1
|
Tachibanaki A, Matsui T, Nishimura Y. π-Conjugation effects on excited-state intermolecular proton-transfer reactions of anthracene-urea derivatives in the presence of acetate anions. Phys Chem Chem Phys 2024; 26:19176-19186. [PMID: 38956977 DOI: 10.1039/d4cp01869a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
This study investigated emissive urea compounds with an anthryl moiety on one side and a substituent group (biphenyl, naphthyl, benzyl, or cyclohexyl) on the other side across from the urea group. This was performed to determine the contribution of π-conjugation on a substituent group to excited-state intermolecular proton-transfer (ESPT) reactions in the presence of acetate anions. Fluorescence lifetime measurements revealed that the rate constant of the ESPT reaction from the normal form to the tautomer form increased with the length of the π-conjugation. Considering that there were a few differences among the wavelengths of the fluorescence maxima for the anthracene-urea derivatives in the presence of acetate anions, we observed that the extension of π-conjugation promoted tautomer formation. This maintained the energy levels of the normal and tautomer forms in the excited state. Furthermore, an anthracene-urea derivative without π-conjugation did not undergo a reverse ESPT reaction, implying that π-conjugation is considerably involved in the reverse ESPT reaction from the tautomer form to the normal form.
Collapse
Affiliation(s)
- Atsushi Tachibanaki
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan.
| | - Toru Matsui
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan.
| | - Yoshinobu Nishimura
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan.
| |
Collapse
|
2
|
Pal T, Sahu K. Effect of salt addition on a triblock copolymer-zwitterionic surfactant assembly: insight from excited-state proton transfer. Phys Chem Chem Phys 2023; 25:29816-29830. [PMID: 37886857 DOI: 10.1039/d3cp03388k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Copolymer-surfactant assemblies are frequently utilized across various fields, from medicine to nanotechnology. Understanding the organization of the mixed assemblies in a saline environment will further expand their application horizons, especially under physiological conditions. Excited-state proton transfer (ESPT) can provide insight into the hydration nature and organization of the non-toxic assembly of a triblock copolymer F127 (poly-(ethylene oxide)101 (PEO101)-poly(propylene oxide)56 (PPO56)-PEO101)) and a zwitterionic sulfobetaine surfactant N-dodecyl-N,N-dimethyl-3-ammoniopropane sulfonate (SB12). Here, we present a comprehensive investigation of the compactness and hydration nature of the F127-SB12 mixed assemblies at different salt concentrations using the ESPT of 8-hydroxy pyrene-1,3,6-trisulfonate (HPTS). In the absence of salts, gradual SB12 addition to a premicellar (0.4 mM) or a post-micellar (4 mM) F127 solution leads to an anomalous modulation of the protonated and deprotonated emission bands. The emission intensity ratio (protonated/deprotonated) first increases to a maximum at a particular SB12 concentration (6 mM and 35 mM for the premicellar and post-micellar F127 assemblies, respectively), and then the ratio decreases with a further increase in the surfactant concentration. Since the intensity ratio is an indicator of the retardation of the ESPT process, the mixed micellar configuration displaying a maximum intensity ratio represents the most compact and least hydrated state. Salt addition to this configuration lowers the intensity ratio, signifying an enhanced ESPT process. Dynamic light scattering (DLS) results indicate that the size of the mixed assembly remains almost unaltered with the addition of salts. Thus, salinity enhances the ESPT process inside the F127-SB12 mixed assemblies without significantly altering the hydrodynamic radius.
Collapse
Affiliation(s)
- Tapas Pal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Kalyanasis Sahu
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
3
|
Pal T, Sahu K. Exploring cationic polyelectrolyte-micelle interaction via excited-state proton transfer. Signatures of probe transfer. Phys Chem Chem Phys 2023; 25:2963-2977. [PMID: 36606483 DOI: 10.1039/d2cp03883h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Excited-state proton transfer (ESPT) is a sensitive tool for the delicate monitoring of structural reorganization, hydration level, and confinement within surfactant and polymer assemblies. Here, we investigate the interaction of a cationic polyelectrolyte, poly(diallyl dimethylammonium chloride) (PDADMAC), with micelles of differently charged surfactants using 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) as an ESPT probe. We used three surfactants: anionic sodium dodecyl sulfate (SDS), cationic dodecyl trimethylammonium bromide (DTAB), and zwitterionic N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (SB12), possessing the same alkyl (dodecyl) chain but varying headgroup charges. The fluorescence of HPTS residing initially within the micellar medium modulates differently in the presence of PDADMAC. For the anionic SDS and cationic DTAB micelles, the emission spectrum of HPTS does not alter significantly; however, for SB12 micelles, the emission spectrum undergoes a strong modulation upon adding the polyelectrolyte. The emission intensities quench strongly at a low concentration of PDADMAC but recover at a higher concentration. The emission intensity ratio of the two emission bands also changes significantly, implying strong modulation of the ESPT process with varying PDADMAC concentrations. The time-resolved area normalized emission spectra (TRANES) disclose single isoemissive points in the SB12 micelle at low and high concentrations of PDADMAC but two different isoemissive points (one characteristic of the SB12 micelle at 500 nm and another characteristic of the PDADMAC interface at 480 nm) in the mixed assembly at an intermediate concentration. Detailed analysis suggests that the polyelectrolyte can enforce the transfer of the anionic probe HPTS from the zwitterionic micelle to the PDADMAC assembly above a specific PDADMAC concentration. The transfer of the molecular probe between two assemblies resembles a drug sequestration event, and the study reveals necessary emission signatures.
Collapse
Affiliation(s)
- Tapas Pal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Kalyanasis Sahu
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
4
|
Solution behavior of native and denatured beta lactoglobulin in presence of pyridinium based ionic liquids: A biophysical perspective of folding and refolding pattern of the protein. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Biswas P, Adhikari A, Pal U, Mondal S, Mukherjee D, Ghosh R, Obaid RJ, Moussa Z, Choudhury SS, Ahmed SA, Das R, Pal SK. A combined spectroscopic and molecular modeling Study on structure-function-dynamics under chemical modification: Alpha-chymotrypsin with formalin preservative. Front Chem 2022; 10:978668. [PMID: 36118312 PMCID: PMC9473634 DOI: 10.3389/fchem.2022.978668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Enzyme function can be altered via modification of its amino acid residues, side chains and large-scale domain modifications. Herein, we have addressed the role of residue modification in catalytic activity and molecular recognition of an enzyme alpha-chymotrypsin (CHT) in presence of a covalent cross-linker formalin. Enzyme assay reveals reduced catalytic activity upon increased formalin concentration. Polarization gated anisotropy studies of a fluorophore 8-Anilino-1-naphthalenesulfonic acid (ANS) in CHT show a dip rise pattern in presence of formalin which is consistent with the generation of multiple ANS binding sites in the enzyme owing to modifications of its local amino acid residues. Molecular docking study on amino acid residue modifications in CHT also indicate towards the formation of multiple ANS binding site. The docking model also predicted no change in binding behavior for the substrate Ala-Ala-Phe-7-amido-4-methylcoumarin (AMC) at the active site upon formalin induced amino acid cross-linking.
Collapse
Affiliation(s)
- Pritam Biswas
- Department of Microbiology, St. Xavier’s College, Kolkata, India
| | - Aniruddha Adhikari
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Uttam Pal
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Susmita Mondal
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Dipanjan Mukherjee
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Ria Ghosh
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Rami J. Obaid
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Sudeshna Shyam Choudhury
- Department of Microbiology, St. Xavier’s College, Kolkata, India
- *Correspondence: Sudeshna Shyam Choudhury, ; Saleh A. Ahmed, ; Ranjan Das, ; Samir Kumar Pal,
| | - Saleh A. Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
- *Correspondence: Sudeshna Shyam Choudhury, ; Saleh A. Ahmed, ; Ranjan Das, ; Samir Kumar Pal,
| | - Ranjan Das
- Department of Chemistry, West Bengal State University, Barasat, Kolkata, India
- *Correspondence: Sudeshna Shyam Choudhury, ; Saleh A. Ahmed, ; Ranjan Das, ; Samir Kumar Pal,
| | - Samir Kumar Pal
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Kolkata, India
- *Correspondence: Sudeshna Shyam Choudhury, ; Saleh A. Ahmed, ; Ranjan Das, ; Samir Kumar Pal,
| |
Collapse
|
6
|
Azeem K, Ahmed M, Mohammad T, Uddin A, Shamsi A, Hassan MI, Singh S, Patel R, Abid M. A multi-spectroscopic and computational simulations study to delineate the interaction between antimalarial drug hydroxychloroquine and human serum albumin. J Biomol Struct Dyn 2022:1-17. [PMID: 35924780 DOI: 10.1080/07391102.2022.2107077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Hydroxychloroquine (HCQ), a quinoline based medicine is commonly used to treat malaria and autoimmune diseases such as rheumatoid arthritis. Since, human serum albumin (HSA) serves as excipient for vaccines or therapeutic protein drugs, it is important to understand the effect of HCQ on the structural stability of HSA. In this study, the binding mechanism of HCQ and their effect on stability of HSA have been studied using various spectroscopic techniques and molecular dynamic simulation. The UV-VIS results confirmed the strong binding of HCQ with HSA. The calculated thermodynamics parameters confirmed that binding is spontaneous in nature and van der Waals forces and hydrogen bonding are involved in the binding system which is also confirmed by molecular docking results. The steady-state fluorescence confirms the static quenching mechanism in the interaction system, which was further validated by time-resolved fluorescence. The synchronous fluorescence confirmed the more abrupt binding of HCQ with tryptophan residue of HSA compared to Tyr residue of HSA. Isothermal titration calorimetry (ITC) was done to validate the thermodynamics parameters of HSA-HCQ complex in one experiment, supporting the values obtained from the spectroscopic techniques. The circular dichroism (CD) demonstrated that the HCQ affected the secondary structure of HSA protein by reducing their α-helical content. The docking and molecular dynamic simulation results further helped in understanding the effect of HCQ on conformational changes of HSA. Overall, present work defined the physicochemical properties and interaction mechanism of HCQ with HSA that have extensively been elucidated by both in vitro and in silico approaches.
Collapse
Affiliation(s)
- Kashish Azeem
- Department of Biosciences, Medicinal Chemistry Laboratory, New Delhi, India.,Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mofieed Ahmed
- Department of Biosciences, Medicinal Chemistry Laboratory, New Delhi, India.,Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Amad Uddin
- Department of Biosciences, Medicinal Chemistry Laboratory, New Delhi, India.,Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rajan Patel
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Abid
- Department of Biosciences, Medicinal Chemistry Laboratory, New Delhi, India
| |
Collapse
|
7
|
Weng T, Wang L, Liu Y, Zhang X, Wu Y, Zhang Y, Han J, Liu M. Interaction of bisdemethoxycurcumin with sodium dodecyl sarcosine + Tween 20/Tween 60 mixed surfactants: Insights from multispectral analysis and solubilization effect. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Song Y, Wang Q, Gao W, He Z, Wu Y. Effects of solvents on the excited‐state intramolecular proton transfer in 3‐HTC. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yao‐Dong Song
- School of Electronic, Electrical Engineering and Physics Fujian University of Technology Fuzhou Fujian China
| | - Qian‐Ting Wang
- Fujian Provincial Key Laboratory of Advanced Materials Processing and Application Fuzhou Fujian China
- Sanming University Sanming Fujian China
- Fujian Provincial Engineering Research Center of Die & Mold Fuzhou Fujian China
- Mould Technology Development Base of Fujian Province Fuzhou Fujian China
- Fuzhou Innovation Platform for Novel Materials and Mould Technology Fuzhou Fujian China
| | - Wei‐wei Gao
- School of Electronic, Electrical Engineering and Physics Fujian University of Technology Fuzhou Fujian China
| | - Zhixiong He
- School of Electronic, Electrical Engineering and Physics Fujian University of Technology Fuzhou Fujian China
| | - Yan Wu
- School of Electronic, Electrical Engineering and Physics Fujian University of Technology Fuzhou Fujian China
| |
Collapse
|
9
|
Udayan S, Kuriakose AC, Mary P, Sherin DR, Manojkumar TK, Nampoori V, Thomas S. Experimental and theoretical investigation on the nonlinear optical properties of LDS 821 dye in different solvents and DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:121011. [PMID: 35158136 DOI: 10.1016/j.saa.2022.121011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Linear and nonlinear optical properties of near-infrared laser grade dye LDS 821 in different solvents and Salmon Deoxyribonucleic acid (DNA) were studied using spectroscopic and Z-scan techniques. UV-Vis absorption spectrum of the dye shows a bathochromic shift with a decrease in the solvent polarity parameter, and in DNA, the dye exhibits a hypochromic shift. The fluorescence spectrum of the dye does not show any notable correlation with the solvent polarity parameter, but in DNA, the fluorescence intensity of the dye decreases with the incremental addition of DNA. Molecular docking studies reveal that the dye intercalates on the major grooves of DNA. Nonlinear optical properties of the dye in different solvents and phosphate buffer solution with varying DNA concentrations were studied using the Z-scan technique using a Q-switched Nd: YAG laser operating at fundamental and second harmonics. A closed and open aperture Z-scan of dye in different solvents was carried out to estimate the nonlinear refractive index, excited-state absorption cross-section, and two-photon absorption coefficient (TPA). The variation in nonlinear optical properties of the dye in different solvents was due to solvent-induced structural modifications. Theoretical investigation on nonlinear optical properties of the dye in different solvents was carried out using density function theory. The theoretical first and second-order hyperpolarizability was calculated using B3LYP functional. The predicated nonlinear optical parameters of the dye in different solvents does not show any direct correlation with solvent polarity. Nonlinear absorption of the dye in phosphate buffer solution (PBS) and DNA were estimated. The nonlinear absorption of the dye in PBS decreases with the addition of DNA. Molecular docking studies were carried out to determine the structural changes induced in dye due to the intercalation with DNA.
Collapse
Affiliation(s)
- Sony Udayan
- International School of Photonics, Cochin University of Science and Technology, Cochin, Kerala, India.
| | - Alina C Kuriakose
- International School of Photonics, Cochin University of Science and Technology, Cochin, Kerala, India
| | - Priya Mary
- International School of Photonics, Cochin University of Science and Technology, Cochin, Kerala, India
| | - D R Sherin
- Centre for Computational Modeling and Data Engineering, Indian Institute of Information Technology and Management- Thiruvananthapuram, Kerala, India
| | - T K Manojkumar
- Centre for Computational Modeling and Data Engineering, Indian Institute of Information Technology and Management- Thiruvananthapuram, Kerala, India
| | - Vpn Nampoori
- International School of Photonics, Cochin University of Science and Technology, Cochin, Kerala, India
| | - Sheenu Thomas
- International School of Photonics, Cochin University of Science and Technology, Cochin, Kerala, India
| |
Collapse
|
10
|
Okada M, Nishimura Y. Electronic state of a fluoranthene–urea compound and the kinetics of its emissive tautomer state in the presence of acetate anions. NEW J CHEM 2022. [DOI: 10.1039/d1nj05270e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The fluorescence spectrum of 3FU–Ac around 600 nm agrees well with that of 3FU–DBU, indicating that the electronic state of tautomer has a proton-abstracted structure.
Collapse
Affiliation(s)
- Mahiro Okada
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Yoshinobu Nishimura
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
11
|
Hao J, Yang Y. Theoretical Investigation of the Excited-State Dynamics Mechanism of the Asymmetric Two-Way Proton Transfer Molecule BTHMB. J Phys Chem A 2021; 125:10280-10290. [PMID: 34846887 DOI: 10.1021/acs.jpca.1c05530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An asymmetric two-way proton transfer molecule 3-(benzo[d]-thiazol-2-yl)-2-hydroxy-5-methoxybenzaldehyde (BTHMB) with the function of white-light emission was synthesized in a recent experiment (Bhattacharyya, A.; Mandal, S. K.; Guchhait, N. J. Phys. Chem. A 2019, 123, 10246). The particularity of this molecule is that there are two possible forms, one of which contained a six-membered H-bonded network toward a N atom (BTHMB-NH) present in the molecule as a proton acceptor and the other was toward an O atom (BTHMB-OH). Unfortunately, the experimental work lacked the theoretical explanation about the determination of the BTHMB-NH form and its excited-state intramolecular proton transfer (ESIPT) process under different solvents. Therefore, this study has explored these two points by means of the time-dependent density functional theory (TDDFT) method. The calculated relative energy and potential energy profile (PEP) of the transformation between BTHMB-NH and BTHMB-OH forms illustrated that BTHMB-NH was more stable, and the transfer from BTHMB-NH to BTHMB-OH was almost impossible at both S0 and S1 states under all solvents due to high potential energy barriers (PEBs) (11.67-21.59 kcal/mol). These calculated results provided the theoretical explanation and verification for the conclusion that the BTHMB molecule exists in the BTHMB-NH form in the experiment. Subsequently, the constructed PEPs of the ESIPT process for BTHMB-NH have proved that it was prone to the ESIPT process due to low PEBs (0.11-0.28 kcal/mol) at the S1 state. In particular, as the solvent polarity increased, the intensity of the intramolecular hydrogen bond (IHB) (O3-H4···N5) increased and the ESIPT process was more likely to occur. In addition, the twisted intramolecular charge-transfer (TICT) process was studied to explore the possible fluorescence quenching pathway of BTHMB-NH. Based on the PEPs of BTHMB-NH-T as a function of the N5-C6-C7-C8 dihedral angle at the S0 and S1 states, it is seen that the S0 state TICT process was inhibited due to the large PEBs (16.45-23.93 kcal/mol). Although the S1 state PEBs have been greatly reduced, they were still maintained at about 3.60 kcal/mol (3.60-3.84 kcal/mol), and hence, this process was still relatively difficult to occur. Due to the fact that BTHMB can be regarded as a standard in future designs involving red light and solvent-specific white-light emitters, a certain amount of investigative work on the ESIPT process was done in detail, and it paved the way for future research on the directionality of ESIPT in double ESIPT probes.
Collapse
Affiliation(s)
- Jiaojiao Hao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yang Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
12
|
Liu M, Yan K, Wen J, Liu W, Wang M, Wang L, Wang X. Synthesis of Substituted 1‐Hydroxy‐2‐Naphthaldehydes by Rhodium‐Catalyzed C−H Bond Activation and Vinylene Transfer of Enaminones with Vinylene Carbonate. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Min Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi Qufu 273165 People's Republic of China
| | - Kelu Yan
- Key Laboratory of Life-Organic Analysis of Shandong Province School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi Qufu 273165 People's Republic of China
| | - Jiangwei Wen
- Key Laboratory of Life-Organic Analysis of Shandong Province School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi Qufu 273165 People's Republic of China
| | - Weihua Liu
- Network Security and Information Management Center Jining University Ji Ning Shi Qufu 273165 People's Republic of China
| | - Mingyu Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi Qufu 273165 People's Republic of China
| | - Lina Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi Qufu 273165 People's Republic of China
| | - Xiu Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi Qufu 273165 People's Republic of China
| |
Collapse
|
13
|
|
14
|
Luminescent excited-state intramolecular proton-transfer dyes based on 4-functionalized 6,6'-dimethyl-3,3'-dihydroxy-2,2'-bipyridine (BP(OH)2-Rs); DFT simulation study. J Mol Graph Model 2021; 107:107948. [PMID: 34082341 DOI: 10.1016/j.jmgm.2021.107948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/04/2021] [Accepted: 05/20/2021] [Indexed: 01/28/2023]
Abstract
The 4-functionalized 6,6'-dimethyl-3,3'-dihydroxy-2,2'-bipyridine dyes (BP(OH)2-Rs) have exhibited dienol and diketo emissions. The optimum geometrical structures for ground, singlet and triplet excited states are computed by DFT/B3LYP/6-31++G that showed the planarity of BP(OH)2-Rs structure. The emission spectra of the molecules are determined in the gas-phase at singlet and triplet excited states using CIS/6-31++G. The theoretical calculations are carried out for BP(OH)2-Rs to understand the impact of different substituents (R = -H (I), -Br (II), -TMS (III), -C2H (IV), -terpyridine (V) and -bodipy (diazaboraindacene) (VI)) on excited-state intramolecular proton transfer (ESIPT) in singlet and triplet excited states. Based on the calculations, the concerted diproton transfer proceeds in the triplet excited state, in which nπ* state has a significant participation in ESIPT. The spectral variation at ESIPT emission of BP(OH)2-Rs is influenced by the electron-acceptor ability of the substituents. The compound V revealed a higher spectral intensity compared to the others. From the comparison with the experimental data, the molecule V is almost planar agreed with the X-ray structure and trend variation of wavelengths. The molecule VI contains bodipy chromophore that excitation energy transfers completely from BP(OH)2 core to a bodipy substituent, leading to emission from the lowest-lying bodipy substituent, and consequently, ESIPT does not occur for this dye.
Collapse
|
15
|
Togasaki K, Arai T, Nishimura Y. Opposite substituent effects in the ground and excited states on the acidity of N-H fragments involved in proton transfer reaction in aromatic urea compounds. Photochem Photobiol Sci 2021; 20:523-532. [PMID: 33772478 DOI: 10.1007/s43630-021-00035-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
To investigate substitution effects on excited-state intermolecular proton transfer (ESPT) reactions as well as acidity of proton donating fragments in the ground state, we synthesized substituted anthracen-2-yl-3-phenylurea derivatives that form a hydrogen bonds with acetate anions and undergo ESPT reaction. Fluorescence lifetime measurements and their kinetic analyses revealed that the trifluoromethyl group on the phenyl ring as an electron-withdrawing group caused a slow ESPT reaction despite an increase in the acidity of the N-H fragment in the ground state. In contrast, the methoxy group as a donating group leads to a fast ESPT reaction despite a reduction of the acidity of the N-H fragment in the ground state. These effects of substituents on ESPT reaction are due to their influence on the charge transfer reaction, which occurs from the N-H fragment to the anthryl ring to increase the acidity of N-H followed by ESPT reaction, over the urea unit by a combination of resonance and inductive effects. These opposing effects of substituents on the acidity of the urea unit in the ground and excited states provide an important insight in balancing the reactivity of proton transfer reaction in both the excited and ground states.
Collapse
Affiliation(s)
- Kei Togasaki
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tatsuo Arai
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yoshinobu Nishimura
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
16
|
Togasaki K, Arai T, Nishimura Y. Effect of Moderate Hydrogen Bonding on Tautomer Formation via Excited-State Intermolecular Proton-Transfer Reactions in an Aromatic Urea Compound with a Steric Base. J Phys Chem A 2020; 124:6617-6628. [PMID: 32786662 DOI: 10.1021/acs.jpca.0c05045] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU), which forms weak hydrogen bonds despite the high basicity caused by its hindered structure, was used to investigate tautomer formation via excited-state intermolecular proton-transfer (ESPT) reactions. The kinetics of the ESPT reactions of anthracen-2-yl-3-phenylurea (2PUA) in the presence of DBU were compared to that observed for the acetate anion (Ac) using time-resolved fluorescence measurement. Based on the association constants in the ground state, the intermolecular hydrogen bond between 2PUA and DBU was less stable than the bond between 2PUA and Ac due to steric hindrance and the geometry of the hydrogen bond. In the fluorescence spectra, 2PUA-DBU displayed prominent tautomeric emission in chloroform (CHCl3), whereas 2PUA-Ac exhibited distinct tautomeric emissions in dimethyl sulfoxide (DMSO). Kinetic analysis revealed that the rate constant of the ESPT reaction of 2PUA-DBU remarkably decreased when the proton-accepting ability of the solvent increased whereas the reaction of 2PUA-Ac was linked to the solvent polarity rather than proton-accepting ability. These results indicated that moderate hydrogen bonds due to steric hindrance were influenced by the type of solvent present, particularly if the solvents exhibited proton-accepting capabilities like DMSO. This, in turn, affected the rate constant of tautomer formation.
Collapse
Affiliation(s)
- Kei Togasaki
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Tatsuo Arai
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Yoshinobu Nishimura
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
17
|
Sett R, Paul BK, Guchhait N. Suppression of ESIPT Phenomenon of Flavonoids on Binding Interaction with Double Stranded RNA. ChemistrySelect 2020. [DOI: 10.1002/slct.202000402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Riya Sett
- Department of ChemistryUniversity of Calcutta 92 A. P. C. Road Kolkata 700009 India
| | - Bijan K. Paul
- Department of Chemistry Mahadevananda Mahavidyalaya Barrackpore Kolkata 700120 India
| | - Nikhil Guchhait
- Department of ChemistryUniversity of Calcutta 92 A. P. C. Road Kolkata 700009 India
| |
Collapse
|
18
|
Rastogi A, Pandey FP, Hegde G, Manohar R. Time-resolved fluorescence and UV absorbance study on Elaeis guineensis/oil palm leaf based carbon nanoparticles doped in nematic liquid crystals. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
19
|
How is the interaction of a chloride channel blocker with phospholipids influenced by divalent metal ions? Effect of unsaturation on the lipid side chain. Colloids Surf B Biointerfaces 2019; 188:110743. [PMID: 31884083 DOI: 10.1016/j.colsurfb.2019.110743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/29/2019] [Accepted: 12/16/2019] [Indexed: 10/25/2022]
Abstract
The present study reveals the effect of various divalent ions (Ca2+, Mg2+and Zn2+) on the binding interaction of a prospective chloride channel blocker, 9-methylanthroate (9MA), with liposome membranes, namely, dimyristoylphosphatidylcholine (DMPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). The liposome membranes DMPC and POPC differ in the unsaturation of the side-chain. The drug (9MA) is found to experience a greater degree of partitioning into the POPC lipid bilayer (containing unsaturated side-chain) in comparison to DMPC (containing saturated side-chain). The stronger 9MA-POPC binding interaction is found to be only nominally perturbed by the presence of metal salts. On the contrary, the 9MA-DMPC binding interaction is found to be significantly perturbed by the presence of metal salts and is manifested on the environment-responsive spectroscopic properties of the drug. The steady-state and picosecond-resolved fluorescence spectroscopic results reveal the effect of metal ions on DMPC bilayer to follow the trend Ca2+ < Mg2+ < Zn2+. This is also quantified by evaluating the partition coefficient of the drug into DMPC lipid in the presence of various divalent ions which is found to follow the same sequence. The degree of penetration of these cations has been rationalized on the basis of adsorption of cations on DMPC headgroup region resulting in dehydration of the headgroup along with shrinking of it.
Collapse
|
20
|
Maurya N, Alzahrani KA, Patel R. Probing the Intercalation of Noscapine from Sodium Dodecyl Sulfate Micelles to Calf Thymus Deoxyribose Nucleic Acid: A Mechanistic Approach. ACS OMEGA 2019; 4:15829-15841. [PMID: 31592453 PMCID: PMC6777008 DOI: 10.1021/acsomega.9b01543] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/09/2019] [Indexed: 06/07/2023]
Abstract
Noscapine (NOS) is efficient in inhibiting cellular proliferation and induces apoptosis in nonsmall cell, lung, breast, lymphatic, and prostate cancers. The micelle-assisted drug delivery is a well-known phenomenon; however, the proper mechanism is still unclear. Therefore, in the present study, we have shown a mechanistic approach for the delivery of NOS from sodium dodecyl sulfate (SDS) micelles to calf thymus deoxyribose nucleic acid (ctDNA) base-pairs using various spectroscopic techniques. The absorption and emission spectroscopy results revealed that NOS interacts with the SDS micelle and resides in its hydrophobic core. Further, the intercalation of NOS from SDS micelles to ctDNA was also shown by these techniques. The anisotropy and quenching results further confirmed the relocation of NOS from SDS micelles to ctDNA. The CD analysis suggested that SDS micelles do not perturb the structure of ctDNA, which supported that SDS micelles can be used as a safe delivery vehicle for NOS. This work may be helpful for the invention of advanced micelle-based vehicles for the delivery of an anticancer drug to their specific target site.
Collapse
Affiliation(s)
- Neha Maurya
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | | | - Rajan Patel
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
21
|
Mohan M, Satyanarayan M, Trivedi DR. Exploring the possibilities of double proton transfer in hydrazides: A theoretical approach. J PHYS ORG CHEM 2019. [DOI: 10.1002/poc.4003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Makesh Mohan
- Optoelectronics Laboratory, Department of PhysicsNational Institute of Technology Karnataka (NITK) Surathkal Mangalore India
| | - M.N. Satyanarayan
- Optoelectronics Laboratory, Department of PhysicsNational Institute of Technology Karnataka (NITK) Surathkal Mangalore India
| | - Darshak R. Trivedi
- Supramolecular Chemistry Laboratory, Department of ChemistryNational Institute of Technology Karnataka (NITK) Surathkal Mangalore India
| |
Collapse
|
22
|
Roohi H, Alizadeh P. Fine-tuned dual fluorescence behavior of N-substituted aniline-imidazopyridine based switches: Mechanistic understanding, substituent and solvent effects. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 214:407-428. [PMID: 30802798 DOI: 10.1016/j.saa.2019.02.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/24/2018] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
In order to understand the fine-tuned photo-physical behaviors of the N(X)-H⋯N systems, the excited state intramolecular proton transfer (ESIPT) switching in the N-substituted X1-5-NHIPA molecules (NHIPA = 2-(imidazo[1,2-a]pyridin-2-yl)aniline and X = H, COCH3, CH3C6H4SO2, C6F5SO2, and COCF3) were investigated in detail in gas phase and three solvent media at TD-PBE0/6-311++G(d,p) and TD-M06-2X/6-311++G(d,p) levels of theory. ESIPT reactions at S1 state were approximately without energy barrier, exergonic processes and were quantitatively demonstrated to be mainly sensitive to substituents and solvent media. The X-NHIPA (X = CH3C6H4SO2, C6F5SO2 and CF3CO) compounds were predicted to undergo fast, irreversible proton transfer at S1 state and, in turn, exhibit tautomer emission with anomalous large Stokes shift in the gas phase. In the toluene solvent, except for C6F5SO2-NHIPA that showed exclusively a tautomer emission with a long wavelength, all other X-NHIPA molecules were predicted to involve in the reversible ESIPT and hence exhibit a dual normal and tautomer emissions behavior, in good agreement with the experimental observations. In polar solvents, it is expected that all compounds show dual normal and tautomer emissions. The nearly equal intensities of the normal and tautomer emissions can lead to the generation of the white lights with the potential in lighting applications.
Collapse
Affiliation(s)
- Hossein Roohi
- Computational Quantum Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran.
| | - Parvaneh Alizadeh
- Computational Quantum Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| |
Collapse
|
23
|
Efficient dual-mode colorimetric/fluorometric sensor for the detection of copper ions and vitamin C based on pH-sensitive amino-terminated nitrogen-doped carbon quantum dots: effect of reactive oxygen species and antioxidants. Anal Bioanal Chem 2019; 411:2619-2633. [DOI: 10.1007/s00216-019-01710-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 12/31/2022]
|
24
|
Exploration of the ESIPT process in a newly designed potential bioactive thiosemicarbazone Schiff base: Spectroscopic analysis accompanied by molecular optimization and crystallographic study. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
25
|
Liu LY, Wu SS, Yu J, Chai S, Cong SL. Theoretical insights into excited-state intramolecular and multiple intermolecular hydrogen bonds in 2-(2-Hydroxy-phenyl)-4(3H)-quinazolinone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 207:61-67. [PMID: 30195187 DOI: 10.1016/j.saa.2018.08.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/12/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
The photophysical properties and photochemistry reactions of 2-(2-Hydroxy-phenyl)-4(3H)-quinazolinone (HPQ) system in different solutions are studied by using density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. Our theoretical investigation explores that an ultrafast barrier-free excited state intramolecular proton transfer (ESIPT) process occurs and the configuration twisting is found in the electronic excited state. In the polar protic methanol solution, the hydrogen-bonded complex composed by HPQ and two methanol molecules (HPQ-2M) could exist stably in the ground state. Upon photoexcitation the isolated HPQ is initially excited to the first excited state, while the HPQ-2M system is firstly excited to the S3 state and undergoes internal conversion (IC) to the S1 state. The intermolecular hydrogen bonds are strengthened in the excited state. The simulated electronic spectra agree well with the experimental results. The strengthening of the intermolecular hydrogen bonds is also confirmed by the calculated vibrational spectra. In addition, the intramolecular charge transfer happens in both HPQ and HPQ-2M systems from the frontier molecular orbital analysis.
Collapse
Affiliation(s)
- Li-Yan Liu
- School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Shuai-Shuai Wu
- School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Jie Yu
- School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Shuo Chai
- School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China; State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China.
| | - Shu-Lin Cong
- School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China
| |
Collapse
|
26
|
Mohapatra M, Mishra AK. Excited state proton transfer based fluorescent molecular probes and their application in studying lipid bilayer membranes. Photochem Photobiol Sci 2019; 18:2830-2848. [DOI: 10.1039/c9pp00294d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The distribution and prototropic equilibria of 1-naphthol (NpOH) in lipid bilayer membrane.
Collapse
Affiliation(s)
| | - Ashok Kumar Mishra
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600036
- India
| |
Collapse
|
27
|
Paul BK, Ghosh N, Mukherjee S. Association and sequestered dissociation of an anticancer drug from liposome membrane: Role of hydrophobic hydration. Colloids Surf B Biointerfaces 2018; 170:36-44. [PMID: 29864652 DOI: 10.1016/j.colsurfb.2018.05.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 01/31/2023]
Abstract
Herein, the interaction of a potent anticancer drug (Sanguinarine, SG) with dimyristoyl-l-α-phosphatidylglycerol (DMPG) liposome membrane has been investigated at physiological pH. The spectroscopic fluorescence decay results demonstrate a modification of the photophysics of SG within DMPG-encapsulated state leading to preferential stabilization of the iminium ion over the alkanolamine form. This suggests a key role of electrostatic force underlying the interaction. The complex dependence of the thermodynamic parameters on temperature yields a unique finding of a positive heat capacity change (ΔCp) indicating the signature of hydrophobic hydration. The study also demonstrates the application of β-cyclodextrin (βCD) as a prospective host system resulting in release of the DMPG-bound drug. A calorimetric exploration of the DMPG-βCD interaction reveals an intrinsically complex thermodynamics of the process leading to ΔCp > 0 and thus marking the instrumental role of hydrophobic hydration which follows that the DMPG-βCD interaction is accompanied with burial of polar molecular surfaces. A systematic investigation of the diffusion of the drug within various microheterogeneous environments by Fluorescence Correlation Spectroscopy (FCS) categorically reinforces our arguments.
Collapse
Affiliation(s)
- Bijan K Paul
- Department of Chemistry, Mahadevananda Mahavidyalaya, Barrackpore, Kolkata 700120, West Bengal, India
| | - Narayani Ghosh
- Department of General Science and Humanities, Modern Institute of Engineering and Technology, Bandel, Kolkata 712123, West Bengal, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India.
| |
Collapse
|
28
|
Sasmal M, Bhowmick R, Musha Islam AS, Bhuiya S, Das S, Ali M. Domain-Specific Association of a Phenanthrene-Pyrene-Based Synthetic Fluorescent Probe with Bovine Serum Albumin: Spectroscopic and Molecular Docking Analysis. ACS OMEGA 2018; 3:6293-6304. [PMID: 31458811 PMCID: PMC6644396 DOI: 10.1021/acsomega.8b00186] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/01/2018] [Indexed: 05/20/2023]
Abstract
In this report, the interaction between a phenanthrene-pyrene-based fluorescent probe (PPI) and bovine serum albumin (BSA), a transport protein, has been explored by steady-state emission spectroscopy, fluorescence anisotropy, far-ultraviolet circular dichroism (CD), time-resolved spectral measurements, and molecular docking simulation study. The blue shift along with emission enhancement indicates the interaction between PPI and BSA. The binding of the probe causes quenching of BSA fluorescence through both static and dynamic quenching mechanisms, revealing a 1:1 interaction, as delineated from Benesi-Hildebrand plot, with a binding constant of ∼105 M-1, which is in excellent agreement with the binding constant extracted from fluorescence anisotropy measurements. The thermodynamic parameters, ΔH°, ΔS°, and ΔG°, as determined from van't Hoff relationship indicate the predominance of van der Waals/extensive hydrogen-bonding interactions for the binding phenomenon. The molecular docking and site-selective binding studies reveal the predominant binding of PPI in subdomain IIA of BSA. From the fluorescence resonance energy transfer study, the average distance between tryptophan 213 of the BSA donor and the PPI acceptor is found to be 3.04 nm. CD study demonstrates the reduction of α-helical content of BSA protein on binding with PPI, clearly indicating the change of conformation of BSA.
Collapse
|
29
|
Matsumoto H, Ikedu S, Tosaka T, Nishimura Y, Arai T. Kinetic analysis of tautomer forms of aromatic-urea compounds with acetate ions: solvent effect of excited state intermolecular proton transfer. Photochem Photobiol Sci 2018; 17:561-569. [PMID: 29616691 DOI: 10.1039/c8pp00018b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this paper, we report the solvent effect of excited state intermolecular proton transfer (ESIPT) reactions of urea compounds in the presence of tetrabutylammonium acetate (TBAAc). We prepared anthracene-urea compounds (9An and 2An), a pyrene-urea compound (Py) and an anthracene-diurea compound (9,10An), which have alkylsulfonyl groups to improve their solubility in various organic solvents. We investigated the solvent effects of the ESIPT reaction using absorption, fluorescence, and 1H NMR spectroscopy along with fluorescence decay measurements in dimethyl sulfoxide (DMSO), acetonitrile (MeCN), tetrahydrofuran (THF) and toluene. The tautomer fluorescence of 9An showed remarkable solvent dependence on the spectral red-shift compared with 2An, Py and 9,10An. As a result of the detailed spectroscopic investigations with regard to the solvent including kinetic analysis of the ESIPT for 9AnAcO-, we revealed that the energy gap between the normal and tautomer forms in the excited state depended on the hydrogen bond acceptor basicity (β), which is one of the Kamlet-Taft solvent parameters. Finally, we discovered that the tautomer structures of aromatic-urea compounds were stabilized by hydrogen bond interactions.
Collapse
Affiliation(s)
- Hisato Matsumoto
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan.
| | - Satomi Ikedu
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan.
| | - Takeyuki Tosaka
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan.
| | - Yoshinobu Nishimura
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan.
| | - Tatsuo Arai
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan.
| |
Collapse
|
30
|
Sett R, Sen S, Paul BK, Guchhait N. How Does Nanoconfinement within a Reverse Micelle Influence the Interaction of Phenazinium-Based Photosensitizers with DNA? ACS OMEGA 2018; 3:1374-1385. [PMID: 31458466 PMCID: PMC6641382 DOI: 10.1021/acsomega.7b01820] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/17/2018] [Indexed: 06/10/2023]
Abstract
The major focus of the present work lies in exploring the influence of nanoconfinement within aerosol-OT (AOT) reverse micelles on the binding interaction of two phenazinium-based photosensitizers, namely, phenosafranin (PSF) and safranin-O (SO), with the DNA duplex. Circular dichroism and dynamic light-scattering studies reveal the condensation of DNA within the reverse micellar interior (transformation of the B-form of native DNA to ψ-form). Our results unveil a remarkable effect of the degree of hydration of the reverse micellar core on the stability of the stacking interaction (intercalation) of the drugs (PSF and SO) into DNA; increasing size of the water nanopool (that is, w 0) accompanies decreasing curvature of the DNA duplex structure with the consequent effect of increasing stabilization of the drug:DNA intercalation. The marked differences in the dynamical aspects of the interaction scenario following encapsulation within the reverse micellar core and the subsequent dependence on the size of the water nanopool are also meticulously explored. The differential degrees of steric interactions offered by the drug molecules (presence of methyl substitutions on the planar phenazinium ring in SO) are also found to affect the extent of intercalation of the drugs to DNA. In this context, it is imperative to state that the water pool of the reverse micellar core is often argued to approach bulk-like properties of water with increasing micellar size (typically w 0 ≥ 10), so that deviation from the bulk water properties is likely to be minimized in large reverse micelles (w 0 ≥ 10). On the contrary, our results (particularly quantitative elucidation of micropolarity and dynamical aspects of the interaction) explicitly demonstrate that the bulk-like behavior of the nanoconfined water is not truly achieved even in large reverse micelles.
Collapse
Affiliation(s)
- Riya Sett
- Department
of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Swagata Sen
- Department
of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Bijan K. Paul
- Department
of Chemistry, Mahadevananda Mahavidyalaya, Barrackpore, Kolkata 700120, India
| | - Nikhil Guchhait
- Department
of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
31
|
Differential interaction behaviors of an alkaloid drug with DMPG liposome membrane as a function of the phase state of the lipid: Nonionic surfactant-induced solubilization of the lipid. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.12.152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Gharat PM, Maity DK, Pal H, Dutta Choudhury S. Inhibition of the prototropic tautomerism in chrysazine by p-sulfonatocalixarene hosts. Org Biomol Chem 2018; 16:5178-5187. [DOI: 10.1039/c8ob00978c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study reveals the unusual inhibition of excited-state prototropic tautomerism of Chrysazine by p-sulfonatocalix[4,6]arene hosts.
Collapse
Affiliation(s)
- Poojan Milan Gharat
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
| | - Dilip Kumar Maity
- Homi Bhabha National Institute
- Training School Complex
- Mumbai 400094
- India
| | - Haridas Pal
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
- Homi Bhabha National Institute
| | - Sharmistha Dutta Choudhury
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
- Homi Bhabha National Institute
| |
Collapse
|
33
|
Chansen W, Salaeh R, Prommin C, Kerdpol K, Daengngern R, Kungwan N. Theoretical study on influence of geometry controlling over the excited-state intramolecular proton transfer of 10-hydroxybenzo[ h ]quinoline and its derivatives. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
34
|
Paul BK, Guchhait N, Bhattacharya SC. Binding of ciprofloxacin to bovine serum albumin: Photophysical and thermodynamic aspects. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 172:11-19. [DOI: 10.1016/j.jphotobiol.2017.04.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/24/2017] [Indexed: 12/15/2022]
|
35
|
Matsumoto H, Nishimura Y, Arai T. Excited-state intermolecular proton transfer dependent on the substitution pattern of anthracene–diurea compounds involved in fluorescent ON1–OFF–ON2 response by the addition of acetate ions. Org Biomol Chem 2017; 15:6575-6583. [DOI: 10.1039/c7ob01376k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Anthracene–diurea compounds exhibit different excited-state intermolecular proton transfer (ESIPT) reactions depending on the pattern of the substituents.
Collapse
Affiliation(s)
- Hisato Matsumoto
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
| | - Yoshinobu Nishimura
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
| | - Tatsuo Arai
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
| |
Collapse
|
36
|
Kundu N, Banerjee P, Dutta R, Kundu S, Saini RK, Halder M, Sarkar N. Proton Transfer Pathways of 2,2'-Bipyridine-3,3'-diol in pH Responsive Fatty Acid Self-Assemblies: Multiwavelength Fluorescence Lifetime Imaging in a Single Vesicle. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13284-13295. [PMID: 27951700 DOI: 10.1021/acs.langmuir.6b03404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fatty acids are known to form different supramolecular aggregates in aqueous solutions depending on the pH of the medium. The dynamics of the transformation of oleate micelles into oleic acid/oleate vesicles has been investigated using a pH-sensitive intramolecular proton transfer fluorophore, 2,2'-bipyridine-3,3'-diol [BP(OH)2]. Different prototropic forms of BP(OH)2 exist in different pH values of the system, and thus, the ground state and the excited state dynamics of BP(OH)2 have been modulated in these confined media. The formation of different tautomeric forms of BP(OH)2 in oleate micelles (at basic pH) is confirmed using time-resolved emission spectra and fluorescence anisotropy measurements. The hydrophobic environment provided by these assemblies reduces the water-assisted nonradiative decay channels and lengthens the fluorescence lifetime of BP(OH)2. The rotational relaxation time in the micellar assembly is higher than that in the vesicle, which may be due to the higher microviscosity sensed by the fluorophore in the micelle. Besides, we have shown for the first time that BP(OH)2 can be used as a membrane-bound fluorophore, using fluorescence lifetime imaging microscopy (FLIM). A broad distribution in the size of the vesicle is observed from the FLIM image. Further, we have used multiwavelength FLIM to collect the FLIM images of a single vesicle at different emission wavelengths, and the lifetime distribution obtained from the FLIM images at different emission wavelengths in a single vesicle correlates well with the lifetime values obtained from the ensemble average measurements in the bulk solution.
Collapse
Affiliation(s)
- Niloy Kundu
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, West Bengal, India
| | - Pavel Banerjee
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, West Bengal, India
| | - Rupam Dutta
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, West Bengal, India
| | - Sangita Kundu
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, West Bengal, India
| | - Rajesh Kumar Saini
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, West Bengal, India
| | - Mintu Halder
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, West Bengal, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, West Bengal, India
| |
Collapse
|
37
|
Sett R, Ganguly A, Guchhait N. Effect of the binding interaction of an emissive niacin derivative on the conformation and activity of a model plasma protein: A spectroscopic and simulation-based approach. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 164:141-150. [DOI: 10.1016/j.jphotobiol.2016.09.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 02/04/2023]
|
38
|
Jadhao M, Meitei OR, Joshi R, Kumar H, Das C, Ghosh SK. ESIPT reaction of potential bioactive heterocyclic Schiff base: Atomic visualization coupled with in vitro spectroscopy. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2016.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Janakipriya S, Tamilmani S, Thennarasu S. A novel 2-(2′-aminophenyl)benzothiazole derivative displays ESIPT and permits selective detection of Zn2+ ions: experimental and theoretical studies. RSC Adv 2016. [DOI: 10.1039/c6ra09713h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Synthesis of a novel 2-(2′-aminophenyl)benzothiazole based probe (1) and demonstration of excited state intramolecular proton transfer (ESIPT) with a large Stokes shift (∼246 nm) are presented.
Collapse
Affiliation(s)
- Subramaniyan Janakipriya
- Organic and Bioorganic Chemistry Laboratory
- CSIR-Central Leather Research Institute
- Chennai-600 020
- India
| | | | - Sathiah Thennarasu
- Organic and Bioorganic Chemistry Laboratory
- CSIR-Central Leather Research Institute
- Chennai-600 020
- India
| |
Collapse
|
40
|
Paul BK, Ghosh N, Mukherjee S. Interplay of Multiple Interaction Forces: Binding of Norfloxacin to Human Serum Albumin. J Phys Chem B 2015; 119:13093-102. [DOI: 10.1021/acs.jpcb.5b08147] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bijan K. Paul
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya
Pradesh, India
| | - Narayani Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya
Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya
Pradesh, India
| |
Collapse
|
41
|
Kumar H, Devaraji V, Prasath R, Jadhao M, Joshi R, Bhavana P, Ghosh SK. Groove binding mediated structural modulation and DNA cleavage by quinoline appended chalcone derivative. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 151:605-615. [PMID: 26163783 DOI: 10.1016/j.saa.2015.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 06/04/2023]
Abstract
The present study embodies the detail DNA binding interaction of a potential bioactive quinoline appended chalcone derivative (E)-3-(anthracen-10-yl)-1-(6,8-dibromo-2-methylquinolin-3-yl)prop-2-en-1-one (ADMQ) with calf thymus DNA (ctDNA) and its consequences by UV-Vis absorption, steady state fluorescence spectroscopy, fluorescence anisotropy, circular dichromism, helix melting, agarose gel electrophoresis, molecular docking, Induced Fit Docking (IFD) and molecular dynamics (MD) simulation. The UV-Vis absorption and fluorescence study reveal that the molecule undergoes considerable interaction with the nucleic acid. The control KI quenching experiment shows the lesser accessibility of ADMQ molecule to the ionic quencher (I(-)) in presence of ctDNA as compared to the bulk aqueous phase. Insignificant change in helix melting temperature as well as in circular dichromism (CD) spectra points toward non-covalent groove binding interaction. The moderate rotational confinement of this chalcone derivative (anisotropy=0.106) trapped in the nucleic acid environment, the comparative displacement assay with well-known minor groove binder Hoechst 33258 and intercalator Ethidium Bromide establishes the minor groove binding interactions of the probe molecule. Molecular docking, IFD and MD simulation reveal that the DNA undergoes prominent morphological changes in terms of helix unwinding and bending to accommodate ADMQ in a crescent shape at an angle of 110° in a sequence specific manner. During interaction, ADMQ rigidifies and bends the sugar phosphate backbone of the nucleic acid and thereby shortens its overall length by 3.02Å. Agarose gel electrophoresis experiment with plasmid pBR 322 reveals that the groove binded ADMQ result in a concentration dependent cleavage of plasmid DNA into its supercoiled and nicked circular form. The consolidated spectroscopic research described herein provides quantitative insight into the interaction of a heterocyclic chalcone derivative with relevant target nucleic acid, which may be useful for the future research on chalcone based therapeutic agents.
Collapse
Affiliation(s)
- Himank Kumar
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra 440010, India
| | - Vinod Devaraji
- Department of Pharmaceutical Chemistry, College of Pharmacy, Madras Medical College, Chennai 600003, India
| | - Rangaraj Prasath
- Department of Chemistry, BITS-Pilani, K.K. Birla Goa Campus, Zuarinagar, Goa 403726, India
| | - Manojkumar Jadhao
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra 440010, India
| | - Ritika Joshi
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra 440010, India
| | - Purushothaman Bhavana
- Department of Chemistry, BITS-Pilani, K.K. Birla Goa Campus, Zuarinagar, Goa 403726, India
| | - Sujit Kumar Ghosh
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra 440010, India.
| |
Collapse
|
42
|
Smith TA, Ghiggino KP. A review of the analysis of complex time-resolved fluorescence anisotropy data. Methods Appl Fluoresc 2015; 3:022001. [DOI: 10.1088/2050-6120/3/2/022001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Gong Y, Lu Y, Ma H, Ding G, Zhang S, Luo Z, Li H, Gao F. Efficient enhancement of internal proton transfer of branched π-extended organic chromophore under one-photon and near-infrared two-photon irradiation. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2014.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Paul BK, Ganguly A, Guchhait N. Quantum chemical exploration of the intramolecular hydrogen bond interaction in 2-thiazol-2-yl-phenol and 2-benzothiazol-2-yl-phenol in the context of excited-state intramolecular proton transfer: a focus on the covalency in hydrogen bond. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 131:72-81. [PMID: 24820325 DOI: 10.1016/j.saa.2014.03.124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/25/2014] [Accepted: 03/29/2014] [Indexed: 06/03/2023]
Abstract
The present work demonstrates a computational exploration of the intramolecular H-bond (IMHB) interaction in two model heterocyclic compounds - 2-thiazol-2-yl-phenol (2T2YP) and 2-benzothiazol-2-yl-phenol (2B2YP) by meticulous application of various quantum chemical tools. Major emphasis is rendered on the analysis of IMHB interaction by calculation of electron density ρ(r) and Laplacian ∇(2)ρ(r) at the bond critical point using the Atoms-In-Molecule methodology. Topological features based on ρ(r) suggest that at equilibrium geometry the IMHB interaction develops certain characteristics typical of a covalent interaction. The interplay between aromaticity and Resonance-Assisted H-Bond (RAHB) has also been discussed using both geometrical and magnetic criteria. The occurrence of IMHB interaction in 2T2YP and 2B2YP has also been criticized under the provision of the Natural Bond Orbital (NBO) analysis. The ESIPT phenomenon in the molecular systems is also critically addressed on the lexicon of potential energy surface (PES) analysis.
Collapse
Affiliation(s)
- Bijan Kumar Paul
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Calcutta 700009, India
| | - Aniruddha Ganguly
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Calcutta 700009, India
| | - Nikhil Guchhait
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Calcutta 700009, India.
| |
Collapse
|
45
|
Banerjee C, Maiti S, Mustafi M, Kuchlyan J, Banik D, Kundu N, Dhara D, Sarkar N. Effect of encapsulation of curcumin in polymeric nanoparticles: how efficient to control ESIPT process? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:10834-44. [PMID: 25148375 DOI: 10.1021/la5023533] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This paper demonstrates the photophysics of curcumin inside polymeric nanoparticles (NPs), which are being recently used as targeted drug delivery vehicles. For this purpose, we have prepared three polymeric NPs by ultrasonication method from three well-defined water-insoluble random copolymers. These copolymers having various degrees of hydrophobicity were synthesized via reversible addition-fragmentation transfer (RAFT) method using styrene and three different functional monomers, namely, 2-hydroxyethyl acrylate, 4-formylphenyl acrylate, and 4-vinylbenzyl chloride. The photophysics of the curcumin molecules inside the polymeric NPs have been monitored by applying tools like steady state and time-resolved fluorescence spectroscopy. An increase in fluorescence intensity along with an increase in the lifetime values indicated a perturbation of the excited state intramolecular proton transfer (ESIPT) process of curcumin inside the polymeric NPs.
Collapse
Affiliation(s)
- Chiranjib Banerjee
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, WB India
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Banik D, Kuchlyan J, Roy A, Kundu N, Sarkar N. Stimuli-Sensitive Breathing of Cucurbit[7]uril Cavity: Monitoring through the Environment Responsive Fluorescence of 1′-Hydroxy-2′-acetonaphthone (HAN). J Phys Chem B 2014; 119:2310-22. [DOI: 10.1021/jp5064879] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Debasis Banik
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Jagannath Kuchlyan
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Arpita Roy
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Niloy Kundu
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| |
Collapse
|
47
|
Ray D, Kundu A, Pramanik A, Guchhait N. Exploring the Interaction of a Micelle Entrapped Biologically Important Proton Transfer Probe with the Model Transport Protein Bovine Serum Albumin. J Phys Chem B 2014; 119:2168-79. [DOI: 10.1021/jp504037y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Debarati Ray
- Department of Chemistry, University of Calcutta, 92 A. P. C.
Road, Kolkata, 700009, India
| | - Ashis Kundu
- Department of Chemistry, University of Calcutta, 92 A. P. C.
Road, Kolkata, 700009, India
| | - Animesh Pramanik
- Department of Chemistry, University of Calcutta, 92 A. P. C.
Road, Kolkata, 700009, India
| | - Nikhil Guchhait
- Department of Chemistry, University of Calcutta, 92 A. P. C.
Road, Kolkata, 700009, India
| |
Collapse
|
48
|
Manna A, Sayed M, Kumar A, Pal H. Atypical Energetic and Kinetic Course of Excited-State Intramolecular Proton Transfer (ESIPT) in Room-Temperature Protic Ionic Liquids. J Phys Chem B 2014; 118:2487-98. [DOI: 10.1021/jp500281z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Arpan Manna
- Physical and Material
Chemistry Division, National Chemical Laboratory, H. J. Bhabha Road, Pune 411 008, India
| | - Mhejabeen Sayed
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Anil Kumar
- Physical and Material
Chemistry Division, National Chemical Laboratory, H. J. Bhabha Road, Pune 411 008, India
| | - Haridas Pal
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| |
Collapse
|
49
|
Chakraborty S, Basu S, Basak S. Effect of β-cyclodextrin on the molecular properties of myricetin upon nano-encapsulation: Insight from optical spectroscopy and quantum chemical studies. Carbohydr Polym 2014; 99:116-25. [DOI: 10.1016/j.carbpol.2013.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 07/10/2013] [Accepted: 08/04/2013] [Indexed: 10/26/2022]
|
50
|
Sarkar D, Pramanik AK, Mondal TK. Synthesis, crystal structure and spectral properties of 2-[(1-Methyl-2-benzimidazolyl)azo]-p-cresol: an experimental and theoretical study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 115:421-425. [PMID: 23867644 DOI: 10.1016/j.saa.2013.06.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/06/2013] [Accepted: 06/12/2013] [Indexed: 06/02/2023]
Abstract
2-[(1-Methyl-2-benzimidazolyl)azo]-p-cresol (HL), containing phenolic-OH function and benzimidazole moiety has been synthesized and characterized. The chemical, electronic structure and photophysical properties have been studied by spectroscopic analysis abetted with DFT and TDDFT calculations. The change in electronic spectra of HL by titration with aq. NaOH is studied and well supported by TDDFT calculations. The structure is confirmed by single crystal X-ray study. In the unit cell, two HL molecules are H-bonded with H2O molecule and forms dimmeric structure. The molecule forms 2D-supramolecular structure by inter-molecular H-bonding and π-π interactions.
Collapse
Affiliation(s)
- Deblina Sarkar
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | | | | |
Collapse
|