbinden H, Thew RT. Spatial Properties of Entangled Two-Photon Absorption. PHYSICAL REVIEW LETTERS 2022; 129:183601. [PMID: 36374702 DOI: 10.1103/physrevlett.129.183601] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/22/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
We experimentally study entangled two-photon absorption in rhodamine 6G as a function of the spatial properties of a high flux of broadband entangled photon pairs. We first demonstrate a key signature dependence of the entangled two-photon absorption rate on the type of entangled pair flux attenuation: linear, when the laser pump power is attenuated, and quadratic, when the pair flux itself experiences linear loss. We then perform a fluorescence-based Z-scan measurement to study the influence of beam waist size on the entangled two-photon absorption process and compare this to classical single- and two-photon absorption processes. We demonstrate that the entangled two-photon absorption shares a beam waist dependence similar to that of classical two-photon absorption. This result presents an additional argument for the wide range of contrasting values of quoted entangled two-photon absorption cross sections of dyes in literature.
Collapse
Affiliation(s)
- D Tabakaev
- Département de Physique Appliquée, Université de Genève, 1211 Genève, Switzerland
| | - A Djorović
- Département de Physique Appliquée, Université de Genève, 1211 Genève, Switzerland
| | - L La Volpe
- Département de Physique Appliquée, Université de Genève, 1211 Genève, Switzerland
| | - G Gaulier
- Département de Physique Appliquée, Université de Genève, 1211 Genève, Switzerland
| | - S Ghosh
- Département de Physique Appliquée, Université de Genève, 1211 Genève, Switzerland
| | - L Bonacina
- Département de Physique Appliquée, Université de Genève, 1211 Genève, Switzerland
| | - J-P Wolf
- Département de Physique Appliquée, Université de Genève, 1211 Genève, Switzerland
| | - H Zbinden
- Département de Physique Appliquée, Université de Genève, 1211 Genève, Switzerland
| | - R T Thew
- Département de Physique Appliquée, Université de Genève, 1211 Genève, Switzerland
| |
Collapse
|
20
|
Zhang Z, Peng T, Nie X, Agarwal GS, Scully MO. Entangled photons enabled time-frequency-resolved coherent Raman spectroscopy and applications to electronic coherences at femtosecond scale. LIGHT, SCIENCE & APPLICATIONS 2022; 11:274. [PMID: 36104344 PMCID: PMC9474554 DOI: 10.1038/s41377-022-00953-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/02/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Quantum entanglement has emerged as a great resource for spectroscopy and its importance in two-photon spectrum and microscopy has been demonstrated. Current studies focus on the two-photon absorption, whereas the Raman spectroscopy with quantum entanglement still remains elusive, with outstanding issues of temporal and spectral resolutions. Here we study the new capabilities provided by entangled photons in coherent Raman spectroscopy. An ultrafast frequency-resolved Raman spectroscopy with entangled photons is developed for condensed-phase molecules, to probe the electronic and vibrational coherences. Using quantum correlation between the photons, the signal shows the capability of both temporal and spectral resolutions not accessible by either classical pulses or the fields without entanglement. We develop a microscopic theory for this Raman spectroscopy, revealing the electronic coherence dynamics even at timescale of 50fs. This suggests new paradigms of optical signals and spectroscopy, with potential to push detection below standard quantum limit.
Collapse
Affiliation(s)
- Zhedong Zhang
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
- City University of Hong Kong, Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China.
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX, 77843, USA.
| | - Tao Peng
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Xiaoyu Nie
- School of Physics, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Girish S Agarwal
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Marlan O Scully
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
- Baylor University, Waco, TX, 76704, USA
| |
Collapse
|
21
|
Chen J, Zhang W, Pullerits T. Two-photon absorption in halide perovskites and their applications. MATERIALS HORIZONS 2022; 9:2255-2287. [PMID: 35727018 DOI: 10.1039/d1mh02074a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Active research on halide perovskites has given us a deep understanding of this family of materials and their potential for applications in advanced optoelectronic devices. One of the prominent outcomes is the use of perovskite materials for nonlinear optical applications. Two-photon absorption in perovskites, in particular their nanostructures, has been extensively studied and shows huge promise for many applications. However, we are still far from a thorough understanding of two-photon absorption in halide perovskites from a micro to macro perspective. Here we summarize different techniques for studying the two-photon absorption in nonlinear optical materials. We discuss the in-depth photophysics in two-photon absorption in halide perovskites. A comprehensive summary about the factors which influence two-photon absorption provides the direction to improve the two-photon absorption properties of halide perovskites. A summary of the recent applications of two-photon absorption in halide perovskites provides inspirations for engineers to utilize halide perovskites in two-photon absorption device development. This review will help readers to have a comprehensive and in-depth understanding of the research field of two-photon absorption of halide perovskites from microscopic mechanisms to applications. The article can serve as a manual and give inspiration for future researchers.
Collapse
Affiliation(s)
- Junsheng Chen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Wei Zhang
- Chemical Physics and NanoLund, Lund University, Box 124, Lund 22100, Sweden.
| | - Tönu Pullerits
- Chemical Physics and NanoLund, Lund University, Box 124, Lund 22100, Sweden.
| |
Collapse
|
22
|
Hickam BP, He M, Harper N, Szoke S, Cushing SK. Single-Photon Scattering Can Account for the Discrepancies among Entangled Two-Photon Measurement Techniques. J Phys Chem Lett 2022; 13:4934-4940. [PMID: 35635002 DOI: 10.1021/acs.jpclett.2c00865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Entangled photon pairs are predicted to linearize and increase the efficiency of two-photon absorption, allowing continuous wave laser diodes to drive ultrafast time-resolved spectroscopy and nonlinear processes. Despite a range of theoretical studies and experimental measurements, inconsistencies in the value of the entanglement-enhanced interaction cross section persist. A spectrometer that can temporally and spectrally characterize the entangled photon state before, during, and after any potential two-photon excitation event is constructed. For the molecule rhodamine 6G, which has a virtual state pathway, any entangled two-photon interaction is found to be equal to or weaker than classical, single-photon scattering events. This result can account for the discrepancies among the wide variety of entangled two-photon absorption cross sections reported from different measurement techniques. The reported instrumentation can unambiguously separate classical and entangled effects and therefore is important for the growing field of nonlinear and multiphoton entangled spectroscopy.
Collapse
Affiliation(s)
- Bryce P Hickam
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Manni He
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Nathan Harper
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Szilard Szoke
- Division of Engineering and Applied Science, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Scott K Cushing
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
23
|
Corona-Aquino S, Calderón-Losada O, Li-Gómez MY, Cruz-Ramirez H, Álvarez-Venicio V, Carreón-Castro MDP, de J León-Montiel R, U'Ren AB. Experimental Study of the Validity of Entangled Two-Photon Absorption Measurements in Organic Compounds. J Phys Chem A 2022; 126:2185-2195. [PMID: 35383460 DOI: 10.1021/acs.jpca.2c00720] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Entangled two-photon absorption (ETPA) has recently become a topic of lively debate, mainly due to the apparent inconsistencies in the experimentally reported ETPA cross sections of organic molecules obtained by a number of groups. In this work, we provide a thorough experimental study of ETPA in the organic molecules Rhodamine B (RhB) and zinc tetraphenylporphirin (ZnTPP). Our contribution is 3-fold: first, we reproduce previous results from other groups; second, we on the one hand determine the effects of different temporal correlations─introduced as a controllable temporal delay between the signal and idler photons to be absorbed─on the strength of the ETPA signal, and on the other hand, we introduce two concurrent and equivalent detection systems with and without the sample in place as a useful experimental check; third, we introduce, and apply to our data, a novel method to quantify the ETPA rate based on taking into account the full photon-pair behavior rather than focusing on singles or coincidence counts independently. Through this experimental setup we find that, surprisingly, the purported ETPA signal is not suppressed for a temporal delay much greater than the characteristic photon-pair temporal correlation time. While our results reproduce the previous findings from other authors, our full analysis indicates that the signal observed is not actually due to ETPA but simply to linear losses. Interestingly, for higher RhB concentrations, we find a two-photon signal that, contrary to expectations, likewise does not correspond to ETPA.
Collapse
Affiliation(s)
- Samuel Corona-Aquino
- Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de México, Apartado Postal 70-543, 04510 Ciudad de México, México
| | - Omar Calderón-Losada
- Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de México, Apartado Postal 70-543, 04510 Ciudad de México, México
| | - Mayte Y Li-Gómez
- Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de México, Apartado Postal 70-543, 04510 Ciudad de México, México
| | - Hector Cruz-Ramirez
- Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de México, Apartado Postal 70-543, 04510 Ciudad de México, México
| | - Violeta Álvarez-Venicio
- Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de México, Apartado Postal 70-543, 04510 Ciudad de México, México
| | - María Del Pilar Carreón-Castro
- Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de México, Apartado Postal 70-543, 04510 Ciudad de México, México
| | - Roberto de J León-Montiel
- Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de México, Apartado Postal 70-543, 04510 Ciudad de México, México
| | - Alfred B U'Ren
- Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de México, Apartado Postal 70-543, 04510 Ciudad de México, México
| |
Collapse
|
24
|
Eshun A, Varnavski O, Villabona-Monsalve JP, Burdick RK, Goodson T. Entangled Photon Spectroscopy. Acc Chem Res 2022; 55:991-1003. [PMID: 35312287 DOI: 10.1021/acs.accounts.1c00687] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The enhanced interest in quantum-related phenomena has provided new opportunities for chemists to push the limits of detection and analysis of chemical processes. As some have called this the second quantum revolution, a time has come to apply the rules learned from previous research in quantum phenomena toward new methods and technologies important to chemists. While there has been great interest recently in quantum information science (QIS), the quest to understand how nonclassical states of light interact with matter has been ongoing for more than two decades. Our entry into this field started around this time with the use of materials to produce nonclassical states of light. Here, the process of multiphoton absorption led to photon-number squeezed states of light, where the photon statistics are sub-Poissonian. In addition to the great interest in generating squeezed states of light, there was also interest in the formation of entangled states of light. While much of the effort is still in foundational physics, there are numerous new avenues as to how quantum entanglement can be applied to spectroscopy, imaging, and sensing. These opportunities could have a large impact on the chemical community for a broad spectrum of applications.In this Account, we discuss the use of entangled (or quantum) light for spectroscopy as well as applications in microscopy and interferometry. The potential benefits of the use of quantum light are discussed in detail. From the first experiments in porphyrin dendrimer systems by Dr. Dong-Ik Lee in our group to the measurements of the entangled two photon absorption cross sections of biological systems such as flavoproteins, the usefulness of entangled light for spectroscopy has been illustrated. These early measurements led the way to more advanced measurements of the unique characteristics of both entangled light and the entangled photon absorption cross-section, which provides new control knobs for manipulating excited states in molecules.The first reports of fluorescence-induced entangled processes were in organic chromophores where the entangled photon cross-section was measured. These results would later have widespread impact in applications such as entangled two-photon microscopy. From our design, construction and implementation of a quantum entangled photon excited microscope, important imaging capabilities were achieved at an unprecedented low excitation intensity of 107 photons/s, which is 6 orders of magnitude lower than the excitation level for the classical two-photon image. New reports have also illustrated an advantage of nonclassical light in Raman imaging as well.From a standpoint of more precise measurements, the use of entangled photons in quantum interferometry may offer new opportunities for chemistry research. Experiments that combine molecular spectroscopy and quantum interferometry, by utilizing the correlations of entangled photons in a Hong-Ou-Mandel (HOM) interferometer, have been carried out. The initial experiment showed that the HOM signal is sensitive to the presence of a resonant organic sample placed in one arm of the interferometer. In addition, parameters such as the dephasing time have been obtained with the opportunity for even more advanced phenomenology in the future.
Collapse
Affiliation(s)
- Audrey Eshun
- Department of Chemistry, University of Michigan, 930 North UniversityAnn Arbor, Michigan 48103, United States
| | - Oleg Varnavski
- Department of Chemistry, University of Michigan, 930 North UniversityAnn Arbor, Michigan 48103, United States
| | - Juan P. Villabona-Monsalve
- Department of Chemistry, University of Michigan, 930 North UniversityAnn Arbor, Michigan 48103, United States
| | - Ryan K. Burdick
- Department of Chemistry, University of Michigan, 930 North UniversityAnn Arbor, Michigan 48103, United States
| | - Theodore Goodson
- Department of Chemistry, University of Michigan, 930 North UniversityAnn Arbor, Michigan 48103, United States
| |
Collapse
|
25
|
Varnavski O, Gunthardt C, Rehman A, Luker GD, Goodson T. Quantum Light-Enhanced Two-Photon Imaging of Breast Cancer Cells. J Phys Chem Lett 2022; 13:2772-2781. [PMID: 35318850 DOI: 10.1021/acs.jpclett.2c00695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Correct biological interpretation from cell imaging can be achieved only if the observed phenomena proceed with negligible perturbation from the imaging system. Herein, we demonstrate microscopic images of breast cancer cells created by the fluorescence selectively excited in the process of entangled two-photon absorption in a scanning microscope at an excitation intensity orders of magnitude lower than that used for classical two-photon microscopy. Quantum enhanced entangled two-photon microscopy has shown cell imaging capabilities at an unprecedented low excitation intensity of ∼3.6 × 107 photons/s, which is a million times lower than the excitation level for the classical two-photon fluorescence image obtained in the same microscope. The extremely low light probe intensity demonstrated in entangled two-photon microscopy is of critical importance to minimize photobleaching during repetitive imaging and damage to cells in live-cell applications. This technology opens new avenues in cell investigations with light microscopy, such as enhanced selectivity and time-frequency resolution.
Collapse
|
26
|
Mikhaylov A, Wilson RN, Parzuchowski KM, Mazurek MD, Camp CH, Stevens MJ, Jimenez R. Hot-Band Absorption Can Mimic Entangled Two-Photon Absorption. J Phys Chem Lett 2022; 13:1489-1493. [PMID: 35129354 DOI: 10.1021/acs.jpclett.1c03751] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It has been proposed that entangled two-photon absorption (E2PA) can be observed with up to 1010 lower photon flux than its classical counterpart, therefore enabling ultralow-power two-photon fluorescence microscopy. However, there is a significant controversy regarding the magnitude of this quantum enhancement in excitation efficiency. We investigated the fluorescence signals from Rhodamine 6G and LDS798 excited with a CW laser or an entangled photon pair source at ∼1060 nm. We observed a signal that originates from hot-band absorption (HBA), which is one-photon absorption from thermally populated vibrational levels of the ground electronic state. This mechanism, which has not been previously discussed in the context of E2PA, produces a signal with a linear power dependence, as would be expected for E2PA. For the typical conditions under which E2PA measurements are performed, contributions from the HBA process could lead to a several orders of magnitude overestimate of the quantum advantage.
Collapse
Affiliation(s)
- Alexander Mikhaylov
- JILA, 440 UCB, University of Colorado, Boulder, Colorado 80309, United States
| | - Ryan N Wilson
- JILA, 440 UCB, University of Colorado, Boulder, Colorado 80309, United States
- Department of Physics, 390 UCB, University of Colorado, Boulder, Colorado 80309, United States
| | - Kristen M Parzuchowski
- JILA, 440 UCB, University of Colorado, Boulder, Colorado 80309, United States
- Department of Physics, 390 UCB, University of Colorado, Boulder, Colorado 80309, United States
| | - Michael D Mazurek
- Department of Physics, 390 UCB, University of Colorado, Boulder, Colorado 80309, United States
- National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, United States
| | - Charles H Camp
- National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, Maryland 20899, United States
| | - Martin J Stevens
- National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, United States
| | - Ralph Jimenez
- JILA, 440 UCB, University of Colorado, Boulder, Colorado 80309, United States
- Department of Chemistry, 215 UCB, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
27
|
Chen F, Mukamel S. Entangled Two-Photon Absorption with Brownian-Oscillator Fluctuations. J Chem Phys 2022; 156:074303. [DOI: 10.1063/5.0082500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Feng Chen
- University of California Irvine Department of Chemistry, United States of America
| | - Shaul Mukamel
- Department of Chemistry, University of California Irvine Department of Chemistry, United States of America
| |
Collapse
|
28
|
Is Heralded Two-Photon Excited Fluorescence with Single Absorbers Possible with Current Technology? PHOTONICS 2022. [DOI: 10.3390/photonics9020052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The interaction between single or a fixed number of photons with a single absorber is of fundamental interest in quantum technology. The harnessing of light matter interactions at the single particle limit has several potential applications ranging from quantum communication and quantum metrology to quantum imaging. In this perspective, a setup for heralded two-photon excited fluorescence at the single absorber level is proposed. The setup is based on a heralded two-photon source utilizing spontaneous parametric down-conversion, entanglement swapping and sum frequency generation for joint detection. This perspective aimed at triggering a discussion about the study of TPA and TPEF with only very few photons. The feasibility of the scheme is assessed by estimating the performance based on state-of-the-art technologies and losses, with the conclusion that the realization appears to be very challenging, but not completely impossible.
Collapse
|
29
|
Gu B, Keefer D, Mukamel S. Wave Packet Control and Simulation Protocol for Entangled Two-Photon Absorption of Molecules. J Chem Theory Comput 2021; 18:406-414. [PMID: 34920666 DOI: 10.1021/acs.jctc.1c00949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quantum light spectroscopy, providing novel molecular information nonaccessible by classical light, necessitates new computational tools when applied to complex molecular systems. We introduce two computational protocols for the molecular nuclear wave packet dynamics interacting with an entangled photon pair to produce an entangled two-photon absorption signal. The first involves summing over transition pathways in a temporal grid defined by two light-matter interaction times accompanied by the field correlation functions of quantum light. The signal is obtained by averaging over the two time distribution characteristics of the entangled photon state. The other protocol involves a Schmidt decomposition of the entangled light and requires summing over the Schmidt modes. We demonstrate how photon entanglement can be used to control and manipulate the two-photon excited nuclear wave packets in a displaced harmonic oscillator model.
Collapse
Affiliation(s)
- Bing Gu
- Department of Chemistry & Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, United States
| | - Daniel Keefer
- Department of Chemistry & Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, United States
| | - Shaul Mukamel
- Department of Chemistry & Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
30
|
Burdick RK, Schatz GC, Goodson T. Enhancing Entangled Two-Photon Absorption for Picosecond Quantum Spectroscopy. J Am Chem Soc 2021; 143:16930-16934. [PMID: 34613733 DOI: 10.1021/jacs.1c09728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Entangled two-photon absorption (ETPA) is known to create photoinduced transitions with extremely low light intensity, reducing the risk of phototoxicity compared to classical two-photon absorption. Previous works have predicted the ETPA cross-section, σe, to vary inversely with the product of entanglement time (Te) and entanglement area (Ae), i.e., σe ∼ 1/AeTe. The decreasing σe with increasing Te has limited ETPA to fs-scale Te, while ETPA applications for ps-scale spectroscopy have been unexplored. However, we show that spectral-spatial coupling, which reduces Ae as the SPDC bandwidth (σf) decreases, plays a significant role in determining σe when Te > ∼100 fs. We experimentally measured σe for zinc tetraphenylporphyrin at several σf values. For type-I ETPA, σe increases as σf decreases down to 0.1 ps-1. For type-II SPDC, σe is constant for a wide range of σf. With a theoretical analysis of the data, the maximum type-I σe would occur at σf = 0.1 ps-1 (Te = 10 ps). At this maximum, σe is 1 order of magnitude larger than fs-scale σe and 3 orders of magnitude larger than previous predictions of ps-scale σe. By utilizing this spectral-spatial coupling, narrowband type-I ETPA provides a new opportunity to increase the efficiency of measuring nonlinear optical signals and to control photochemical reactions requiring ps temporal precision.
Collapse
Affiliation(s)
- Ryan K Burdick
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Theodore Goodson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
31
|
Abstract
Nonlinear optical (NLO) microscopy relies on multiple light-matter interactions to provide unique contrast mechanisms and imaging capabilities that are inaccessible to traditional linear optical imaging approaches, making them versatile tools to understand a wide range of complex systems. However, the strong excitation fields that are necessary to drive higher-order optical processes efficiently are often responsible for photobleaching, photodegradation, and interruption in many systems of interest. This is especially true for imaging living biological samples over prolonged periods of time or in accessing intrinsic dynamics of electronic excited-state processes in spatially heterogeneous materials. This perspective outlines some of the key limitations of two NLO imaging modalities implemented in our lab and highlights the unique potential afforded by the quantum properties of light, especially entangled two-photon absorption based NLO spectroscopy and microscopy. We further review some of the recent exciting advances in this emerging filed and highlight some major challenges facing the realization of quantum-light-enabled NLO imaging modalities.
Collapse
Affiliation(s)
- Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
32
|
Asban S, Mukamel S. Distinguishability and "which pathway" information in multidimensional interferometric spectroscopy with a single entangled photon-pair. SCIENCE ADVANCES 2021; 7:eabj4566. [PMID: 34550740 PMCID: PMC8457662 DOI: 10.1126/sciadv.abj4566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/02/2021] [Indexed: 06/04/2023]
Abstract
Correlated photons inspire abundance of metrology-related platforms, which benefit from quantum (anti-) correlations and outperform their classical counterparts. While these mainly focus on entanglement, the role of photon exchange phase and degree of distinguishability has not been widely used in quantum applications. Using an interferometric setup, we theoretically show that, when a two-photon wave function is coupled to matter, it is encoded with “which pathway?” information even at low-degree of entanglement. An interferometric protocol, which enables phase-sensitive discrimination between microscopic interaction histories (pathways), is developed. We find that quantum light interferometry facilitates utterly different set of time delay variables, which are unbound by uncertainty to the inverse bandwidth of the wave packet. We illustrate our findings on an exciton model system and demonstrate how to probe intraband dephasing in the time domain without temporally resolved detection. The unusual scaling of multiphoton coincidence signals with the applied pump intensity is discussed.
Collapse
|
33
|
Lahiri J, Yuwono SH, Magoulas I, Moemeni M, Borhan B, Blanchard GJ, Piecuch P, Dantus M. Controlling Quantum Interference between Virtual and Dipole Two-Photon Optical Excitation Pathways Using Phase-Shaped Laser Pulses. J Phys Chem A 2021; 125:7534-7544. [PMID: 34415165 DOI: 10.1021/acs.jpca.1c03069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two-photon excitation (TPE) proceeds via a "virtual" pathway, which depends on the accessibility of one or more intermediate states, and, in the case of non-centrosymmetric molecules, an additional "dipole" pathway involving the off-resonance dipole-allowed one-photon transitions and the change in the permanent dipole moment between the initial and final states. Here, we control the quantum interference between these two optical excitation pathways by using phase-shaped femtosecond laser pulses. We find enhancements by a factor of up to 1.75 in the two-photon-excited fluorescence of the photobase FR0-SB in methanol after taking into account the longer pulse duration of the shaped laser pulses. Simulations taking into account the different responses of the virtual and dipole pathways to external fields and the effect of pulse shaping on two-photon transitions are found to be in good agreement with our experimental measurements. The observed quantum control of TPE in the condensed phase may lead to an enhanced signal at a lower intensity in two-photon microscopy, multiphoton-excited photoreagents, and novel spectroscopic techniques that are sensitive to the magnitude of the contributions from the virtual and dipole pathways to multiphoton excitations.
Collapse
Affiliation(s)
- J Lahiri
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - S H Yuwono
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - I Magoulas
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - M Moemeni
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - B Borhan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - G J Blanchard
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - P Piecuch
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.,Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - M Dantus
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.,Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
34
|
Raymer MG, Landes T, Marcus AH. Entangled two-photon absorption by atoms and molecules: A quantum optics tutorial. J Chem Phys 2021; 155:081501. [PMID: 34470351 DOI: 10.1063/5.0049338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two-photon absorption (TPA) and other nonlinear interactions of molecules with time-frequency-entangled photon pairs have been predicted to display a variety of fascinating effects. Therefore, their potential use in practical quantum-enhanced molecular spectroscopy requires close examination. This Tutorial presents a detailed theoretical study of one- and two-photon absorption by molecules, focusing on how to treat the quantum nature of light. We review some basic quantum optics theory and then we review the density-matrix (Liouville) derivation of molecular optical response, emphasizing how to incorporate quantum states of light into the treatment. For illustration, we treat in detail the TPA of photon pairs created by spontaneous parametric down conversion, with an emphasis on how quantum light TPA differs from that with classical light. In particular, we treat the question of how much enhancement of the TPA rate can be achieved using entangled states. This Tutorial includes a review of known theoretical methods and results as well as some extensions, especially the comparison of TPA processes that occur via far-off-resonant intermediate states only and those that involve off-resonant intermediate states by virtue of dephasing processes. A brief discussion of the main challenges facing experimental studies of entangled two-photon absorption is also given.
Collapse
Affiliation(s)
- Michael G Raymer
- Department of Physics, University of Oregon, Eugene, Oregon 97403, USA
| | - Tiemo Landes
- Department of Physics, University of Oregon, Eugene, Oregon 97403, USA
| | - Andrew H Marcus
- Oregon Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
35
|
Lerch S, Stefanov A. Experimental requirements for entangled two-photon spectroscopy. J Chem Phys 2021; 155:064201. [PMID: 34391354 DOI: 10.1063/5.0050657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Coherently controlling the spectral properties of energy-entangled photons is a key component of future entangled two-photon spectroscopy schemes that are expected to provide advantages with respect to classical methods. We present here an experimental setup based on a grating compressor. It allows for the spectral shaping of entangled photons with a sevenfold increase in resolution, compared to previous setups with a prism compressor. We evaluate the performances of the shaper by detecting sum frequency generation in a nonlinear crystal with both classical pulses and entangled photon pairs. The efficiency of both processes is experimentally compared and is in accordance with a simple model relating the classical and entangled two-photon absorption coefficients. Finally, the entangled two-photon shaping capability is demonstrated by implementing an interferometric transfer function.
Collapse
Affiliation(s)
- Stefan Lerch
- Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - André Stefanov
- Institute of Applied Physics, University of Bern, Bern, Switzerland
| |
Collapse
|
36
|
Fujihashi Y, Ishizaki A. Achieving two-dimensional optical spectroscopy with temporal and spectral resolution using quantum entangled three photons. J Chem Phys 2021; 155:044101. [PMID: 34340393 DOI: 10.1063/5.0056808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent advances in techniques for generating quantum light have stimulated research on novel spectroscopic measurements using quantum entangled photons. One such spectroscopy technique utilizes non-classical correlations among entangled photons to enable measurements with enhanced sensitivity and selectivity. Here, we investigate the spectroscopic measurement utilizing entangled three photons. In this measurement, time-resolved entangled photon spectroscopy with monochromatic pumping [A. Ishizaki, J. Chem. Phys. 153, 051102 (2020)] is integrated with the frequency-dispersed two-photon counting technique, which suppresses undesired accidental photon counts in the detector and thus allows one to separate the weak desired signal. This time-resolved frequency-dispersed two-photon counting signal, which is a function of two frequencies, is shown to provide the same information as that of coherent two-dimensional optical spectra. The spectral distribution of the phase-matching function works as a frequency filter to selectively resolve a specific region of the two-dimensional spectra, whereas the excited-state dynamics under investigation are temporally resolved in the time region longer than the entanglement time. The signal is not subject to Fourier limitations on the joint temporal and spectral resolution, and therefore, it is expected to be useful for investigating complex molecular systems in which multiple electronic states are present within a narrow energy range.
Collapse
Affiliation(s)
- Yuta Fujihashi
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
| | - Akihito Ishizaki
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
| |
Collapse
|
37
|
Landes T, Raymer MG, Allgaier M, Merkouche S, Smith BJ, Marcus AH. Quantifying the enhancement of two-photon absorption due to spectral-temporal entanglement. OPTICS EXPRESS 2021; 29:20022-20033. [PMID: 34266101 DOI: 10.1364/oe.422544] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/13/2021] [Indexed: 06/13/2023]
Abstract
When a low flux of time-frequency-entangled photon pairs (EPP) illuminates a two-photon transition, the rate of two-photon absorption (TPA) can be enhanced considerably by the quantum nature of photon number correlations and frequency correlations. We use a quantum-theoretic derivation of entangled TPA (ETPA) and calculate an upper bound on the amount of quantum enhancement that is possible in such systems. The derived bounds indicate that in order to observe ETPA the experiments would need to operate at a combination of significantly higher rates of EPP illumination, molecular concentrations, and conventional TPA cross sections than are achieved in typical experiments.
Collapse
|
38
|
Eshun A, Gu B, Varnavski O, Asban S, Dorfman KE, Mukamel S, Goodson T. Investigations of Molecular Optical Properties Using Quantum Light and Hong-Ou-Mandel Interferometry. J Am Chem Soc 2021; 143:9070-9081. [PMID: 34124903 DOI: 10.1021/jacs.1c02514] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Entangled photon pairs have been used for molecular spectroscopy in the form of entangled two-photon absorption and in quantum interferometry for precise measurements of light source properties and time delays. We present an experiment that combines molecular spectroscopy and quantum interferometry by utilizing the correlations of entangled photons in a Hong-Ou-Mandel (HOM) interferometer to study molecular properties. We find that the HOM signal is sensitive to the presence of a resonant organic sample placed in one arm of the interferometer, and the resulting signal contains information pertaining to the light-matter interaction. We can extract the dephasing time of the coherent response induced by the excitation on a femtosecond time scale. A dephasing time of 102 fs is obtained, which is relatively short compared to times found with similar methods and considering line width broadening and the instrument entanglement time As the measurement is done with coincidence counts as opposed to simply intensity, it is unaffected by even-order dispersion effects, and because interactions with the molecular state affect the photon correlation, the observed measurement contains only these effects and no other classical losses. The experiments are accompanied by theory that predicts the observed temporal shift and captures the entangled photon joint spectral amplitude and the molecule's transmission in the coincidence counting rate. Thus, we present a proof-of-concept experimental method based of entangled photon interferometry that can be used to characterize optical properties in organic molecules and can in the future be expanded on for more complex spectroscopic studies of nonlinear optical properties.
Collapse
Affiliation(s)
- Audrey Eshun
- Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, Michigan 48109, United States
| | - Bing Gu
- Department of Chemistry & Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697, United States
| | - Oleg Varnavski
- Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, Michigan 48109, United States
| | - Shahaf Asban
- Department of Chemistry & Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697, United States
| | - Konstantin E Dorfman
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Shaul Mukamel
- Department of Chemistry & Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697, United States
| | - Theodore Goodson
- Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, Michigan 48109, United States
| |
Collapse
|
39
|
Carnio EG, Buchleitner A, Schlawin F. Optimization of selective two-photon absorption in cavity polaritons. J Chem Phys 2021; 154:214114. [PMID: 34240974 DOI: 10.1063/5.0049863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We investigate optimal states of photon pairs to excite a target transition in a multilevel quantum system. With the help of coherent control theory for two-photon absorption with quantum light, we infer the maximal population achievable by optimal entangled vs separable states of light. Interference between excitation pathways as well as the presence of nearby states may hamper the selective excitation of a particular target state, but we show that quantum correlations can help to overcome this problem and enhance the achievable "selectivity" between two energy levels, i.e., the relative difference in population transferred into each of them. We find that the added value of optimal entangled states of light increases with broadening linewidths of the target states.
Collapse
Affiliation(s)
- Edoardo G Carnio
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany
| | - Andreas Buchleitner
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany
| | - Frank Schlawin
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| |
Collapse
|
40
|
Lum DJ, Mazurek MD, Mikhaylov A, Parzuchowski KM, Wilson RN, Jimenez R, Gerrits T, Stevens MJ, Cicerone MT, Camp CH. Witnessing the survival of time-energy entanglement through biological tissue and scattering media. BIOMEDICAL OPTICS EXPRESS 2021; 12:3658-3670. [PMID: 34221686 PMCID: PMC8221931 DOI: 10.1364/boe.423743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
We demonstrate the preservation of the time-energy entanglement of near-IR photons through thick biological media (≤1.55 mm) and tissue (≤ 235 μm) at room temperature. Using a Franson-type interferometer, we demonstrate interferometric contrast of over 0.9 in skim milk, 2% milk, and chicken tissue. This work supports the many proposed opportunities for nonclassical light in biological imaging and analyses from sub-shot noise measurements to entanglement-enhanced fluorescence imaging, clearly indicating that the entanglement characteristics of photons can be maintained even after propagation through thick, turbid biological samples.
Collapse
Affiliation(s)
- Daniel J. Lum
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Michael D. Mazurek
- Department of Physics, University of Colorado, Boulder CO 80309, USA
- National Institute of Standards and Technology, Boulder, CO 80305, USA
| | | | - Kristen M. Parzuchowski
- Department of Physics, University of Colorado, Boulder CO 80309, USA
- JILA, 440 UCB, University of Colorado, Boulder, CO 80309, USA
| | - Ryan N. Wilson
- Department of Physics, University of Colorado, Boulder CO 80309, USA
- JILA, 440 UCB, University of Colorado, Boulder, CO 80309, USA
| | - Ralph Jimenez
- JILA, 440 UCB, University of Colorado, Boulder, CO 80309, USA
- Department of Chemistry, 215 UCB, University of Colorado, Boulder, CO 80309, USA
| | - Thomas Gerrits
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Martin J. Stevens
- National Institute of Standards and Technology, Boulder, CO 80305, USA
| | - Marcus T. Cicerone
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Charles H. Camp
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
41
|
Mosquera MA, Jones LO, Kang G, Ratner MA, Schatz GC. Second Linear Response Theory and the Analytic Calculation of Excited-State Properties. J Phys Chem A 2021; 125:1093-1102. [PMID: 33497573 DOI: 10.1021/acs.jpca.0c10152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a method based on second linear response time-dependent density functional theory (TDDFT) to calculate permanent and transition multipoles of excited states, which are required to compute excited-state absorption/emission spectra and multiphoton optical processes, among others. In previous work, we examined computations based on second linear response theory in which linear response TDDFT was employed twice. In contrast, the present methodology requires information from only a single linear response calculation to compute the excited-state properties. These are evaluated analytically through various algebraic operations involving electron repulsion integrals and excitation vectors. The present derivation focuses on full many-body wave functions instead of single orbitals, as in our previous approach. We test the proposed method by applying it to several diatomic and triatomic molecules. This shows that the computed excited-state dipoles are consistent with respect to reference equation-of-motion coupled-cluster calculations.
Collapse
Affiliation(s)
- Martín A Mosquera
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Leighton O Jones
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Gyeongwon Kang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Mark A Ratner
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
42
|
Gu B, Mukamel S. Manipulating Two-Photon-Absorption of Cavity Polaritons by Entangled Light. J Phys Chem Lett 2020; 11:8177-8182. [PMID: 32877607 DOI: 10.1021/acs.jpclett.0c02282] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We demonstrate that two-photon excitations to bipolariton states created by placing several molecules in an optical cavity can be manipulated by quantum light. Entangled photons can access classically dark bipolariton states by modifying the quantum interferences of two-photon transition pathways involving different single-polariton intermediate states and time-ordering of the two photon beams.
Collapse
Affiliation(s)
- Bing Gu
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Shaul Mukamel
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| |
Collapse
|
43
|
Wasielewski MR, Forbes MDE, Frank NL, Kowalski K, Scholes GD, Yuen-Zhou J, Baldo MA, Freedman DE, Goldsmith RH, Goodson T, Kirk ML, McCusker JK, Ogilvie JP, Shultz DA, Stoll S, Whaley KB. Exploiting chemistry and molecular systems for quantum information science. Nat Rev Chem 2020; 4:490-504. [PMID: 37127960 DOI: 10.1038/s41570-020-0200-5] [Citation(s) in RCA: 242] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2020] [Indexed: 12/21/2022]
Abstract
The power of chemistry to prepare new molecules and materials has driven the quest for new approaches to solve problems having global societal impact, such as in renewable energy, healthcare and information science. In the latter case, the intrinsic quantum nature of the electronic, nuclear and spin degrees of freedom in molecules offers intriguing new possibilities to advance the emerging field of quantum information science. In this Perspective, which resulted from discussions by the co-authors at a US Department of Energy workshop held in November 2018, we discuss how chemical systems and reactions can impact quantum computing, communication and sensing. Hierarchical molecular design and synthesis, from small molecules to supramolecular assemblies, combined with new spectroscopic probes of quantum coherence and theoretical modelling of complex systems, offer a broad range of possibilities to realize practical quantum information science applications.
Collapse
Affiliation(s)
| | - Malcolm D E Forbes
- Department of Chemistry, Bowling Green State University, Bowling Green, OH, USA
| | - Natia L Frank
- Department of Chemistry, University of Nevada-Reno, Reno, Nevada, USA
| | - Karol Kowalski
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Joel Yuen-Zhou
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Marc A Baldo
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Danna E Freedman
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | | | - Theodore Goodson
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Martin L Kirk
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, USA
| | - James K McCusker
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | | | - David A Shultz
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - K Birgitta Whaley
- Department of Chemistry, University of California, Berkeley, CA, USA
| |
Collapse
|
44
|
Ishizaki A. Probing excited-state dynamics with quantum entangled photons: Correspondence to coherent multidimensional spectroscopy. J Chem Phys 2020; 153:051102. [DOI: 10.1063/5.0015432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Akihito Ishizaki
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan and School of Physical Sciences, Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| |
Collapse
|
45
|
Varnavski O, Goodson T. Two-Photon Fluorescence Microscopy at Extremely Low Excitation Intensity: The Power of Quantum Correlations. J Am Chem Soc 2020; 142:12966-12975. [PMID: 32644814 DOI: 10.1021/jacs.0c01153] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Quantum entanglement has been shown to imply correlations stronger than those allowed by classical models. The possibility of performing tasks that are classically impossible has made quantum entanglement a powerful resource for the development of novel methods and applications in various fields of research such as quantum computing, quantum cryptography, and quantum metrology. There is a great need for the development of next generation instrumentation and technologies utilizing entangled quantum light. Among the many applications of nonclassical states of light, nonlinear microscopy has the potential to make an impact in broad areas of science from physics to biology. Here, the microscopic image created by the fluorescence selectively excited by the process of the entangled two-photon absorption is reported. Entangled two-photon microscopy offers nonlinear imaging capabilities at an unprecedented low excitation intensity 107, which is 6 orders of magnitude lower than the excitation level for the classical two-photon image. The nonmonotonic dependence of the image on the femtosecond delay between the components of the entangled photon pair is demonstrated. This delay dependence is a result of specific quantum interference effects associated with the entanglement and this is not observable with classical excitation light. In combination with novel spectroscopic capabilities provided by a nonclassical light excitation, this is of critical importance for sensing and biological applications.
Collapse
|
46
|
Kang G, Nasiri Avanaki K, Mosquera MA, Burdick RK, Villabona-Monsalve JP, Goodson T, Schatz GC. Efficient Modeling of Organic Chromophores for Entangled Two-Photon Absorption. J Am Chem Soc 2020; 142:10446-10458. [DOI: 10.1021/jacs.0c02808] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gyeongwon Kang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Kobra Nasiri Avanaki
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Martín A. Mosquera
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Ryan K. Burdick
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Theodore Goodson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - George C. Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
47
|
Bittner ER, Li H, Piryatinski A, Srimath Kandada AR, Silva C. Probing exciton/exciton interactions with entangled photons: Theory. J Chem Phys 2020; 152:071101. [DOI: 10.1063/1.5139197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Eric R. Bittner
- Department of Chemistry and Department of Physics, University of Houston, Houston, Texas 77204, USA and Department of Physics, Durham University, Durham, United Kingdom
| | - Hao Li
- Department of Chemistry, University of Houston, Houston, Texas 77204, USA
| | - Andrei Piryatinski
- Theoretical Division, Los Alamos National Lab, Los Alamos, New Mexico 87545, USA
| | - Ajay Ram Srimath Kandada
- School of Chemistry & Biochemistry and School of Physics, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, USA
- Center for Nano Science and Technology @Polimi, Istituto Italiano di Tecnologia, via Giovanni Pascoli 70/3, 20133 Milano, Italy
| | - Carlos Silva
- School of Chemistry & Biochemistry and School of Physics, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, USA
| |
Collapse
|
48
|
Oka H. Entangled two-photon absorption spectroscopy for optically forbidden transition detection. J Chem Phys 2020; 152:044106. [DOI: 10.1063/1.5138691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hisaki Oka
- Niigata University, 8050, Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2102, Japan
| |
Collapse
|
49
|
Burdick RK, Villabona-Monsalve JP, Mashour GA, Goodson T. Modern Anesthetic Ethers Demonstrate Quantum Interactions with Entangled Photons. Sci Rep 2019; 9:11351. [PMID: 31383882 PMCID: PMC6683176 DOI: 10.1038/s41598-019-47651-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/08/2019] [Indexed: 11/09/2022] Open
Abstract
Despite decades of research, the mechanism of anesthetic-induced unconsciousness remains incompletely understood, with some advocating for a quantum mechanical basis. Despite associations between general anesthesia and changes in physical properties such as electron spin, there has been no empirical demonstration that general anesthetics are capable of functional quantum interactions. In this work, we studied the linear and non-linear optical properties of the halogenated ethers sevoflurane (SEVO) and isoflurane (ISO), using UV-Vis spectroscopy, time dependent-density functional theory (TD-DFT) calculations, classical two-photon spectroscopy, and entangled two-photon spectroscopy. We show that both of these halogenated ethers interact with pairs of 800 nm entangled photons while neither interact with 800 nm classical photons. By contrast, nonhalogenated diethyl ether does not interact with entangled photons. This is the first experimental evidence that halogenated anesthetics can directly undergo quantum interaction mechanisms, offering a new approach to understanding their physicochemical properties.
Collapse
Affiliation(s)
- Ryan K Burdick
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - George A Mashour
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, 48109-5048, USA.
| | - Theodore Goodson
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
50
|
León-Montiel RDJ, Svozilík J, Torres JP, U'Ren AB. Temperature-Controlled Entangled-Photon Absorption Spectroscopy. PHYSICAL REVIEW LETTERS 2019; 123:023601. [PMID: 31386532 DOI: 10.1103/physrevlett.123.023601] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Indexed: 06/10/2023]
Abstract
Entangled two-photon absorption spectroscopy (TPA) has been widely recognized as a powerful tool for revealing relevant information about the structure of complex molecular systems. However, to date, the experimental implementation of this technique has remained elusive, mainly because of two major difficulties: first, the need to perform multiple experiments with two-photon states bearing different temporal correlations, which translates into the necessity to have at the experimenter's disposal tens, if not hundreds, of sources of entangled photons; second, the need to have a priori knowledge of the absorbing medium's lowest-lying intermediate energy level. In this work, we put forward a simple experimental scheme that successfully overcomes these two limitations. By making use of a temperature-controlled entangled-photon source, which allows the tuning of the central frequencies of the absorbed photons, we show that the TPA signal, measured as a function of the temperature of the nonlinear crystal that generates the paired photons, and a controllable delay between them, carries all information about the electronic level structure of the absorbing medium, which can be revealed by a simple Fourier transformation.
Collapse
Affiliation(s)
- Roberto de J León-Montiel
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 Cd. Mx., México
| | - Jiří Svozilík
- Yachay Tech University, School of Physical Sciences & Nanotechnology, 100119, Urcuquí, Ecuador
- Joint Laboratory of Optics of Palacký University and Institute of Physics of CAS, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Juan P Torres
- ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain
- Department of Signal Theory and Communications, Campus Nord D3, Universitat Politecnica de Catalunya, 08034 Barcelona, Spain
| | - Alfred B U'Ren
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 Cd. Mx., México
| |
Collapse
|