1
|
Guen YL, Delecourt G, Gall TL, Du H, Illy N, Huin C, Bennevault V, Midoux P, Montier T, Guégan P. Neutral Block Copolymer Assisted Gene Delivery using Hydrodynamic Limb Vein Injection. Macromol Biosci 2024; 24:e2300568. [PMID: 38512438 DOI: 10.1002/mabi.202300568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Three different amphiphilic block copolymer families are synthesized to investigate new opportunities to enhance gene delivery via Hydrodynamic Limb Vein (HLV) injections. First a polyoxazoline-based family containing mostly one poly(2-methyl-2-oxazoline) (PMeOx) block and a second block POx with an ethyl (EtOx), isopropyl (iPrOx) or phenyl substituent (PhOx) is synthesized. Then an ABC poly(2-ethyl-2-oxazoline)-b-poly(2-n-propyl-2-oxazoline)-b-poly(2-methyl-2-oxazoline) triblock copolymer is synthesized, with a thermosensitive middle block. Finally, polyglycidol-b-polybutylenoxide-b-polyglycidol copolymers with various molar masses and amphiphilic balance are produced. The simple architecture of neutral amphiphilic triblock copolymer is not sufficient to obtain enhanced in vivo gene transfection. Double or triple amphiphilic neutral block copolymers are improving the in vivo transfection performances through HLV administration as far as a block having an lower critical solution temperature is incorporated in the vector. The molar mass of the copolymer does not seem to affect the vector performances in a significant manner.
Collapse
Affiliation(s)
- Yann Le Guen
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA Team, Brest, F-29200, France
- CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, Brest, 29200, France
| | - Gwendoline Delecourt
- Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, Sorbonne University, UMR 8232 CNRS, Paris, 75005, France
| | - Tony Le Gall
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA Team, Brest, F-29200, France
| | - Haiqin Du
- Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, Sorbonne University, UMR 8232 CNRS, Paris, 75005, France
| | - Nicolas Illy
- Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, Sorbonne University, UMR 8232 CNRS, Paris, 75005, France
| | - Cécile Huin
- Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, Sorbonne University, UMR 8232 CNRS, Paris, 75005, France
- University of Evry, Essonne, Evry, 91000, France
| | - Véronique Bennevault
- Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, Sorbonne University, UMR 8232 CNRS, Paris, 75005, France
- University of Evry, Essonne, Evry, 91000, France
| | - Patrick Midoux
- Centre de Biophysique Moléculaire, CNRS UPR4301, Orléans, 45100, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA Team, Brest, F-29200, France
- CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, Brest, 29200, France
| | - Philippe Guégan
- Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, Sorbonne University, UMR 8232 CNRS, Paris, 75005, France
| |
Collapse
|
2
|
The in vivo fate of polymeric micelles. Adv Drug Deliv Rev 2022; 188:114463. [PMID: 35905947 DOI: 10.1016/j.addr.2022.114463] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/10/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022]
Abstract
This review aims to provide a systemic analysis of the in vivo, as well as subcellular, fate of polymeric micelles (PMs), starting from the entry of PMs into the body. Few PMs are able to cross the biological barriers intact and reach the circulation. In the blood, PMs demonstrate fairly good stability mainly owing to formation of protein corona despite controversial results reported by different groups. Although the exterior hydrophilic shells render PMs "long-circulating", the biodistribution of PMs into the mononuclear phagocyte systems (MPS) is dominant as compared with non-MPS organs and tissues. Evidence emerges to support that the copolymer poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) is first broken down into pieces of PEG and PLA and then remnants to be eliminated from the body finally. At the cellular level, PMs tend to be internalized via endocytosis due to their particulate nature and disassembled and degraded within the cell. Recent findings on the effect of particle size, surface characteristics and shape are also reviewed. It is envisaged that unraveling the in vivo and subcellular fate sheds light on the performing mechanisms and gears up the clinical translation of PMs.
Collapse
|
3
|
Calori IR, Pinheiro L, Braga G, de Morais FAP, Caetano W, Tedesco AC, Hioka N. Interaction of triblock copolymers (Pluronic®) with DMPC vesicles: a photophysical and computational study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121178. [PMID: 35366523 DOI: 10.1016/j.saa.2022.121178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Pluronic/lipid mix promises stealth liposomes with long circulation time and long-term stability for pharmaceutical applications. However, the influence of Pluronics on several aspects of lipid membranes has not been fully elucidated. Herein it was described the effect of Pluronics on the structured water, alkyl chain conformation, and kinetic stability of dimyristoylphosphatidylcholine (DMPC) liposomes using interfacial and deeper fluorescent probes along with computational molecular modeling data. Interfacial water changed as a function of Pluronics' hydrophobicity with polypropylene oxide (PPO) anchoring the copolymers in the lipid bilayer. Pluronics with more than 30-40 PO units had facilitated penetration at the bilayer while shorter PPO favored a more interfacial interaction. Low Pluronic concentrations provided long-term stability of vesicles by steric effects of polyethylene oxide (PEO), but high amounts destabilized the vesicles as a sum of water-bridge cleavage at the polar head group and the reduced alkyl-alkyl interactions among the lipids. The high kinetic stability of Pluronic/DMPC vesicles is a proof-of-concept of its advantages and applicability in nanotechnology over conventional liposome-based pharmaceutical products for future biomedical applications.
Collapse
Affiliation(s)
- Italo Rodrigo Calori
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Lukas Pinheiro
- Department of Chemistry, Research Nucleus of Photodynamic Therapy, State University of Maringá, Av. Colombo 5790, Maringá, Paraná 97020-900, Brazil
| | - Gustavo Braga
- Department of Chemistry, Research Nucleus of Photodynamic Therapy, State University of Maringá, Av. Colombo 5790, Maringá, Paraná 97020-900, Brazil
| | - Flávia Amanda Pedroso de Morais
- Department of Chemistry, Research Nucleus of Photodynamic Therapy, State University of Maringá, Av. Colombo 5790, Maringá, Paraná 97020-900, Brazil
| | - Wilker Caetano
- Department of Chemistry, Research Nucleus of Photodynamic Therapy, State University of Maringá, Av. Colombo 5790, Maringá, Paraná 97020-900, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil.
| | - Noboru Hioka
- Department of Chemistry, Research Nucleus of Photodynamic Therapy, State University of Maringá, Av. Colombo 5790, Maringá, Paraná 97020-900, Brazil
| |
Collapse
|
4
|
Rasolonjatovo B, Illy N, Bennevault V, Mathé J, Midoux P, Le Gall T, Haudebourg T, Montier T, Lehn P, Pitard B, Cheradame H, Huin C, Guégan P. Temperature‐Sensitive Amphiphilic Non‐Ionic Triblock Copolymers for Enhanced In Vivo Skeletal Muscle Transfection. Macromol Biosci 2020; 20:e1900276. [DOI: 10.1002/mabi.201900276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/30/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Bazoly Rasolonjatovo
- LAMBE, CNRS, Université Evry, CEAUniversité Paris–Saclay 91025 Evry France
- LAMBE, UCPUniversité Paris–Seine 91025 Evry France
| | - Nicolas Illy
- Equipe Chimie des Polymères, Institut Parisien de Chimie Moléculaire, CNRS, Sorbonne Université 4 Place Jussieu 75005 Paris France
| | - Véronique Bennevault
- Equipe Chimie des Polymères, Institut Parisien de Chimie Moléculaire, CNRS, Sorbonne Université 4 Place Jussieu 75005 Paris France
- Université Evry 91025 Evry France
| | - Jérôme Mathé
- LAMBE, CNRS, Université Evry, CEAUniversité Paris–Saclay 91025 Evry France
- LAMBE, UCPUniversité Paris–Seine 91025 Evry France
| | - Patrick Midoux
- Centre de Biophysique MoléculaireCNRS UPR4301 45071 Orléans Cedex 02 France
| | - Tony Le Gall
- Groupe – Transfert de Gènes et Thérapie Génique, UMR 1078 – Génétique, Génomique Fonctionnelle et BiotechnologiesUniversité de Brest, INSERM, CHU de Brest 22 Avenue Camille Desmoulins 29238 Brest Cedex France
| | - Thomas Haudebourg
- CRCINA, INSERMUniversity of Angers, University of Nantes 49000 and 44000 Nantes France
| | - Tristan Montier
- Groupe – Transfert de Gènes et Thérapie Génique, UMR 1078 – Génétique, Génomique Fonctionnelle et BiotechnologiesUniversité de Brest, INSERM, CHU de Brest 22 Avenue Camille Desmoulins 29238 Brest Cedex France
| | - Pierre Lehn
- Groupe – Transfert de Gènes et Thérapie Génique, UMR 1078 – Génétique, Génomique Fonctionnelle et BiotechnologiesUniversité de Brest, INSERM, CHU de Brest 22 Avenue Camille Desmoulins 29238 Brest Cedex France
| | - Bruno Pitard
- CRCINA, INSERMUniversity of Angers, University of Nantes 49000 and 44000 Nantes France
| | - Herve Cheradame
- LAMBE, CNRS, Université Evry, CEAUniversité Paris–Saclay 91025 Evry France
- LAMBE, UCPUniversité Paris–Seine 91025 Evry France
| | - Cécile Huin
- Equipe Chimie des Polymères, Institut Parisien de Chimie Moléculaire, CNRS, Sorbonne Université 4 Place Jussieu 75005 Paris France
- Université Evry 91025 Evry France
| | - Philippe Guégan
- Equipe Chimie des Polymères, Institut Parisien de Chimie Moléculaire, CNRS, Sorbonne Université 4 Place Jussieu 75005 Paris France
| |
Collapse
|
5
|
Cambón A, Villar-Alvarez E, Alatorre-Meda M, Pardo A, Hiram B, Barbosa S, Taboada P, Mosquera V. Characterization of the complexation phenomenon and biological activity in vitro of polyplexes based on Tetronic T901 and DNA. J Colloid Interface Sci 2018; 519:58-70. [PMID: 29482097 DOI: 10.1016/j.jcis.2018.02.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 12/31/2022]
Abstract
The complexation process and underlying mechanisms that rule the interaction of DNA with the cationic block copolymer Tetronic T901 to form polyplexes and their potential transfection efficiency have been studied under different solution conditions. We noted that T901 favors the formation of self-assembled structures with partially condensed DNA at smaller polymer concentrations than other Pluronic™/Tetronic™-type copolymers previously analysed. The observed polyplexes display sizes from the nano- to the micro- range as derived from DLS, electronic and optical microscopies. Also, copolymer micelles are observed at concentrations below the copolymer critical micellar concentration (cmc) induced by the presence of DNA. The complexation process is dependent on solution conditions, with electrostatic and ionic interactions being more important at acidic pH thanks to the predominant diprotonated form of the block copolymer which is less aggregation-prone, whilst dispersive forces are increasingly enhanced under basic conditions or when rising the solution temperature. Whatever the case, the complexation is mainly governed by entropic contributions, as denoted from ITC data. In vitro transfection experiments after complexing T901 with a pDNA encoding the expression of green fluorescein protein, GFP, show a relative successful fluorescence of transfected HeLa cells, which confirms the uptake, internalization and release of the genetic material within the cells at suitable [N]/[P] ratios with relatively low cytotoxicity. Despite the observed successful outcomes, the obtained transfection efficacies are slightly lower than those obtained with Lipofectamine2000, so further optimization of the polyplex formation conditions is envisaged in future studies.
Collapse
Affiliation(s)
- Adriana Cambón
- Colloids and Polymers Physics Group, Department of Particle Physics, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Eva Villar-Alvarez
- Colloids and Polymers Physics Group, Department of Particle Physics, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Manuel Alatorre-Meda
- CONACyT-Instituto Tecnológico de Tijuana, Centro de Graduados e Investigación en Química, Blvd. Alberto Limón Padilla S/N, 22510 Tijuana, B.C., Mexico
| | - Alberto Pardo
- Colloids and Polymers Physics Group, Department of Particle Physics, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Baltazar Hiram
- Colloids and Polymers Physics Group, Department of Particle Physics, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Departamento de Física, Universidad de Sonora, Rosales y Transversal, 83000 Hermosillo, Sonora, Mexico
| | - Silvia Barbosa
- Colloids and Polymers Physics Group, Department of Particle Physics, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Pablo Taboada
- Colloids and Polymers Physics Group, Department of Particle Physics, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Víctor Mosquera
- Colloids and Polymers Physics Group, Department of Particle Physics, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| |
Collapse
|
6
|
Effect of three pluronic polymers on the transport of an organic cation across a POPG bilayer studied by Second Harmonic spectroscopy. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Kim M, Haman KJ, Houang EM, Zhang W, Yannopoulos D, Metzger JM, Bates FS, Hackel BJ. PEO-PPO Diblock Copolymers Protect Myoblasts from Hypo-Osmotic Stress In Vitro Dependent on Copolymer Size, Composition, and Architecture. Biomacromolecules 2017; 18:2090-2101. [PMID: 28535058 DOI: 10.1021/acs.biomac.7b00419] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Poloxamer 188, a triblock copolymer of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), protects cellular membranes from various stresses. Though numerous block copolymer variants exist, evaluation of alternative architecture, composition, and size has been minimal. Herein, cultured murine myoblasts are exposed to the stresses of hypotonic shock and isotonic recovery, and membrane integrity was evaluated by quantifying release of lactate dehydrogenase. Comparative evaluation of a systematic set of PEO-PPO diblock and PEO-PPO-PEO triblock copolymers demonstrates that the diblock architecture can be protective in vitro. Short PPO blocks hinder protection with >9 PPO units needed for protection at 150 μM and >16 units needed at 14 μM. Addition of a tert-butyl end group enhances protection at reduced concentration. When the end group and PPO length are fixed, increasing the PEO length improves protection. This systematic evaluation establishes a new in vitro screening tool for evaluating membrane-sealing amphiphiles and provides mechanistic insight to guide future copolymer design for membrane stabilization in vivo.
Collapse
Affiliation(s)
- Mihee Kim
- Department of Chemical Engineering and Materials Science, ‡Department of Integrative Biology and Physiology, and §Department of Medicine, Cardiovascular Division, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Karen J Haman
- Department of Chemical Engineering and Materials Science, ‡Department of Integrative Biology and Physiology, and §Department of Medicine, Cardiovascular Division, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Evelyne M Houang
- Department of Chemical Engineering and Materials Science, ‡Department of Integrative Biology and Physiology, and §Department of Medicine, Cardiovascular Division, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Wenjia Zhang
- Department of Chemical Engineering and Materials Science, ‡Department of Integrative Biology and Physiology, and §Department of Medicine, Cardiovascular Division, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Demetris Yannopoulos
- Department of Chemical Engineering and Materials Science, ‡Department of Integrative Biology and Physiology, and §Department of Medicine, Cardiovascular Division, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Joseph M Metzger
- Department of Chemical Engineering and Materials Science, ‡Department of Integrative Biology and Physiology, and §Department of Medicine, Cardiovascular Division, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, ‡Department of Integrative Biology and Physiology, and §Department of Medicine, Cardiovascular Division, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, ‡Department of Integrative Biology and Physiology, and §Department of Medicine, Cardiovascular Division, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Oh KS, Kim K, Yoon BD, Lee HJ, Park DY, Kim EY, Lee K, Seo JH, Yuk SH. Docetaxel-loaded multilayer nanoparticles with nanodroplets for cancer therapy. Int J Nanomedicine 2016; 11:1077-87. [PMID: 27042062 PMCID: PMC4801198 DOI: 10.2147/ijn.s100170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A mixture of docetaxel (DTX) and Solutol® HS 15 (Solutol) transiently formed nanodroplets when it was suspended in an aqueous medium. However, nanodroplets that comprised DTX and Solutol showed a rapid precipitation of DTX because of their unstable characteristics in the aqueous medium. The incorporation of nanodroplets that comprised DTX and Solutol through vesicle fusion and subsequent stabilization was designed to prepare multilayer nanoparticles (NPs) with a DTX-loaded Solutol nanodroplet (as template NPs) core for an efficient delivery of DTX as a chemotherapeutic drug. As a result, the DTX-loaded Solutol nanodroplets (~11.7 nm) were observed to have an increased average diameter (from 11.7 nm to 156.1 nm) and a good stability of the hydrated NPs without precipitation of DTX by vesicle fusion and multilayered structure, respectively. Also, a long circulation of the multilayer NPs was observed, and this was due to the presence of Pluronic F-68 on the surface of the multilayer NPs. This led to an improved antitumor efficacy based on the enhanced permeation and retention effect. Therefore, this study indicated that the multilayer NPs have a considerable potential as a drug delivery system with an enhanced therapeutic efficacy by blood circulation and with low side effects.
Collapse
Affiliation(s)
- Keun Sang Oh
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Kyungim Kim
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Byeong Deok Yoon
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Hye Jin Lee
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Dal Yong Park
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Eun-Yeong Kim
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Kiho Lee
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Jae Hong Seo
- Biomedical Research Center, Korea University Guro Hospital, Guro-gu, Seoul, Republic of Korea
| | - Soon Hong Yuk
- College of Pharmacy, Korea University, Sejong, Republic of Korea; Biomedical Research Center, Korea University Guro Hospital, Guro-gu, Seoul, Republic of Korea
| |
Collapse
|
9
|
Oberoi HS, Yorgensen YM, Morasse A, Evans JT, Burkhart DJ. PEG modified liposomes containing CRX-601 adjuvant in combination with methylglycol chitosan enhance the murine sublingual immune response to influenza vaccination. J Control Release 2015; 223:64-74. [PMID: 26551346 DOI: 10.1016/j.jconrel.2015.11.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/05/2015] [Indexed: 02/05/2023]
Abstract
The mucosa is the primary point of entry for pathogens making it an important vaccination site to produce a protective mucosal immune response. While the sublingual (SL) mucosa presents several barriers to vaccine penetration, its unique anatomy and physiology makes it one of the best options for mucosal vaccination. Efficient and directed delivery of adjuvants and antigens to appropriate immune mediators in the SL tissue will aid in development of effective SL vaccines against infectious diseases. Herein we demonstrate a robust immune response against influenza antigens co-delivered sublingually with engineered liposomes carrying the synthetic Toll-like receptor-4 agonist, CRX-601. Liposome modification with PEG copolymers (Pluronics), phospholipid-PEG conjugates and chitosan were evaluated for their ability to generate an immune response in a SL murine influenza vaccine model. Phospholipid-PEG conjugates were more effective than Pluronic copolymers in generating stable, surface neutral liposomes. SL vaccination with surface modified liposomes carrying CRX-601 adjuvant generated significant improvements in flu-specific responses compared with unmodified liposomes. Furthermore, the coating of modified liposomes with methylglycol chitosan produced the most effective flu-specific immune response. These results demonstrate efficient SL vaccine delivery utilizing a combination of a muco-adhesive and surface neutral liposomes to achieve a robust mucosal and systemic immune response.
Collapse
Affiliation(s)
| | | | - Audrey Morasse
- GSK Vaccines, 525 Boulevard Cartier, Laval, QC H7V 3S8, Canada
| | - Jay T Evans
- GSK Vaccines, 553 Old Corvallis Road, Hamilton, MT 59840, USA
| | | |
Collapse
|
10
|
Chen J, Luo J, Zhao Y, Pu L, Lu X, Gao R, Wang G, Gu Z. Increase in transgene expression by pluronic L64-mediated endosomal/lysosomal escape through its membrane-disturbing action. ACS APPLIED MATERIALS & INTERFACES 2015; 7:7282-7293. [PMID: 25786540 DOI: 10.1021/acsami.5b00486] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
For efficient transgene delivery and expression, internalized nucleic acids should quickly escape from cellular endosomes and lysosomes to avoid enzymatic destruction and degradation. Here, we report a novel strategy for safe and efficient endosomal/lysosomal escape of transgenes mediated by Pluronic L64, a neutral amphiphilic triblock copolymer. L64 enhanced the permeability of biomembranes by structural disturbance and pore formation in a concentration- and time-dependent manner. When applied at optimal concentration, it rapidly reached the endosome/lysosome compartments, where it facilitated escape of the transfection complex from the compartments and dissociation of the complex. Therefore, when applied properly, L64 not only significantly increased polyethylenimine- and liposome-mediated transgene expression, but also decreased the cytotoxicity occasioned by transfection process. Our studies revealed the function and mechanism of neutral amphiphilic triblock copolymer as potent mediator for safe and efficient gene delivery.
Collapse
Affiliation(s)
- Jianlin Chen
- †Key Laboratory for Bio-Resource and Eco-Environment of Ministry Education, Key Laboratory for Animal Disease Prevention and Food Safety of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610064, China
- ‡National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jing Luo
- †Key Laboratory for Bio-Resource and Eco-Environment of Ministry Education, Key Laboratory for Animal Disease Prevention and Food Safety of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610064, China
- ‡National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| | - Ying Zhao
- §College of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Linyu Pu
- ‡National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xuejing Lu
- §College of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Rong Gao
- †Key Laboratory for Bio-Resource and Eco-Environment of Ministry Education, Key Laboratory for Animal Disease Prevention and Food Safety of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610064, China
| | - Gang Wang
- ‡National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| | - Zhongwei Gu
- ‡National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
11
|
Abstract
![]()
Multidrug
resistance (MDR) remains one of the biggest obstacles
for effective cancer therapy. Currently there are only few methods
that are available clinically that are used to bypass MDR with very
limited success. In this review we describe how MDR can be overcome
by a simple yet effective approach of using amphiphilic block copolymers.
Triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene
oxide) (PPO), arranged in a triblock structure PEO-PPO-PEO, Pluronics
or “poloxamers”, raised a considerable interest in the
drug delivery field. Previous studies demonstrated that Pluronics
sensitize MDR cancer cells resulting in increased cytotoxic activity
of Dox, paclitaxel, and other drugs by 2–3 orders of magnitude.
Pluronics can also prevent the development of MDR in vitro and in vivo. Additionally, promising results of
clinical studies of Dox/Pluronic formulation reinforced the need to
ascertain a thorough understanding of Pluronic effects in tumors.
These effects are extremely comprehensive and appear on the level
of plasma membranes, mitochondria, and regulation of gene expression
selectively in MDR cancer cells. Moreover, it has been demonstrated
recently that Pluronics can effectively deplete tumorigenic intrinsically
drug-resistant cancer stem cells (CSC). Interestingly, sensitization
of MDR and inhibition of drug efflux transporters is not specific
or selective to Pluronics. Other amphiphilic polymers have shown similar
activities in various experimental models. This review summarizes
recent advances of understanding the Pluronic effects in sensitization
and prevention of MDR.
Collapse
Affiliation(s)
- Daria Y Alakhova
- Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7362, United States
| | | |
Collapse
|
12
|
Le RK, Harris BJ, Iwuchukwu IJ, Bruce BD, Cheng X, Qian S, Heller WT, O’Neill H, Frymier PD. Analysis of the solution structure of Thermosynechococcus elongatus photosystem I in n-dodecyl-β-d-maltoside using small-angle neutron scattering and molecular dynamics simulation. Arch Biochem Biophys 2014; 550-551:50-7. [DOI: 10.1016/j.abb.2014.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 04/15/2014] [Indexed: 10/25/2022]
|
13
|
Liu S, Ma L, Tan R, Lu Q, Geng Y, Wang G, Gu Z. Safe and efficient local gene delivery into skeletal muscle via a combination of Pluronic L64 and modified electrotransfer. Gene Ther 2014; 21:558-65. [PMID: 24694536 DOI: 10.1038/gt.2014.27] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/25/2013] [Accepted: 01/24/2014] [Indexed: 11/09/2022]
Abstract
Efficient DNA electrotransfer into muscles can be achieved by combining two types of electronic pulses sequentially: short high-voltage (HV) pulse for the cell electropermeabilization and long low-voltage (LV) pulse for the DNA electrophoresis into cells. However, the voltages currently applied can still induce histological and functional damages to tissues. Pluronic L64 has been considered as a molecule possessing cell membrane-disturbing ability. For these reasons, we hope that L64 can be used as a substitute for the HV pulse in cell membrane permeabilization, and a safe LV pulse may still keep the ability to drive plasmid DNA across the permeabilized membrane. In this work, we optimized the electrotransfer parameters to establish a safe and efficient procedure using a clinically applied instrument, and found out that the critical condition for a successful combination of electrotransfer with L64 was that the injection of plasmid/L64 mixture should be applied 1 h before the electrotransfer. In addition, we revealed that the combined procedure could not efficiently transfer plasmid into solid tumor because the uncompressed plasmid may rapidly permeate the leaky tumor vessels and flow away. Altogether, the results demonstrate that the combined procedure has the potential for plasmid-based gene therapy through safe and efficient local gene delivery into skeletal muscles.
Collapse
Affiliation(s)
- S Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - L Ma
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - R Tan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Q Lu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Y Geng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - G Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Z Gu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Pupe CG, Do Carmo FA, De Sousa VP, Lopes M, Abrahim-Vieira B, Ribeiro AJ, Veiga F, Rodrigues CR, Padula C, Santi P, Cabral LM. Development of a Doxazosin and Finasteride Transdermal System for Combination Therapy of Benign Prostatic Hyperplasia. J Pharm Sci 2013; 102:4057-64. [DOI: 10.1002/jps.23715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/31/2013] [Accepted: 08/06/2013] [Indexed: 11/10/2022]
|
15
|
Barqawi H, Schulz M, Olubummo A, Saurland V, Binder WH. 2D-LC/SEC-(MALDI-TOF)-MS Characterization of Symmetric and Nonsymmetric Biocompatible PEOm–PIB–PEOn Block Copolymers. Macromolecules 2013. [DOI: 10.1021/ma401604h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Haitham Barqawi
- Faculty
of Natural Sciences II (Chemistry, Physics, Mathematics), Institute
of Chemistry, Chair of Macromolecular Chemistry, Martin-Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Matthias Schulz
- Faculty
of Natural Sciences II (Chemistry, Physics, Mathematics), Institute
of Chemistry, Chair of Macromolecular Chemistry, Martin-Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Adekunele Olubummo
- Faculty
of Natural Sciences II (Chemistry, Physics, Mathematics), Institute
of Chemistry, Chair of Macromolecular Chemistry, Martin-Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Volker Saurland
- Bruker Daltonik GmbH, Fahrenheitstrasse 4, 28359 Bremen, Germany
| | - Wolfgang H. Binder
- Faculty
of Natural Sciences II (Chemistry, Physics, Mathematics), Institute
of Chemistry, Chair of Macromolecular Chemistry, Martin-Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| |
Collapse
|
16
|
Bureau MF, Wasungu L, Jugé L, Scherman D, Rols MP, Mignet N. Investigating relationship between transfection and permeabilization by the electric field and/or the Pluronic® L64 in vitro and in vivo. J Gene Med 2012; 14:204-15. [DOI: 10.1002/jgm.2610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
17
|
Relationship between the Affinity of PEO-PPO-PEO Block Copolymers for Biological Membranes and Their Cellular Effects. Pharm Res 2012; 29:1908-18. [DOI: 10.1007/s11095-012-0716-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 02/20/2012] [Indexed: 11/26/2022]
|
18
|
Huin C, Le Gall T, Barteau B, Pitard B, Montier T, Lehn P, Cheradame H, Guégan P. Evidence of DNA transfer across a model membrane by a neutral amphiphilic block copolymer. J Gene Med 2012; 13:538-48. [PMID: 21954109 DOI: 10.1002/jgm.1612] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neutral amphiphilic triblock copolymers have been shown to be efficient for gene transfection in vivo, especially by direct injection into the muscle. To contribute to a better understanding of the underlying mechanisms, in the present study, we investigated the properties of a poly(ethylene oxide-b-4-vinylpyridine) diblock copolymer as vector for nucleic acid transfer, with the particular aim of shedding some light on a possible mechanism explaining the internalization of DNA by the transfected cells. METHODS Complexation of plasmid DNA with the PEO-b-P4VP diblock copolymer was investigated by ethidium bromide exclusion and gel electrophoresis assays. Interaction of the copolymer with a lipid model membrane was evaluated by electrophysiological assays and quantification of plasmid DNA was performed by quantitative polymerase chain reaction. In vivo luciferase transfection assays were finally performed. RESULTS The diblock copolymer was found to poorly interact with DNA up to a mass ratio (copolymer/DNA) as high as 150. At a concentration of 36 µg/ml, it induced the formation of mainly transient (but sometimes permanent) pores and the formation of those pores allowed the translocation of plasmid DNA across the model membrane. However, only low transgene expression was obtained; the luciferase levels observed with the diblock being of the same order of magnitude as those observed with the corresponding PEO and P4VP homopolymers. CONCLUSIONS These results strongly suggest that gene transfection by neutral block copolymers may involve the formation of cellular pores; in addition, they also highlight that in vivo gene transfection requires the use of adequately soluble block copolymers.
Collapse
Affiliation(s)
- Cécile Huin
- LAMBE, UEVE-CNRS-CEA, UMR 8587, Equipe Matériaux Polymères aux Interfaces, Université d'Evry, Evry, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Pembouong G, Morellet N, Kral T, Hof M, Scherman D, Bureau MF, Mignet N. A comprehensive study in triblock copolymer membrane interaction. J Control Release 2011; 151:57-64. [DOI: 10.1016/j.jconrel.2011.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/24/2010] [Accepted: 01/09/2011] [Indexed: 11/17/2022]
|
20
|
Guiraud S, Alimi-Guez D, van Wittenberghe L, Scherman D, Kichler A. The reverse block copolymer Pluronic 25R2 promotes DNA transfection of skeletal muscle. Macromol Biosci 2011; 11:590-4. [PMID: 21337518 DOI: 10.1002/mabi.201000463] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Indexed: 11/06/2022]
Abstract
Muscle is an important and attractive target for gene therapy. Recent findings have shown that neutral amphiphilic triblock copolymers with a PEO-PPO-PEO arrangement significantly increase muscle transfection as compared to naked DNA. We were interested in evaluating whether reverse Pluronics (PPO-PEO-PPO) also possess transfection properties. Therefore, we measured the in vitro and in vivo transfection activity of 25R2 and 25R4, two copolymers that differ by their hydrophilic/hydrophobic balance. The results show that 25R2 significantly increases the transfection level in muscle compared to naked DNA. Taken together, this work demonstrates that the reverse Pluronic 25R2 possesses interesting properties for in vivo transfection.
Collapse
|
21
|
Chèvre R, Le Bihan O, Beilvert F, Chatin B, Barteau B, Mével M, Lambert O, Pitard B. Amphiphilic block copolymers enhance the cellular uptake of DNA molecules through a facilitated plasma membrane transport. Nucleic Acids Res 2010; 39:1610-22. [PMID: 20952409 PMCID: PMC3045598 DOI: 10.1093/nar/gkq922] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Amphiphilic block copolymers have been developed recently for their efficient, in vivo transfection activities in various tissues. Surprisingly, we observed that amphiphilic block copolymers such as Lutrol® do not allow the transfection of cultured cells in vitro, suggesting that the cell environment is strongly involved in their mechanism of action. In an in vitro model mimicking the in vivo situation we showed that pre-treatment of cells with Lutrol®, prior to their incubation with DNA molecules in the presence of cationic lipid, resulted in higher levels of reporter gene expression. We also showed that this improvement in transfection efficiency associated with the presence of Lutrol® was observed irrespective of the plasmid promoter. Considering the various steps that could be improved by Lutrol®, we concluded that the nucleic acids molecule internalization step is the most important barrier affected by Lutrol®. Microscopic examination of transfected cells pre-treated with Lutrol® confirmed that more plasmid DNA copies were internalized. Absence of cationic lipid did not impair Lutrol®-mediated DNA internalization, but critically impaired endosomal escape. Our results strongly suggest that in vivo, Lutrol® improves transfection by a physicochemical mechanism, leading to cellular uptake enhancement through a direct delivery into the cytoplasm, and not via endosomal pathways.
Collapse
Affiliation(s)
- Raphaël Chèvre
- INSERM, U915, l'institut du thorax, Nantes, F-44000, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Wasungu L, Marty AL, Bureau MF, Kichler A, Bessodes M, Teissie J, Scherman D, Rols MP, Mignet N. Pre-treatment of cells with pluronic L64 increases DNA transfection mediated by electrotransfer. J Control Release 2010; 149:117-25. [PMID: 20888380 DOI: 10.1016/j.jconrel.2010.09.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/21/2010] [Accepted: 09/24/2010] [Indexed: 11/26/2022]
Abstract
Gene transfer into muscle cells is a key issue in biomedical research. Indeed, it is important for the development of new therapy for many genetic disorders affecting this tissue and for the use of muscle tissue as a secretion platform of therapeutic proteins. Electrotransfer is a promising method to achieve gene expression in muscles. However, this method can lead to some tissue damage especially on pathologic muscles. Therefore there is a need for the development of new and less deleterious methods. Triblock copolymers as pluronic L64 are starting to be used to improve gene transfer mediated by several agents into muscle tissue. Their mechanism of action is still under investigation. The combination of electrotransfer and triblock copolymers, in allowing softening electric field conditions leading to efficient DNA transfection, could potentially represent a milder and more secure transfection method. In the present study, we addressed the possible synergy that could be obtained by combining the copolymer triblock L64 and electroporation. We have found that a pre-treatment of cells with L64 could improve the transfection efficiency. This pre-treatment was shown to increase cell viability and this is partly responsible for the improvement of transfection efficiency. We have then labelled the plasmid DNA and the pluronic L64 in order to gain some insights into the mechanism of transfection of the combined physical and chemical methods. These experiences allowed us to exclude an action of L64 either on membrane permeabilization or on DNA/membrane interaction. Using plasmids containing or not binding sequences for NF-κB and an inhibitor of NF-κB pathway activation we have shown that this beneficial effect was rather related to the NF-κB signalling pathway, as it is described for other pluronics. Finally we address here some mechanistic issues on electrically mediated transfection, L64 mediated membrane permeabilization and the combination of both for gene transfer.
Collapse
Affiliation(s)
- L Wasungu
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, F-31077 Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Illy N, Bacri L, Wojno J, Destouches D, Brissault B, Courty J, Auvray L, Penelle J, Barbier V. Unexpected Interactions of an Alternating Poly(ether-ester) with Artificial and Biological Bilipidic Membranes. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/masy.201050109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Alimi-Guez D, Leborgne C, Pembouong G, Van Wittenberghe L, Mignet N, Scherman D, Kichler A. Evaluation of the muscle gene transfer activity of a series of amphiphilic triblock copolymers. J Gene Med 2010; 11:1114-24. [PMID: 19757455 DOI: 10.1002/jgm.1396] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Amphiphilic triblock copolymers such as the polyethylene oxide-polypropylene oxide-polyethylene oxide L64 (PEO(13)-PPO(30)-PEO(13)) significantly increase transgene expression after injection of DNA/polymer mixtures into skeletal muscles. To better understand the way such copolymers act, we studied the behaviour of different poloxamers, including L64, both in vitro and in vivo. METHODS The in vitro and in vivo transfection activity of five copolymers that differ either by their molecular weight or by their hydrophilic/hydrophobic balance was evaluated. Furthermore, we also studied the membrane permeabilizing properties of the poloxamers. RESULTS The results obtained indicate that, after intramuscular administration of DNA/poloxamer formulations, all five compounds were able to significantly increase the expression levels of luciferase compared to an injection of naked DNA. Using a LacZ expression cassette, up to 30% of the muscle fibers expressed the reporter gene. Furthermore, we show that the effect can be obtained using different promoters. Finally, we document that, to some extent, all five poloxamers possess membrane permeabilizing properties. CONCLUSIONS Taken together, the results obtained in the present study show that there is a large flexibility in terms of molecular weight and EO/PO ratio for obtaining increased levels of transgene expression in vivo.
Collapse
|
25
|
Cardoso MB, Smolensky D, Heller WT, O’Neill H. Insight into the Structure of Light-Harvesting Complex II and Its Stabilization in Detergent Solution. J Phys Chem B 2009; 113:16377-83. [DOI: 10.1021/jp905050b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mateus B. Cardoso
- Center for Structural Molecular Biology, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Dmitriy Smolensky
- Center for Structural Molecular Biology, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - William T. Heller
- Center for Structural Molecular Biology, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Hugh O’Neill
- Center for Structural Molecular Biology, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| |
Collapse
|
26
|
Roques C, Bouchemal K, Ponchel G, Fromes Y, Fattal E. Parameters affecting organization and transfection efficiency of amphiphilic copolymers/DNA carriers. J Control Release 2009; 138:71-7. [DOI: 10.1016/j.jconrel.2009.04.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 04/23/2009] [Accepted: 04/27/2009] [Indexed: 10/20/2022]
|
27
|
Roques C, Fattal E, Fromes Y. Comparison of toxicity and transfection efficiency of amphiphilic block copolymers and polycationic polymers in striated muscles. J Gene Med 2009; 11:240-9. [DOI: 10.1002/jgm.1304] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
28
|
Hartikka J, Geall A, Bozoukova V, Kurniadi D, Rusalov D, Enas J, Yi JH, Nanci A, Rolland A. Physical characterization and in vivo evaluation of poloxamer-based DNA vaccine formulations. J Gene Med 2008; 10:770-82. [PMID: 18425981 DOI: 10.1002/jgm.1199] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Plasmid DNA (pDNA) vaccines have generated significant interest for the prevention or treatment of infectious diseases. Broader applications may benefit from the identification of safe and potent vaccine adjuvants. This report describes the development of a novel polymer-based formulation to enhance the immunogenicity of pDNA-based vaccines. METHODS Plasmid DNA was formulated with a nonionic block copolymer, poloxamer CRL1005, and the cationic surfactant benzalkonium chloride (BAK) to produce a thermodynamically stable, self-assembling system. The influence of parameters such as polymer concentration and BAK composition on the immune responses was evaluated in mice vaccinated with pDNA encoding influenza nucleoprotein. RESULTS At concentrations of 7.5 mg/ml CRL1005, 0.3 mM BAK and 5 mg/ml pDNA, CRL1005/BAK/pDNA particles had a mean diameter of 261 +/- 0.2 nm and a surface charge of - 11.6 +/- 0.9 mV. The negative surface charge and atomic force microscopy images suggested that pDNA binds to BAK adsorbed to the surface of poloxamer particles. The CRL1005/BAK/pDNA formulation significantly enhanced antigen-specific cellular and humoral immune responses, and increased transgene levels in muscle and serum. The complexity of the formulation was reduced by replacing the commercial BAK, which is a mixture of four alkyl chains, with a C14 BAK homolog. The substitution yielded an analytically preferable formulation with equivalent physical characteristics and immunogenicity. CONCLUSIONS The results suggest that the CRL1005/BAK/pDNA formulation may enhance immunogenicity by improving the delivery of pDNA-based vaccines. This formulation is currently being evaluated for the prevention of CMV-associated disease in a phase 2 clinical trial.
Collapse
Affiliation(s)
- Jukka Hartikka
- Vical Incorporated, 10390 Pacific Center Court, San Diego, CA 92121-4340, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pomel C, Leborgne C, Cheradame H, Scherman D, Kichler A, Guegan P. Synthesis and Evaluation of Amphiphilic Poly(tetrahydrofuran-b-ethylene oxide) Copolymers for DNA Delivery into Skeletal Muscle. Pharm Res 2008; 25:2963-71. [DOI: 10.1007/s11095-008-9698-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 07/24/2008] [Indexed: 11/24/2022]
|
30
|
|
31
|
|
32
|
Membrane Physical Chemistry - I. Biophys J 2008. [DOI: 10.1016/s0006-3495(08)79010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
33
|
Cheradame H, Sassatelli M, Pomel C, Sanh A, Gau-Racine J, Bacri L, Auvray L, Guégan P. Tuning Macromolecular Structures of Synthetic Vectors for Gene Therapy. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/masy.200850122] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|