1
|
Zhou S, Li F, Lai Z, Wu X, Yuan J, Wu W, Ding Q, Wang X, Dai J, Xu Q, Lu Y. Met343Val mutation disrupts the shuttling of Trp380 leading to a low-activity conformer of activated protein C and causes thrombosis. J Thromb Haemost 2024; 22:2270-2280. [PMID: 38788977 DOI: 10.1016/j.jtha.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Protein C (PC) pathway serves as a major defense mechanism against thrombosis by the activation of PC through the thrombin-thrombomodulin complex and subsequent inactivation of the activated factor (F)V (FVa) and FVIII (FVIIIa) with the assistance of protein S, thereby contributing to hemostatic balance. We identified 2 unrelated patients who suffered from recurrent thrombosis and carried the same heterozygous mutation c.1153A>G, p.Met343Val (M343V), in PROC gene. This mutation had not been previously reported. OBJECTIVES To explore the molecular basis underlying the anticoagulant defect in patients carrying the M343V mutation in PROC. METHODS We expressed PC-M343V variant in mammalian cells and characterized its properties through coagulation assays. RESULTS Our findings demonstrated that while activation of mutant zymogen by thrombin-thrombomodulin complex was slightly affected, cleavage of chromogenic substrate by APC-M343V was significantly impaired. However, Ca2+ increased the cleavage efficiency by approximately 50%. Additionally, there was a severe reduction in affinity between APC-M343V and Na+. Furthermore, the inhibitory ability of APC-M343V toward FVa was markedly impaired. Structural and simulation analyses suggested that Val343 might disrupt the potential hydrogen bonds with Trp380 and cause Trp380 to orient closer to His211, potentially interfering with substrate binding and destabilizing the catalytic triad of APC. CONCLUSION The M343V mutation in patients adversely affects the reactivity and/or folding of the active site as well as the binding of the physiological substrate to the protease, resulting in impaired protein C anticoagulant activity and ultimately leading to thrombosis.
Collapse
Affiliation(s)
- Shijie Zhou
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Li
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhe Lai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junwei Yuan
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenman Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Dai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qin Xu
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Yeling Lu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Sharma N, Patel SN, Rai AK, Singh SP. Biochemical characterization of a novel acid-active endopolygalacturonase for pectin depolymerization, pectic-oligomer production, and fruit juice clarification. Int J Biol Macromol 2024; 267:131565. [PMID: 38614184 DOI: 10.1016/j.ijbiomac.2024.131565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/18/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Endopolygalacturonases are crucial pectinases known for their efficient and sustainable pectin depolymerization activities. The present study identified a novel gene encoding endopolygalacturonase from an acidic mine tailing metagenome. The putative gene showed a maximum identity of 67.55 % with an uncharacterized peptide sequence from Flavobacterium fluvii. The gene was cloned and expressed in a heterologous host, E. coli. Biochemical characterization of the novel endopolygalacturonase enzyme variant (EPHM) showed maximum activity at 60 °C and at 5.0 pH, while retaining 50 % activity under the temperature and pH range of 20 °C to 70 °C for 6 h, and 3.0 to 10.0 for 3 h, respectively. The enzyme exhibited tolerance to different metal ions. EPHM was characterized for the depolymerization of methylated pectin into pectic oligosaccharides. Further, its utility was established for fruit juice clarification, as endorsed by high transmittance, significant viscosity reduction, and release of reducing sugars in the treated fruit juice samples.
Collapse
Affiliation(s)
- Nitish Sharma
- Center of Innovative and Applied Bioprocessing, Biotechnology Research and Innovation Council (Department of Biotechnology, Government of India), NABI, SAS Nagar, Sector 81, Mohali, India
| | - Satya N Patel
- Center of Innovative and Applied Bioprocessing, Biotechnology Research and Innovation Council (Department of Biotechnology, Government of India), NABI, SAS Nagar, Sector 81, Mohali, India
| | - Amit Kumar Rai
- National Agri-Food Biotechnology Institute, Biotechnology Research and Innovation Council (Department of Biotechnology, Government of India), SAS Nagar, Sector 81, Mohali, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing, Biotechnology Research and Innovation Council (Department of Biotechnology, Government of India), NABI, SAS Nagar, Sector 81, Mohali, India.
| |
Collapse
|
3
|
Ruben EA, Summers B, Rau MJ, Fitzpatrick JAJ, Di Cera E. Cryo-EM structure of the prothrombin-prothrombinase complex. Blood 2022; 139:3463-3473. [PMID: 35427420 PMCID: PMC9203702 DOI: 10.1182/blood.2022015807] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/30/2022] [Indexed: 11/23/2022] Open
Abstract
The intrinsic and extrinsic pathways of the coagulation cascade converge to a common step where the prothrombinase complex, comprising the enzyme factor Xa (fXa), the cofactor fVa, Ca2+ and phospholipids, activates the zymogen prothrombin to the protease thrombin. The reaction entails cleavage at 2 sites, R271 and R320, generating the intermediates prethrombin 2 and meizothrombin, respectively. The molecular basis of these interactions that are central to hemostasis remains elusive. We solved 2 cryogenic electron microscopy (cryo-EM) structures of the fVa-fXa complex, 1 free on nanodiscs at 5.3-Å resolution and the other bound to prothrombin at near atomic 4.1-Å resolution. In the prothrombin-fVa-fXa complex, the Gla domains of fXa and prothrombin align on a plane with the C1 and C2 domains of fVa for interaction with membranes. Prothrombin and fXa emerge from this plane in curved conformations that bring their protease domains in contact with each other against the A2 domain of fVa. The 672ESTVMATRKMHDRLEPEDEE691 segment of the A2 domain closes on the protease domain of fXa like a lid to fix orientation of the active site. The 696YDYQNRL702 segment binds to prothrombin and establishes the pathway of activation by sequestering R271 against D697 and directing R320 toward the active site of fXa. The cryo-EM structure provides a molecular view of prothrombin activation along the meizothrombin pathway and suggests a mechanism for cleavage at the alternative R271 site. The findings advance our basic knowledge of a key step of coagulation and bear broad relevance to other interactions in the blood.
Collapse
Affiliation(s)
- Eliza A Ruben
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | | | | | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging
- Department of Cell Biology and Physiology, and
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO; and
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| |
Collapse
|
4
|
Simulations suggest double sodium binding induces unexpected conformational changes in thrombin. J Mol Model 2022; 28:120. [PMID: 35419655 PMCID: PMC9186379 DOI: 10.1007/s00894-022-05076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
Abstract
Thrombin is a Na[Formula: see text]-activated serine protease existing in two forms targeted to procoagulant and anticoagulant activities, respectively. There is one Na[Formula: see text]-binding site that has been the focus of the study of the thrombin. However, molecular dynamics (MD) simulations suggest that there might be actually two Na[Formula: see text]-binding sites in thrombin and that Na[Formula: see text] ions can even bind to two sites simultaneously. In this study, we performed 12 independent 2-µs all-atom MD simulations for the wild-type (WT) thrombin and we studied the effects of the different Na[Formula: see text] binding modes on thrombin. From the root-mean-square fluctuations (RMSF) for the [Formula: see text]-carbons, we see that the atomic fluctuations mainly change in the 60s, 170s, and 220s loops, and the connection (residue 167 to 170). The correlation matrices for different binding modes suggest regions that may play an important role in thrombin's allosteric response and provide us a possible allosteric pathway for the sodium binding. Amorim-Hennig (AH) clustering tells us how the structure of the regions of interest changes on sodium binding. Principal component analysis (PCA) shows us how the different regions of thrombin change conformation together with sodium binding. Solvent-accessible surface area (SASA) exposes the conformational change in exosite I and catalytic triad. Finally, we argue that the double binding mode might be an inactive mode and that the kinetic scheme for the Na[Formula: see text] binding to thrombin might be a multiple-step mechanism rather than a 2-step mechanism.
Collapse
|
5
|
Pelc LA, Koester SK, Kukla CR, Chen Z, Di Cera E. The active site region plays a critical role in Na + binding to thrombin. J Biol Chem 2022; 298:101458. [PMID: 34861239 PMCID: PMC8695361 DOI: 10.1016/j.jbc.2021.101458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/23/2022] Open
Abstract
The catalytic activity of thrombin and other enzymes of the blood coagulation and complement cascades is enhanced significantly by binding of Na+ to a site >15 Å away from the catalytic residue S195, buried within the 180 and 220 loops that also contribute to the primary specificity of the enzyme. Rapid kinetics support a binding mechanism of conformational selection where the Na+-binding site is in equilibrium between open (N) and closed (N∗) forms and the cation binds selectively to the N form. Allosteric transduction of this binding step produces enhanced catalytic activity. Molecular details on how Na+ gains access to this site and communicates allosterically with the active site remain poorly defined. In this study, we show that the rate of the N∗→N transition is strongly correlated with the analogous E∗→E transition that governs the interaction of synthetic and physiologic substrates with the active site. This correlation supports the active site as the likely point of entry for Na+ to its binding site. Mutagenesis and structural data rule out an alternative path through the pore defined by the 180 and 220 loops. We suggest that the active site communicates allosterically with the Na+ site through a network of H-bonded water molecules that embeds the primary specificity pocket. Perturbation of the mobility of S195 and its H-bonding capabilities alters interaction with this network and influences the kinetics of Na+ binding and allosteric transduction. These findings have general mechanistic relevance for Na+-activated proteases and allosteric enzymes.
Collapse
Affiliation(s)
- Leslie A Pelc
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Sarah K Koester
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Cassandra R Kukla
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Zhiwei Chen
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
6
|
Madsen JJ, Olsen OH. Conformational Plasticity-Rigidity Axis of the Coagulation Factor VII Zymogen Elucidated by Atomistic Simulations of the N-Terminally Truncated Factor VIIa Protease Domain. Biomolecules 2021; 11:549. [PMID: 33917935 PMCID: PMC8068379 DOI: 10.3390/biom11040549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 11/22/2022] Open
Abstract
The vast majority of coagulation factor VII (FVII), a trypsin-like protease, circulates as the inactive zymogen. Activated FVII (FVIIa) is formed upon proteolytic activation of FVII, where it remains in a zymogen-like state and it is fully activated only when bound to tissue factor (TF). The catalytic domains of trypsin-like proteases adopt strikingly similar structures in their fully active forms. However, the dynamics and structures of the available corresponding zymogens reveal remarkable conformational plasticity of the protease domain prior to activation in many cases. Exactly how ligands and cofactors modulate the conformational dynamics and function of these proteases is not entirely understood. Here, we employ atomistic simulations of FVIIa (and variants hereof, including a TF-independent variant and N-terminally truncated variants) to provide fundamental insights with atomistic resolution into the plasticity-rigidity interplay of the protease domain conformations that appears to govern the functional response to proteolytic and allosteric activation. We argue that these findings are relevant to the FVII zymogen, whose structure has remained elusive despite substantial efforts. Our results shed light on the nature of FVII and demonstrate how conformational dynamics has played a crucial role in the evolutionary adaptation of regulatory mechanisms that were not present in the ancestral trypsin. Exploiting this knowledge could lead to engineering of protease variants for use as next-generation hemostatic therapeutics.
Collapse
Affiliation(s)
- Jesper J. Madsen
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| | - Ole H. Olsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology, University of Copenhagen, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark
| |
Collapse
|
7
|
Di Cera E. Mechanisms of ligand binding. BIOPHYSICS REVIEWS 2020; 1:011303. [PMID: 33313600 PMCID: PMC7714259 DOI: 10.1063/5.0020997] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/09/2020] [Indexed: 12/25/2022]
Abstract
Many processes in chemistry and biology involve interactions of a ligand with its molecular target. Interest in the mechanism governing such interactions has dominated theoretical and experimental analysis for over a century. The interpretation of molecular recognition has evolved from a simple rigid body association of the ligand with its target to appreciation of the key role played by conformational transitions. Two conceptually distinct descriptions have had a profound impact on our understanding of mechanisms of ligand binding. The first description, referred to as induced fit, assumes that conformational changes follow the initial binding step to optimize the complex between the ligand and its target. The second description, referred to as conformational selection, assumes that the free target exists in multiple conformations in equilibrium and that the ligand selects the optimal one for binding. Both descriptions can be merged into more complex reaction schemes that better describe the functional repertoire of macromolecular systems. This review deals with basic mechanisms of ligand binding, with special emphasis on induced fit, conformational selection, and their mathematical foundations to provide rigorous context for the analysis and interpretation of experimental data. We show that conformational selection is a surprisingly versatile mechanism that includes induced fit as a mathematical special case and even captures kinetic properties of more complex reaction schemes. These features make conformational selection a dominant mechanism of molecular recognition in biology, consistent with the rich conformational landscape accessible to biological macromolecules being unraveled by structural biology.
Collapse
Affiliation(s)
- Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| |
Collapse
|
8
|
Ruben EA, Gandhi PS, Chen Z, Koester SK, DeKoster GT, Frieden C, Di Cera E. 19F NMR reveals the conformational properties of free thrombin and its zymogen precursor prethrombin-2. J Biol Chem 2020; 295:8227-8235. [PMID: 32358061 PMCID: PMC7294081 DOI: 10.1074/jbc.ra120.013419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/28/2020] [Indexed: 11/06/2022] Open
Abstract
The conformational properties of trypsin-like proteases and their zymogen forms remain controversial because of a lack of sufficient information on their free forms. Specifically, it is unclear whether the free protease is zymogen-like and shifts to its mature form upon a ligand-induced fit or exists in multiple conformations in equilibrium from which the ligand selects the optimal fit via conformational selection. Here we report the results of 19F NMR measurements that reveal the conformational properties of a protease and its zymogen precursor in the free form. Using the trypsin-like, clotting protease thrombin as a relevant model system, we show that its conformation is quite different from that of its direct zymogen precursor prethrombin-2 and more similar to that of its fully active Na+-bound form. The results cast doubts on recent hypotheses that free thrombin is zymogen-like and transitions to protease-like forms upon ligand binding. Rather, they validate the scenario emerged from previous findings of X-ray crystallography and rapid kinetics supporting a pre-existing equilibrium between open (E) and closed (E*) forms of the active site. In this scenario, prethrombin-2 is more dynamic and exists predominantly in the E* form, whereas thrombin is more rigid and exists predominantly in the E form. Ligand binding to thrombin takes place exclusively in the E form without significant changes in the overall conformation. In summary, these results disclose the structural architecture of the free forms of thrombin and prethrombin-2, consistent with an E*-E equilibrium and providing no evidence that free thrombin is zymogen-like.
Collapse
Affiliation(s)
- Eliza A Ruben
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | | | - Zhiwei Chen
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Sarah K Koester
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Gregory T DeKoster
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carl Frieden
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Residues W215, E217 and E192 control the allosteric E*-E equilibrium of thrombin. Sci Rep 2019; 9:12304. [PMID: 31444378 PMCID: PMC6707225 DOI: 10.1038/s41598-019-48839-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/13/2019] [Indexed: 01/07/2023] Open
Abstract
A pre-existing, allosteric equilibrium between closed (E*) and open (E) conformations of the active site influences the level of activity in the trypsin fold and defines ligand binding according to the mechanism of conformational selection. Using the clotting protease thrombin as a model system, we investigate the molecular determinants of the E*-E equilibrium through rapid kinetics and X-ray structural biology. The equilibrium is controlled by three residues positioned around the active site. W215 on the 215-217 segment defining the west wall of the active site controls the rate of transition from E to E* through hydrophobic interaction with F227. E192 on the opposite 190-193 segment defining the east wall of the active site controls the rate of transition from E* to E through electrostatic repulsion of E217. The side chain of E217 acts as a lever that moves the entire 215-217 segment in the E*-E equilibrium. Removal of this side chain converts binding to the active site to a simple lock-and-key mechanism and freezes the conformation in a state intermediate between E* and E. These findings reveal a simple framework to understand the molecular basis of a key allosteric property of the trypsin fold.
Collapse
|
10
|
Metal-cation regulation of enzyme dynamics is a key factor influencing the activity of S-adenosyl-L-homocysteine hydrolase from Pseudomonas aeruginosa. Sci Rep 2018; 8:11334. [PMID: 30054521 PMCID: PMC6063907 DOI: 10.1038/s41598-018-29535-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/12/2018] [Indexed: 01/30/2023] Open
Abstract
S-adenosyl-l-homocysteine hydrolase from Pseudomonas aeruginosa (PaSAHase) coordinates one K+ ion and one Zn2+ ion in the substrate binding area. The cations affect the enzymatic activity and substrate binding but the molecular mechanisms of their action are unknown. Enzymatic and isothermal titration calorimetry studies demonstrated that the K+ ions stimulate the highest activity and strongest ligand binding in comparison to other alkali cations, while the Zn2+ ions inhibit the enzyme activity. PaSAHase was crystallized in the presence of adenine nucleosides and K+ or Rb+ ions. The crystal structures show that the alkali ion is coordinated in close proximity of the purine ring and a 23Na NMR study showed that the monovalent cation coordination site is formed upon ligand binding. The cation, bound in the area of a molecular hinge, orders and accurately positions the amide group of Q65 residue to allow its interaction with the ligand. Moreover, binding of potassium is required to enable unique dynamic properties of the enzyme that ensure its maximum catalytic activity. The Zn2+ ion is bound in the area of a molecular gate that regulates access to the active site. Zn2+ coordination switches the gate to a shut state and arrests the enzyme in its closed, inactive conformation.
Collapse
|
11
|
Chakraborty P, Acquasaliente L, Pelc LA, Di Cera E. Interplay between conformational selection and zymogen activation. Sci Rep 2018; 8:4080. [PMID: 29511224 PMCID: PMC5840343 DOI: 10.1038/s41598-018-21728-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/09/2018] [Indexed: 11/09/2022] Open
Abstract
Trypsin-like proteases are synthesized as zymogens and activated through a mechanism that folds the active site for efficient binding and catalysis. Ligand binding to the active site is therefore a valuable source of information on the changes that accompany zymogen activation. Using the physiologically relevant transition of the clotting zymogen prothrombin to the mature protease thrombin, we show that the mechanism of ligand recognition follows selection within a pre-existing ensemble of conformations with the active site accessible (E) or inaccessible (E*) to binding. Prothrombin exists mainly in the E* conformational ensemble and conversion to thrombin produces two dominant changes: a progressive shift toward the E conformational ensemble triggered by removal of the auxiliary domains upon cleavage at R271 and a drastic drop of the rate of ligand dissociation from the active site triggered by cleavage at R320. Together, these effects produce a significant (700-fold) increase in binding affinity. Limited proteolysis reveals how the E*-E equilibrium shifts during prothrombin activation and influences exposure of the sites of cleavage at R271 and R320. These new findings on the molecular underpinnings of prothrombin activation are relevant to other zymogens with modular assembly involved in blood coagulation, complement and fibrinolysis.
Collapse
Affiliation(s)
- Pradipta Chakraborty
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Laura Acquasaliente
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Leslie A Pelc
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA.
| |
Collapse
|
12
|
Gohara DW, Di Cera E. Molecular Mechanisms of Enzyme Activation by Monovalent Cations. J Biol Chem 2016; 291:20840-20848. [PMID: 27462078 DOI: 10.1074/jbc.r116.737833] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Regulation of enzymes through metal ion complexation is widespread in biology and underscores a physiological need for stability and high catalytic activity that likely predated proteins in the RNA world. In addition to divalent metals such as Ca2+, Mg2+, and Zn2+, monovalent cations often function as efficient and selective promoters of catalysis. Advances in structural biology unravel a rich repertoire of molecular mechanisms for enzyme activation by Na+ and K+ Strategies range from short-range effects mediated by direct participation in substrate binding, to more distributed effects that propagate long-range to catalytic residues. This review addresses general considerations and examples.
Collapse
Affiliation(s)
- David W Gohara
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Enrico Di Cera
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| |
Collapse
|
13
|
Ferruz N, Harvey MJ, Mestres J, De Fabritiis G. Insights from Fragment Hit Binding Assays by Molecular Simulations. J Chem Inf Model 2015; 55:2200-5. [DOI: 10.1021/acs.jcim.5b00453] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Noelia Ferruz
- Computational
Biophysics Laboratory (GRIB-IMIM), Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Doctor Aiguader 88, 08003 Barcelona, Barcelona, Spain
| | - Matthew J. Harvey
- Acellera, Barcelona
Biomedical Research Park (PRBB), Doctor
Aiguader 88, 08003, Barcelona, Barcelona, Spain
| | - Jordi Mestres
- Systems
Pharmacology, Research Program on Biomedical Informatics (GRIB), IMIM Hospital del Mar Medical Research Institute and Universitat Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona, Barcelona, Catalonia, Spain
| | - Gianni De Fabritiis
- Computational
Biophysics Laboratory (GRIB-IMIM), Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Doctor Aiguader 88, 08003 Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Passeig Lluis Companys 23, 08010 Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Pelc LA, Chen Z, Gohara DW, Vogt AD, Pozzi N, Di Cera E. Why Ser and not Thr brokers catalysis in the trypsin fold. Biochemistry 2015; 54:1457-64. [PMID: 25664608 DOI: 10.1021/acs.biochem.5b00014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Although Thr is equally represented as Ser in the human genome and as a nucleophile is as good as Ser, it is never found in the active site of the large family of trypsin-like proteases that utilize the Asp/His/Ser triad. The molecular basis of the preference of Ser over Thr in the trypsin fold was investigated with X-ray structures of the thrombin mutant S195T free and bound to an irreversible active site inhibitor. In the free form, the methyl group of T195 is oriented toward the incoming substrate in a conformation seemingly incompatible with productive binding. In the bound form, the side chain of T195 is reoriented for efficient substrate acylation without causing steric clash within the active site. Rapid kinetics prove that this change is due to selection of an active conformation from a preexisting ensemble of reactive and unreactive rotamers whose relative distribution determines the level of activity of the protease. Consistent with these observations, the S195T substitution is associated with a weak yet finite activity that allows identification of an unanticipated important role for S195 as the end point of allosteric transduction in the trypsin fold. The S195T mutation abrogates the Na(+)-dependent enhancement of catalytic activity in thrombin, activated protein C, and factor Xa and significantly weakens the physiologically important allosteric effects of thrombomodulin on thrombin and of cofactor Va on factor Xa. The evolutionary selection of Ser over Thr in trypsin-like proteases was therefore driven by the need for high catalytic activity and efficient allosteric regulation.
Collapse
Affiliation(s)
- Leslie A Pelc
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine , St. Louis, Missouri 63104, United States
| | | | | | | | | | | |
Collapse
|
15
|
Vogt AD, Pozzi N, Chen Z, Di Cera E. Essential role of conformational selection in ligand binding. Biophys Chem 2013; 186:13-21. [PMID: 24113284 DOI: 10.1016/j.bpc.2013.09.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 11/26/2022]
Abstract
Two competing and mutually exclusive mechanisms of ligand recognition - conformational selection and induced fit - have dominated our interpretation of ligand binding in biological macromolecules for almost six decades. Conformational selection posits the pre-existence of multiple conformations of the macromolecule from which the ligand selects the optimal one. Induced fit, on the other hand, postulates the existence of conformational rearrangements of the original conformation into an optimal one that are induced by binding of the ligand. In the former case, conformational transitions precede the binding event; in the latter, conformational changes follow the binding step. Kineticists have used a facile criterion to distinguish between the two mechanisms based on the dependence of the rate of relaxation to equilibrium, kobs, on the ligand concentration, [L]. A value of kobs decreasing hyperbolically with [L] has been seen as diagnostic of conformational selection, while a value of kobs increasing hyperbolically with [L] has been considered diagnostic of induced fit. However, this simple conclusion is only valid under the rather unrealistic assumption of conformational transitions being much slower than binding and dissociation events. In general, induced fit only produces values of kobs that increase with [L] but conformational selection is more versatile and is associated with values of kobs that increase with, decrease with or are independent of [L]. The richer repertoire of kinetic properties of conformational selection applies to kinetic mechanisms with single or multiple saturable relaxations and explains the behavior of nearly all experimental systems reported in the literature thus far. Conformational selection is always sufficient and often necessary to account for the relaxation kinetics of ligand binding to a biological macromolecule and is therefore an essential component of any binding mechanism. On the other hand, induced fit is never necessary and only sufficient in a few cases. Therefore, the long assumed importance and preponderance of induced fit as a mechanism of ligand binding should be reconsidered.
Collapse
Affiliation(s)
- Austin D Vogt
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States
| | - Zhiwei Chen
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States.
| |
Collapse
|
16
|
Vogt AD, Di Cera E. Conformational selection is a dominant mechanism of ligand binding. Biochemistry 2013; 52:5723-9. [PMID: 23947609 DOI: 10.1021/bi400929b] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular recognition in biological macromolecules is achieved by binding interactions coupled to conformational transitions that precede or follow the binding step, two limiting mechanisms known as conformational selection and induced fit, respectively. Sorting out the contribution of these mechanisms to any binding interaction remains a challenging task of general interest in biochemistry. Here we show that conformational selection is associated with a vast repertoire of kinetic behaviors, can never be disproved a priori as a mechanism of ligand binding, and is sufficient to explain the relaxation kinetics documented experimentally for a large number of systems. On the other hand, induced fit features a narrow spectrum of kinetic behaviors and can be disproved in many cases in which conformational selection offers the only possible explanation. This conclusion offers a paradigm shift in the analysis of relaxation kinetics, with conformational selection acquiring preeminence as a mechanism of ligand binding. The dominant role of conformational selection supports the emerging structural view of the macromolecule as a conformational ensemble from which the ligand selects the initial optimal fit to produce a biological response.
Collapse
Affiliation(s)
- Austin D Vogt
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Missouri 63104, United States
| | | |
Collapse
|
17
|
Vogt AD, Di Cera E. Conformational selection or induced fit? A critical appraisal of the kinetic mechanism. Biochemistry 2012; 51:5894-902. [PMID: 22775458 DOI: 10.1021/bi3006913] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For almost five decades, two competing mechanisms of ligand recognition, conformational selection and induced fit, have dominated our interpretation of ligand binding in biological macromolecules. When binding-dissociation events are fast compared to conformational transitions, the rate of approach to equilibrium, k(obs), becomes diagnostic of conformational selection or induced fit based on whether it decreases or increases, respectively, with the ligand concentration, [L]. However, this simple conclusion based on the rapid equilibrium approximation is not valid in general. Here we show that conformational selection is associated with a rich repertoire of kinetic properties, with k(obs) decreasing or increasing with [L] depending on the relative magnitude of the rate of ligand dissociation, k(off), and the rate of conformational isomerization, k(r). We prove that, even for the simplest two-step mechanism of ligand binding, a decrease in k(obs) with [L] is unequivocal evidence of conformational selection, but an increase in k(obs) with [L] is not unequivocal evidence of induced fit. Ligand binding to glucokinase, thrombin, and its precursor prethrombin-2 are used as relevant examples. We conclude that conformational selection as a mechanism for a ligand binding to its target may be far more common than currently believed.
Collapse
Affiliation(s)
- Austin D Vogt
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | |
Collapse
|
18
|
Pozzi N, Vogt AD, Gohara DW, Di Cera E. Conformational selection in trypsin-like proteases. Curr Opin Struct Biol 2012; 22:421-31. [PMID: 22664096 DOI: 10.1016/j.sbi.2012.05.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/08/2012] [Accepted: 05/10/2012] [Indexed: 01/30/2023]
Abstract
For over four decades, two competing mechanisms of ligand recognition--conformational selection and induced-fit--have dominated our interpretation of protein allostery. Defining the mechanism broadens our understanding of the system and impacts our ability to design effective drugs and new therapeutics. Recent kinetics studies demonstrate that trypsin-like proteases exist in equilibrium between two forms: one fully accessible to substrate (E) and the other with the active site occluded (E*). Analysis of the structural database confirms existence of the E* and E forms and vouches for the allosteric nature of the trypsin fold. Allostery in terms of conformational selection establishes an important paradigm in the protease field and enables protein engineers to expand the repertoire of proteases as therapeutics.
Collapse
Affiliation(s)
- Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States
| | | | | | | |
Collapse
|
19
|
Allostery in trypsin-like proteases suggests new therapeutic strategies. Trends Biotechnol 2011; 29:577-85. [PMID: 21726912 DOI: 10.1016/j.tibtech.2011.06.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 05/19/2011] [Accepted: 06/02/2011] [Indexed: 11/21/2022]
Abstract
Trypsin-like proteases (TLPs) are a large family of enzymes responsible for digestion, blood coagulation, fibrinolysis, development, fertilization, apoptosis and immunity. A current paradigm posits that the irreversible transition from an inactive zymogen to the active protease form enables productive interaction with substrate and catalysis. Analysis of the entire structural database reveals two distinct conformations of the active site: one fully accessible to substrate (E) and the other occluded by the collapse of a specific segment (E*). The allosteric E*-E equilibrium provides a reversible mechanism for activity and regulation in addition to the irreversible zymogen to protease conversion and points to new therapeutic strategies aimed at inhibiting or activating the enzyme. In this review, we discuss relevant examples, with emphasis on the rational engineering of anticoagulant thrombin mutants.
Collapse
|
20
|
Niu W, Chen Z, Gandhi PS, Vogt AD, Pozzi N, Pelc LA, Zapata F, Di Cera E. Crystallographic and kinetic evidence of allostery in a trypsin-like protease. Biochemistry 2011; 50:6301-7. [PMID: 21707111 DOI: 10.1021/bi200878c] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein allostery is based on the existence of multiple conformations in equilibrium linked to distinct functional properties. Although evidence of allosteric transitions is relatively easy to identify by functional studies, structural detection of a pre-existing equilibrium between alternative conformations remains challenging even for textbook examples of allosteric proteins. Kinetic studies show that the trypsin-like protease thrombin exists in equilibrium between two conformations where the active site is either collapsed (E*) or accessible to substrate (E). However, structural demonstration that the two conformations exist in the same enzyme construct free of ligands has remained elusive. Here we report the crystal structure of the thrombin mutant N143P in the E form, which complements the recently reported structure in the E* form, and both the E and E* forms of the thrombin mutant Y225P. The side chain of W215 moves 10.9 Å between the two forms, causing a displacement of 6.6 Å of the entire 215-217 segment into the active site that in turn opens or closes access to the primary specificity pocket. Rapid kinetic measurements of p-aminobenzamidine binding to the active site confirm the existence of the E*-E equilibrium in solution for wild-type and the mutants N143P and Y225P. These findings provide unequivocal proof of the allosteric nature of thrombin and lend strong support to the recent proposal that the E*-E equilibrium is a key property of the trypsin fold.
Collapse
Affiliation(s)
- Weiling Niu
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Pozzi N, Chen R, Chen Z, Bah A, Di Cera E. Rigidification of the autolysis loop enhances Na(+) binding to thrombin. Biophys Chem 2011; 159:6-13. [PMID: 21536369 DOI: 10.1016/j.bpc.2011.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/04/2011] [Accepted: 04/04/2011] [Indexed: 01/09/2023]
Abstract
Binding of Na(+) to thrombin ensures high activity toward physiological substrates and optimizes the procoagulant and prothrombotic roles of the enzyme in vivo. Under physiological conditions of pH and temperature, the binding affinity of Na(+) is weak due to large heat capacity and enthalpy changes associated with binding, and the K(d)=80 mM ensures only 64% saturation of the site at the concentration of Na(+) in the blood (140 mM). Residues controlling Na(+) binding and activation have been identified. Yet, attempts to improve the interaction of Na(+) with thrombin and possibly increase catalytic activity under physiological conditions have so far been unsuccessful. Here we report how replacement of the flexible autolysis loop of human thrombin with the homologous rigid domain of the murine enzyme results in a drastic (up to 10-fold) increase in Na(+) affinity and a significant improvement in the catalytic activity of the enzyme. Rigidification of the autolysis loop abolishes the heat capacity change associated with Na(+) binding observed in the wild-type and also increases the stability of thrombin. These findings have general relevance to protein engineering studies of clotting proteases and trypsin-like enzymes.
Collapse
Affiliation(s)
- Nicola Pozzi
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
Prothrombin is the zymogen precursor of the clotting enzyme thrombin, which is generated by two sequential cleavages at R271 and R320 by the prothrombinase complex. The structure of prothrombin is currently unknown. Prethrombin-1 differs from prothrombin for the absence of 155 residues in the N-terminal domain and is composed of a single polypeptide chain containing fragment 2 (residues 156-271), A chain (residues 272-320), and B chain (residues 321-579). The X-ray crystal structure of prethrombin-1 solved at 2.2-Å resolution shows an overall conformation significantly different (rmsd = 3.6 Å) from that of its active form meizothrombin desF1 carrying a cleavage at R320. Fragment 2 is rotated around the y axis by 29° and makes only few contacts with the B chain. In the B chain, the oxyanion hole is disrupted due to absence of the I16-D194 ion pair and the Na(+) binding site and adjacent primary specificity pocket are highly perturbed. A remarkable feature of the structure is that the autolysis loop assumes a helical conformation enabling W148 and W215, located 17 Å apart in meizothrombin desF1, to come within 3.3 Å of each other and completely occlude access to the active site. These findings suggest that the zymogen form of thrombin possesses conformational plasticity comparable to that of the mature enzyme and have significant implications for the mechanism of prothrombin activation and the zymogen → protease conversion in trypsin-like proteases.
Collapse
|