1
|
Beck WF. Intramolecular charge transfer and the function of vibronic excitons in photosynthetic light harvesting. PHOTOSYNTHESIS RESEARCH 2024; 162:139-156. [PMID: 38656684 DOI: 10.1007/s11120-024-01095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
A widely discussed explanation for the prevalence of pairs or clusters of closely spaced electronic chromophores in photosynthetic light-harvesting proteins is the presence of ultrafast and highly directional excitation energy transfer pathways mediated by vibronic excitons, the delocalized optical excitations derived from mixing of the electronic and vibrational states of the chromophores. We discuss herein the hypothesis that internal conversion processes between exciton states on the <100 fs timescale are possible when the excitonic potential energy surfaces are controlled by the vibrational modes that induce charge transfer character in a strongly coupled system of chromophores. We discuss two examples, the peridinin-chlorophyll protein from marine dinoflagellates and the intact phycobilisome from cyanobacteria, in which the intramolecular charge-transfer (ICT) character arising from out-of-plane distortion of the conjugation of carotenoid or bilin chromophores also results in localization of the initially delocalized optical excitation on the vibrational timescale. Tuning of the ground state conformations of the chromophores to manipulate their ICT character provides a natural photoregulatory mechanism, which would control the overall quantum yield of excitation energy transfer by turning on and off the delocalized character of the optical excitations.
Collapse
Affiliation(s)
- Warren F Beck
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
2
|
Mohan T M N, Leslie CH, Sil S, Rose JB, Tilluck RW, Beck WF. Broadband 2DES detection of vibrational coherence in the S x state of canthaxanthin. J Chem Phys 2021; 155:035103. [PMID: 34293883 DOI: 10.1063/5.0055598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The nonadiabatic mechanism that mediates nonradiative decay of the bright S2 state to the dark S1 state of carotenoids involves population of a bridging intermediate state, Sx, in several examples. The nature of Sx remains to be determined definitively, but it has been recently suggested that Sx corresponds to conformationally distorted molecules evolving along out-of-plane coordinates of the isoprenoid backbone near a low barrier between planar and distorted conformations on the S2 potential surface. In this study, the electronic and vibrational dynamics accompanying the formation of Sx in toluene solutions of the ketocarotenoid canthaxanthin (CAN) are characterized with broadband two-dimensional electronic spectroscopy (2DES) with 7.8 fs excitation pulses and detection of the linear polarization components of the third-order nonlinear optical signal. A stimulated-emission cross peak in the 2DES spectrum accompanies the formation of Sx in <20 fs following excitation of the main absorption band. Sx is prepared instantaneously, however, with excitation of hot-band transitions associated with distorted conformations of CAN's isoprenoid backbone in the low frequency onset of the main absorption band. Vibrational coherence oscillation maps and modulated anisotropy transients show that Sx undergoes displacements from the Franck-Condon S2 state along out-of-plane coordinates as it passes to the S1 state. The results are consistent with the conclusion that CAN's carbonyl-substituted β-ionone rings impart an intramolecular charge-transfer character that frictionally slows the passage from Sx to S1 compared to carotenoids lacking carbonyl substitution. Despite the longer lifetime, the S1 state of CAN is formed with retention of vibrational coherence after passing through a conical intersection seam with the Sx state.
Collapse
Affiliation(s)
- Nila Mohan T M
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA
| | - Chase H Leslie
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA
| | - Sourav Sil
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA
| | - Justin B Rose
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA
| | - Ryan W Tilluck
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA
| | - Warren F Beck
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA
| |
Collapse
|
3
|
Santoro F, Green JA, Martinez-Fernandez L, Cerezo J, Improta R. Quantum and semiclassical dynamical studies of nonadiabatic processes in solution: achievements and perspectives. Phys Chem Chem Phys 2021; 23:8181-8199. [PMID: 33875988 DOI: 10.1039/d0cp05907b] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We concisely review the main methodological approaches to model nonadiabatic dynamics in isotropic solutions and their applications. Three general classes of models are identified as the most used to include solvent effects in the simulations. The first model describes the solvent as a set of harmonic collective modes coupled to the solute degrees of freedom, and the second as a continuum, while the third explicitly includes solvent molecules in the calculations. The issues related to the use of these models in semiclassical and quantum dynamical simulations are discussed, as well as the main limitations and perspectives of each approach.
Collapse
Affiliation(s)
- Fabrizio Santoro
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy.
| | - James A Green
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), via Mezzocannone 16, I-80136 Napoli, Italy.
| | - Lara Martinez-Fernandez
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, 28049 Madrid, Spain
| | - Javier Cerezo
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, 28049 Madrid, Spain
| | - Roberto Improta
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), via Mezzocannone 16, I-80136 Napoli, Italy.
| |
Collapse
|
4
|
Roy P, Sardjan AS, Danowski W, Browne WR, Feringa BL, Meech SR. Photophysics of First-Generation Photomolecular Motors: Resolving Roles of Temperature, Friction, and Medium Polarity. J Phys Chem A 2021; 125:1711-1719. [PMID: 33606528 DOI: 10.1021/acs.jpca.0c11050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Light-driven unidirectional molecular rotary motors have the potential to power molecular machines. Consequently, optimizing their speed and efficiency is an important objective. Here, we investigate factors controlling the photochemical yield of the prototypical unidirectional rotary motor, a sterically overcrowded alkene, through detailed investigation of its excited-state dynamics. An isoviscosity analysis of the ultrafast fluorescence decay data resolves friction from barrier effects and reveals a 3.4 ± 0.5 kJ mol-1 barrier to excited-state decay in nonpolar media. Extension of this analysis to polar solvents shows that this barrier height is a strong function of medium polarity and that the decay pathway becomes near barrierless in more polar media. Thus, the properties of the medium can be used as a route for controlling the motor's excited-state dynamics. The connection between these dynamics and the quantum yield of photochemical isomerization is probed. The photochemical quantum yield is shown to be a much weaker function of solvent polarity, and the most efficient excited-state decay pathway does not lead to a strongly enhanced quantum yield for isomerization. These results are discussed in terms of the solvent dependence of the complex multidimensional excited-state reaction coordinate.
Collapse
Affiliation(s)
- Palas Roy
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Andy S Sardjan
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Wojciech Danowski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Wesley R Browne
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| |
Collapse
|
5
|
Gurchiek JK, Rose JB, Guberman-Pfeffer MJ, Tilluck RW, Ghosh S, Gascón JA, Beck WF. Fluorescence Anisotropy Detection of Barrier Crossing and Ultrafast Conformational Dynamics in the S 2 State of β-Carotene. J Phys Chem B 2020; 124:9029-9046. [PMID: 32955881 DOI: 10.1021/acs.jpcb.0c06961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carotenoids are usually only weakly fluorescent despite being very strong absorbers in the mid-visible region because their first two excited singlet states, S1 and S2, have very short lifetimes. To probe the structural mechanisms that promote the nonradiative decay of the S2 state to the S1 state, we have carried out a series of fluorescence lineshape and anisotropy measurements with a prototype carotenoid, β-carotene, in four aprotic solvents. The anisotropy values observed in the fluorescence emission bands originating from the S2 and S1 states reveal that the large internal rotations of the emission transition dipole moment, as much as 50° relative to that of the absorption transition dipole moment, are initiated during ultrafast evolution on the S2 state potential energy surface and persist upon nonradiative decay to the S1 state. Electronic structure calculations of the orientation of the transition dipole moment account for the anisotropy results in terms of torsional and pyramidal distortions near the center of the isoprenoid backbone. The excitation wavelength dependence of the fluorescence anisotropy indicates that these out-of-plane conformational motions are initiated by passage over a low-activation energy barrier from the Franck-Condon S2 structure. This conclusion is consistent with detection over the 80-200 K range of a broad, red-shifted fluorescence band from a dynamic intermediate evolving on a steep gradient of the S2 state potential energy surface after crossing the activation barrier. The temperature dependence of the oscillator strength and anisotropy indicate that nonadiabatic passage from S2 through a conical intersection seam to S1 is promoted by the out-of-plane motions of the isoprenoid backbone with strong hindrance by solvent friction.
Collapse
Affiliation(s)
- J K Gurchiek
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Justin B Rose
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Matthew J Guberman-Pfeffer
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06268-1712, United States
| | - Ryan W Tilluck
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Soumen Ghosh
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milan, Lombardy 20133, Italy
| | - José A Gascón
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06268-1712, United States
| | - Warren F Beck
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
6
|
Rey R, Hynes JT. Solvation Dynamics in Water. 4. On the Initial Regime of Solvation Relaxation. J Phys Chem B 2020; 124:7668-7681. [PMID: 32790403 DOI: 10.1021/acs.jpcb.0c05706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is shown, by means of numerical and analytic work, that initial molecular momenta play little significant role in the initial fast solvation relaxation that follows electronic excitation of, and charge creation for, a standard model system of a solute in water. Instead, the nonequilibrium dynamics are predominantly described by noninertial "steering" by the torques directly generated by the newly created charge distribution. It is this process that largely overcomes inertia and drives the relaxation dynamics on a time scale of a few tens of femtoseconds in the key initial regime of the dynamics. These results are discussed in the context of commonly employed descriptions such as inertial, Gaussian, and underdamped dynamical behavior.
Collapse
Affiliation(s)
- Rossend Rey
- Departament de Fı́sica, Universitat Politècnica de Catalunya, Campus Nord B4-B5, Barcelona 08034, Spain
| | - James T Hynes
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.,Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
7
|
Bull JN, West CW, Anstöter CS, da Silva G, Bieske EJ, Verlet JRR. Ultrafast photoisomerisation of an isolated retinoid. Phys Chem Chem Phys 2019; 21:10567-10579. [PMID: 31073587 DOI: 10.1039/c9cp01624d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The photoinduced excited state dynamics of gas-phase trans-retinoate (deprotonated trans-retinoic acid, trans-RA-) are studied using tandem ion mobility spectrometry coupled with laser spectroscopy, and frequency-, angle- and time-resolved photoelectron imaging. Photoexcitation of the bright S3(ππ*) ← S0 transition leads to internal conversion to the S1(ππ*) state on a ≈80 fs timescale followed by recovery of S0 and concomitant isomerisation to give the 13-cis (major) and 9-cis (minor) photoisomers on a ≈180 fs timescale. The sub-200 fs stereoselective photoisomerisation parallels that for the retinal protonated Schiff base chromophore in bacteriorhodopsin. Measurements on trans-RA- in methanol using the solution photoisomerisation action spectroscopy technique show that 13-cis-RA- is also the principal photoisomer, although the 13-cis and 9-cis photoisomers are formed with an inverted branching ratio with photon energy in methanol when compared with the gas phase, presumably due to solvent-induced modification of potential energy surfaces and inhibition of electron detachment processes. Comparison of the gas-phase time-resolved data with transient absorption spectroscopy measurements on retinoic acid in methanol suggest that photoisomerisation is roughly six times slower in solution. This work provides clear evidence that solvation significantly affects the photoisomerisation dynamics of retinoid molecules.
Collapse
Affiliation(s)
- James N Bull
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Christopher W West
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Cate S Anstöter
- Department of Chemistry, Durham University, Durham DH1 3LE, UK
| | - Gabriel da Silva
- Department of Chemical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Evan J Bieske
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
8
|
Bull JN, Carrascosa E, Mallo N, Scholz MS, da Silva G, Beves JE, Bieske EJ. Photoswitching an Isolated Donor-Acceptor Stenhouse Adduct. J Phys Chem Lett 2018; 9:665-671. [PMID: 29356541 DOI: 10.1021/acs.jpclett.7b03402] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Donor-acceptor Stenhouse adducts (DASAs) are a new class of photoswitching molecules with excellent fatigue resistance and synthetic tunability. Here, tandem ion mobility mass spectrometry coupled with laser excitation is used to characterize the photocyclization reaction of isolated, charge-tagged DASA molecules over the 450-580 nm range. The experimental maximum response at 530 nm agrees with multireference perturbation theory calculations for the S1 ← S0 transition maximum at 533 nm. Photocyclization in the gas phase involves absorption of at least two photons; the first photon induces Z-E isomerization from the linear isomer to metastable intermediate isomers, while the second photon drives another E-Z isomerization and 4π-electrocyclization reaction. Cyclization is thermally reversible in the gas phase with collisional excitation.
Collapse
Affiliation(s)
- James N Bull
- School of Chemistry, University of Melbourne , Parkville, Victoria 3010, Australia
| | - Eduardo Carrascosa
- School of Chemistry, University of Melbourne , Parkville, Victoria 3010, Australia
| | - Neil Mallo
- School of Chemistry, UNSW Sydney , High Street, Kensington, New South Wales 2052, Australia
| | - Michael S Scholz
- School of Chemistry, University of Melbourne , Parkville, Victoria 3010, Australia
| | - Gabriel da Silva
- Department of Chemical Engineering, University of Melbourne , Parkville, Victoria 3010, Australia
| | - Jonathon E Beves
- School of Chemistry, UNSW Sydney , High Street, Kensington, New South Wales 2052, Australia
| | - Evan J Bieske
- School of Chemistry, University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
9
|
Angulo G, Jedrak J, Ochab-Marcinek A, Pasitsuparoad P, Radzewicz C, Wnuk P, Rosspeintner A. How good is the generalized Langevin equation to describe the dynamics of photo-induced electron transfer in fluid solution? J Chem Phys 2017; 146:244505. [DOI: 10.1063/1.4990044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Gonzalo Angulo
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jakub Jedrak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Anna Ochab-Marcinek
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Pakorn Pasitsuparoad
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Czesław Radzewicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
| | - Paweł Wnuk
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
- Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, D-85748 Garching, Germany
| | - Arnulf Rosspeintner
- Department of Physical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| |
Collapse
|
10
|
Spezia R, Martínez-Nuñez E, Vazquez S, Hase WL. Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:20170035. [PMID: 28320909 PMCID: PMC5360905 DOI: 10.1098/rsta.2017.0035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/24/2017] [Indexed: 06/06/2023]
Abstract
In this Introduction, we show the basic problems of non-statistical and non-equilibrium phenomena related to the papers collected in this themed issue. Over the past few years, significant advances in both computing power and development of theories have allowed the study of larger systems, increasing the time length of simulations and improving the quality of potential energy surfaces. In particular, the possibility of using quantum chemistry to calculate energies and forces 'on the fly' has paved the way to directly study chemical reactions. This has provided a valuable tool to explore molecular mechanisms at given temperatures and energies and to see whether these reactive trajectories follow statistical laws and/or minimum energy pathways. This themed issue collects different aspects of the problem and gives an overview of recent works and developments in different contexts, from the gas phase to the condensed phase to excited states.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'.
Collapse
Affiliation(s)
- Riccardo Spezia
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, CEA CNRS Université Paris Saclay, 91025 Evry, France
- LAMBE, Université d'Evry, 91025 Evry, France
| | - Emilio Martínez-Nuñez
- Departamento de Química Física and Centro Singular de Investigación en Química, Biológica y Materiales Moleculares (CIQUS), Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Saulo Vazquez
- Departamento de Química Física and Centro Singular de Investigación en Química, Biológica y Materiales Moleculares (CIQUS), Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - William L Hase
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
11
|
Ghosh S, Bishop MM, Roscioli JD, LaFountain AM, Frank HA, Beck WF. Excitation Energy Transfer by Coherent and Incoherent Mechanisms in the Peridinin-Chlorophyll a Protein. J Phys Chem Lett 2017; 8:463-469. [PMID: 28042923 DOI: 10.1021/acs.jpclett.6b02881] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Excitation energy transfer from peridinin to chlorophyll (Chl) a is unusually efficient in the peridinin-chlorophyll a protein (PCP) from dinoflagellates. This enhanced performance is derived from the long intrinsic lifetime of 4.4 ps for the S2 (11Bu+) state of peridinin in PCP, which arises from the electron-withdrawing properties of its carbonyl substituent. Results from heterodyne transient grating spectroscopy indicate that S2 serves as the donor for two channels of energy transfer: a 30 fs process involving quantum coherence and delocalized peridinin-Chl states and an incoherent, 2.5 ps process initiated by dynamic exciton localization, which accompanies the formation of a conformationally distorted intermediate in 45 fs. The lifetime of the S2 state is lengthened in PCP by its intramolecular charge-transfer character, which increases the system-bath coupling and slows the torsional motions that promote nonradiative decay to the S1 (21Ag-) state.
Collapse
Affiliation(s)
- Soumen Ghosh
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Michael M Bishop
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Jerome D Roscioli
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Amy M LaFountain
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3036, United States
| | - Harry A Frank
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3036, United States
| | - Warren F Beck
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| |
Collapse
|
12
|
Kumpulainen T, Lang B, Rosspeintner A, Vauthey E. Ultrafast Elementary Photochemical Processes of Organic Molecules in Liquid Solution. Chem Rev 2016; 117:10826-10939. [DOI: 10.1021/acs.chemrev.6b00491] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tatu Kumpulainen
- Department of Physical Chemistry,
Sciences II, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Bernhard Lang
- Department of Physical Chemistry,
Sciences II, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Arnulf Rosspeintner
- Department of Physical Chemistry,
Sciences II, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Eric Vauthey
- Department of Physical Chemistry,
Sciences II, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
13
|
Ghosh S, Roscioli JD, Bishop MM, Gurchiek JK, LaFountain AM, Frank HA, Beck WF. Torsional Dynamics and Intramolecular Charge Transfer in the S2 (1(1)Bu(+)) Excited State of Peridinin: A Mechanism for Enhanced Mid-Visible Light Harvesting. J Phys Chem Lett 2016; 7:3621-3626. [PMID: 27571487 DOI: 10.1021/acs.jpclett.6b01642] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Of the carotenoids known in photosynthetic organisms, peridinin exhibits one of the highest quantum efficiencies for excitation energy transfer to chlorophyll (Chl) a acceptors. The mechanism for this enhanced performance involves an order-of-magnitude slowing of the S2 (1(1)Bu(+)) → S1 (2(1)Ag(-)) nonradiative decay pathway compared to carotenoids lacking carbonyl substitution. Using femtosecond transient grating spectroscopy with optical heterodyne detection, we have obtained the first evidence that the nonradiative decay of the S2 state of peridinin is promoted by large-amplitude torsional motions. The decay of an intermediate state termed Sx, which we assign to a twisted form of the S2 state, is substantially slowed by solvent friction in peridinin due to its intramolecular charge transfer (ICT) character.
Collapse
Affiliation(s)
- Soumen Ghosh
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Jerome D Roscioli
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Michael M Bishop
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Jason K Gurchiek
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Amy M LaFountain
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3036, United States
| | - Harry A Frank
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3036, United States
| | - Warren F Beck
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| |
Collapse
|
14
|
Du L, Lan Z. An On-the-Fly Surface-Hopping Program JADE for Nonadiabatic Molecular Dynamics of Polyatomic Systems: Implementation and Applications. J Chem Theory Comput 2016; 11:1360-74. [PMID: 26574348 DOI: 10.1021/ct501106d] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nonadiabatic dynamics simulations have rapidly become an indispensable tool for understanding ultrafast photochemical processes in complex systems. Here, we present our recently developed on-the-fly nonadiabatic dynamics package, JADE, which allows researchers to perform nonadiabatic excited-state dynamics simulations of polyatomic systems at an all-atomic level. The nonadiabatic dynamics is based on Tully's surface-hopping approach. Currently, several electronic structure methods (CIS, TDHF, TDDFT(RPA/TDA), and ADC(2)) are supported, especially TDDFT, aiming at performing nonadiabatic dynamics on medium- to large-sized molecules. The JADE package has been interfaced with several quantum chemistry codes, including Turbomole, Gaussian, and Gamess (US). To consider environmental effects, the Langevin dynamics was introduced as an easy-to-use scheme into the standard surface-hopping dynamics. The JADE package is mainly written in Fortran for greater numerical performance and Python for flexible interface construction, with the intent of providing open-source, easy-to-use, well-modularized, and intuitive software in the field of simulations of photochemical and photophysical processes. To illustrate the possible applications of the JADE package, we present a few applications of excited-state dynamics for various polyatomic systems, such as the methaniminium cation, fullerene (C20), p-dimethylaminobenzonitrile (DMABN) and its primary amino derivative aminobenzonitrile (ABN), and 10-hydroxybenzo[h]quinoline (10-HBQ).
Collapse
Affiliation(s)
- Likai Du
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao, 266101 Shandong, People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China.,The Qingdao Key Lab of Solar Energy Utilization and Energy Storage Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao, 266101 Shandong, People's Republic of China
| | - Zhenggang Lan
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao, 266101 Shandong, People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China.,The Qingdao Key Lab of Solar Energy Utilization and Energy Storage Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao, 266101 Shandong, People's Republic of China
| |
Collapse
|
15
|
Ghosh S, Bishop MM, Roscioli JD, LaFountain AM, Frank HA, Beck WF. Femtosecond Heterodyne Transient Grating Studies of Nonradiative Deactivation of the S2 (11Bu+) State of Peridinin: Detection and Spectroscopic Assignment of an Intermediate in the Decay Pathway. J Phys Chem B 2016; 120:3601-14. [DOI: 10.1021/acs.jpcb.5b12753] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Soumen Ghosh
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322 United States
| | - Michael M. Bishop
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322 United States
| | - Jerome D. Roscioli
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322 United States
| | - Amy M. LaFountain
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3036 United States
| | - Harry A. Frank
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3036 United States
| | - Warren F. Beck
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322 United States
| |
Collapse
|
16
|
Chen L, Gelin MF, Chernyak VY, Domcke W, Zhao Y. Dissipative dynamics at conical intersections: simulations with the hierarchy equations of motion method. Faraday Discuss 2016; 194:61-80. [DOI: 10.1039/c6fd00088f] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of a dissipative environment on the ultrafast nonadiabatic dynamics at conical intersections is analyzed for a two-state two-mode model chosen to represent the S2(ππ*)–S1(nπ*) conical intersection in pyrazine (the system) which is bilinearly coupled to infinitely many harmonic oscillators in thermal equilibrium (the bath). The system–bath coupling is modeled by the Drude spectral function. The equation of motion for the reduced density matrix of the system is solved numerically exactly with the hierarchy equation of motion method using graphics-processor-unit (GPU) technology. The simulations are valid for arbitrary strength of the system–bath coupling and arbitrary bath memory relaxation time. The present computational studies overcome the limitations of weak system–bath coupling and short memory relaxation time inherent in previous simulations based on multi-level Redfield theory [A. Kühl and W. Domcke, J. Chem. Phys. 2002, 116, 263]. Time evolutions of electronic state populations and time-dependent reduced probability densities of the coupling and tuning modes of the conical intersection have been obtained. It is found that even weak coupling to the bath effectively suppresses the irregular fluctuations of the electronic populations of the isolated two-mode conical intersection. While the population of the upper adiabatic electronic state (S2) is very efficiently quenched by the system–bath coupling, the population of the diabatic ππ* electronic state exhibits long-lived oscillations driven by coherent motion of the tuning mode. Counterintuitively, the coupling to the bath can lead to an enhanced lifetime of the coherence of the tuning mode as a result of effective damping of the highly excited coupling mode, which reduces the strong mode–mode coupling inherent to the conical intersection. The present results extend previous studies of the dissipative dynamics at conical intersections to the nonperturbative regime of system–bath coupling. They pave the way for future first-principles simulations of femtosecond time-resolved four-wave-mixing spectra of chromophores in condensed phases which are nonperturbative in the system dynamics, the system–bath coupling as well as the field-matter coupling.
Collapse
Affiliation(s)
- Lipeng Chen
- Division of Materials Science
- Nanyang Technological University
- Singapore 639798
| | - Maxim F. Gelin
- Department of Chemistry
- Technische Universität München
- Garching D-85747
- Germany
| | | | - Wolfgang Domcke
- Department of Chemistry
- Technische Universität München
- Garching D-85747
- Germany
| | - Yang Zhao
- Division of Materials Science
- Nanyang Technological University
- Singapore 639798
| |
Collapse
|
17
|
Tuna D, Lefrancois D, Wolański Ł, Gozem S, Schapiro I, Andruniów T, Dreuw A, Olivucci M. Assessment of Approximate Coupled-Cluster and Algebraic-Diagrammatic-Construction Methods for Ground- and Excited-State Reaction Paths and the Conical-Intersection Seam of a Retinal-Chromophore Model. J Chem Theory Comput 2015; 11:5758-81. [PMID: 26642989 DOI: 10.1021/acs.jctc.5b00022] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As a minimal model of the chromophore of rhodopsin proteins, the penta-2,4-dieniminium cation (PSB3) poses a challenging test system for the assessment of electronic-structure methods for the exploration of ground- and excited-state potential-energy surfaces, the topography of conical intersections, and the dimensionality (topology) of the branching space. Herein, we report on the performance of the approximate linear-response coupled-cluster method of second order (CC2) and the algebraic-diagrammatic-construction scheme of the polarization propagator of second and third orders (ADC(2) and ADC(3)). For the ADC(2) method, we considered both the strict and extended variants (ADC(2)-s and ADC(2)-x). For both CC2 and ADC methods, we also tested the spin-component-scaled (SCS) and spin-opposite-scaled (SOS) variants. We have explored several ground- and excited-state reaction paths, a circular path centered around the S1/S0 surface crossing, and a 2D scan of the potential-energy surfaces along the branching space. We find that the CC2 and ADC methods yield a different dimensionality of the intersection space. While the ADC methods yield a linear intersection topology, we find a conical intersection topology for the CC2 method. We present computational evidence showing that the linear-response CC2 method yields a surface crossing between the reference state and the first response state featuring characteristics that are expected for a true conical intersection. Finally, we test the performance of these methods for the approximate geometry optimization of the S1/S0 minimum-energy conical intersection and compare the geometries with available data from multireference methods. The present study provides new insight into the performance of linear-response CC2 and polarization-propagator ADC methods for molecular electronic spectroscopy and applications in computational photochemistry.
Collapse
Affiliation(s)
- Deniz Tuna
- Max-Planck-Institut für Kohlenforschung , 45470 Mülheim an der Ruhr, Germany
| | - Daniel Lefrancois
- Interdisciplinary Center for Scientific Computing, University of Heidelberg , 69120 Heidelberg, Germany
| | - Łukasz Wolański
- Department of Chemistry, Wrocław University of Technology , 50370 Wrocław, Poland
| | - Samer Gozem
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Igor Schapiro
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE, Université de Strasbourg, CNRS UMR 7504 , Strasbourg 67034, France
| | - Tadeusz Andruniów
- Department of Chemistry, Wrocław University of Technology , 50370 Wrocław, Poland
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, University of Heidelberg , 69120 Heidelberg, Germany
| | - Massimo Olivucci
- Department of Chemistry, Bowling Green State University , Bowling Green, Ohio 43402, United States.,Dipartimento di Biotecnologie, Chimica e Farmacia, Universitá de Siena , 53100 Siena, Italy
| |
Collapse
|
18
|
Ghosh S, Bishop MM, Roscioli JD, Mueller JJ, Shepherd NC, LaFountain AM, Frank HA, Beck WF. Femtosecond Heterodyne Transient-Grating Studies of Nonradiative Decay of the S2 (11Bu+) State of β-Carotene: Contributions from Dark Intermediates and Double-Quantum Coherences. J Phys Chem B 2015; 119:14905-24. [DOI: 10.1021/acs.jpcb.5b09405] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Soumen Ghosh
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Michael M. Bishop
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Jerome D. Roscioli
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Jenny Jo Mueller
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Nolan C. Shepherd
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Amy M. LaFountain
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Harry A. Frank
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Warren F. Beck
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| |
Collapse
|
19
|
McConnell S, McKenzie RH, Olsen S. Valence-bond non-equilibrium solvation model for a twisting monomethine cyanine. J Chem Phys 2015; 142:084502. [PMID: 25725740 DOI: 10.1063/1.4907758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We propose and analyze a two-state valence-bond model of non-equilibrium solvation effects on the excited-state twisting reaction of monomethine cyanines. Suppression of this reaction is thought responsible for environment-dependent fluorescence yield enhancement in these dyes. Fluorescence is quenched because twisting is accompanied via the formation of dark twisted intramolecular charge-transfer (TICT) states. For monomethine cyanines, where the ground state is a superposition of structures with different bond and charge localizations, there are two possible twisting pathways with different charge localizations in the excited state. For parameters corresponding to symmetric monomethines, the model predicts two low-energy twisting channels on the excited-state surface, which leads to a manifold of TICT states. For typical monomethines, twisting on the excited state surface will occur with a small barrier or no barrier. Changes in the solvation configuration can differentially stabilize TICT states in channels corresponding to different bonds, and that the position of a conical intersection between adiabatic states moves in response to solvation to stabilize either one channel or the other. There is a conical intersection seam that grows along the bottom of the excited-state potential with increasing solvent polarity. For monomethine cyanines with modest-sized terminal groups in moderately polar solution, the bottom of the excited-state potential surface is completely spanned by a conical intersection seam.
Collapse
Affiliation(s)
- Sean McConnell
- School of Mathematics and Physics, The University of Queensland, Brisbane 4072, Australia
| | - Ross H McKenzie
- School of Mathematics and Physics, The University of Queensland, Brisbane 4072, Australia
| | - Seth Olsen
- School of Mathematics and Physics, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
20
|
Bishop MM, Roscioli JD, Ghosh S, Mueller JJ, Shepherd NC, Beck WF. Vibrationally Coherent Preparation of the Transition State for Photoisomerization of the Cyanine Dye Cy5 in Water. J Phys Chem B 2015; 119:6905-15. [DOI: 10.1021/acs.jpcb.5b02391] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael M. Bishop
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Jerome D. Roscioli
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Soumen Ghosh
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Jenny Jo Mueller
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Nolan C. Shepherd
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Warren F. Beck
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| |
Collapse
|
21
|
Beck WF, Bishop MM, Roscioli JD, Ghosh S, Frank HA. Excited state conformational dynamics in carotenoids: Dark intermediates and excitation energy transfer. Arch Biochem Biophys 2015; 572:175-183. [DOI: 10.1016/j.abb.2015.02.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/24/2015] [Accepted: 02/13/2015] [Indexed: 11/26/2022]
|
22
|
Hynes JT. Molecules in Motion: Chemical Reaction and Allied Dynamics in Solution and Elsewhere. Annu Rev Phys Chem 2015; 66:1-20. [DOI: 10.1146/annurev-physchem-040214-121833] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- James T. Hynes
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309;
- Department of Chemistry, UMR ENS-CNRS-UPMC-8640, Ecole Normale Supérieure, Paris, France 75005
| |
Collapse
|
23
|
Rey R, Hynes JT. Solvation Dynamics in Liquid Water. 1. Ultrafast Energy Fluxes. J Phys Chem B 2015; 119:7558-70. [DOI: 10.1021/jp5113922] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rossend Rey
- Departament de Física
i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Campus
Nord B4-B5, Barcelona 08034, Spain
| | - James T. Hynes
- Department of Chemistry and
Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
- Chemistry Department, Ecole Normale
Supérieure,
UMR ENS-CNRS-UPMC 8640, 24 Rue Lhomond, 75005 Paris, France
| |
Collapse
|
24
|
Malhado JP, Bearpark MJ, Hynes JT. Non-adiabatic dynamics close to conical intersections and the surface hopping perspective. Front Chem 2014; 2:97. [PMID: 25485263 PMCID: PMC4240175 DOI: 10.3389/fchem.2014.00097] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/16/2014] [Indexed: 11/13/2022] Open
Abstract
Conical intersections play a major role in the current understanding of electronic de-excitation in polyatomic molecules, and thus in the description of photochemistry and photophysics of molecular systems. This article reviews aspects of the basic theory underlying the description of non-adiabatic transitions at conical intersections, with particular emphasis on the important case when the dynamics of the nuclei are treated classically. Within this classical nuclear motion framework, the main aspects of the surface hopping methodology in the conical intersection context are presented. The emerging picture from this treatment is that of electronic transitions around conical intersections dominated by the interplay of the nuclear velocity and the derivative non-adiabatic coupling vector field.
Collapse
Affiliation(s)
| | | | - James T Hynes
- Department of Chemistry and Biochemistry, University of Colorado, Boulder Boulder, CO, USA ; Département de Chimie, École Normale Supérieur, UMR ENS-CNRS-UPMC 8640 Paris, France
| |
Collapse
|
25
|
Minezawa N. Optimizing minimum free-energy crossing points in solution: Linear-response free energy/spin-flip density functional theory approach. J Chem Phys 2014; 141:164118. [DOI: 10.1063/1.4899049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Noriyuki Minezawa
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto 606-8103, Japan
| |
Collapse
|
26
|
Mori Y. Computational study on intramolecular electron transfer in 1,3-dintrobenzene radical anion. J PHYS ORG CHEM 2014. [DOI: 10.1002/poc.3339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yukie Mori
- Department of Chemistry, Faculty of Science; Ochanomizu University; Otsuka, Bunkyo-ku Tokyo 112-8610 Japan
| |
Collapse
|
27
|
An overview of nonadiabatic dynamics simulations methods, with focus on the direct approach versus the fitting of potential energy surfaces. Theor Chem Acc 2014. [DOI: 10.1007/s00214-014-1526-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
|
29
|
Tscherbul TV, Brumer P. Excitation of Biomolecules with Incoherent Light: Quantum Yield for the Photoisomerization of Model Retinal. J Phys Chem A 2014; 118:3100-11. [DOI: 10.1021/jp501700t] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- T. V. Tscherbul
- Chemical Physics
Theory Group, Department of Chemistry, and Center for Quantum Information and
Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - P. Brumer
- Chemical Physics
Theory Group, Department of Chemistry, and Center for Quantum Information and
Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
30
|
Szabla R, Góra RW, Sponer J, Sponer JE. Molecular mechanism of diaminomaleonitrile to diaminofumaronitrile photoisomerization: an intermediate step in the prebiotic formation of purine nucleobases. Chemistry 2014; 20:2515-21. [PMID: 24470085 DOI: 10.1002/chem.201304224] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Indexed: 11/09/2022]
Abstract
The photoinduced isomerization of diaminomaleonitrile (DAMN) to diaminofumaronitrile (DAFN) was suggested to play a key role in the prebiotically plausible formation of purine nucleobases and nucleotides. In this work we analyze two competitive photoisomerization mechanisms on the basis of state-of-the-art quantum-chemical calculations. Even though it was suggested that this process might occur on the triplet potential-energy surface, our results indicate that the singlet reaction channel should not be disregarded either. In fact, the peaked topography of the S1 /S0 conical intersection suggests that the deexcitation should most likely occur on a sub-picosecond timescale and the singlet photoisomerization mechanism might effectively compete even with a very efficient intersystem crossing. Such a scenario is further supported by the relatively small spin-orbit coupling of the S1 and T2 states in the Franck-Condon region, which does not indicate a very effective triplet bypass for this photoreaction. Therefore, we conclude that the triplet reaction channel in DAMN might not be as prominent as was previously thought.
Collapse
Affiliation(s)
- Rafał Szabla
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno (Czech Republic).
| | | | | | | |
Collapse
|
31
|
Zhou P, Liu J, Han K, He G. The photoisomerization of 11-cis-retinal protonated schiff base in gas phase: Insight from spin-flip density functional theory. J Comput Chem 2013; 35:109-20. [DOI: 10.1002/jcc.23463] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/12/2013] [Accepted: 09/24/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Panwang Zhou
- State Key Laboratory of Molecular Reaction Dynamics; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 Liaoning People's Republic of China
| | - Jianyong Liu
- State Key Laboratory of Molecular Reaction Dynamics; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 Liaoning People's Republic of China
| | - Keli Han
- State Key Laboratory of Molecular Reaction Dynamics; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 Liaoning People's Republic of China
| | - Guozhong He
- State Key Laboratory of Molecular Reaction Dynamics; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 Liaoning People's Republic of China
| |
Collapse
|
32
|
Mori T, Martínez TJ. Exploring the Conical Intersection Seam: The Seam Space Nudged Elastic Band Method. J Chem Theory Comput 2013; 9:1155-63. [DOI: 10.1021/ct300892t] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Toshifumi Mori
- PULSE Institute and
Department
of Chemistry, Stanford University, Stanford, California 94305, United
States
- SLAC National Accelerator
Laboratory,
2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Todd. J. Martínez
- PULSE Institute and
Department
of Chemistry, Stanford University, Stanford, California 94305, United
States
- SLAC National Accelerator
Laboratory,
2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
33
|
Malhado JP, Hynes JT. Photoisomerization for a model protonated Schiff base in solution: Sloped/peaked conical intersection perspective. J Chem Phys 2012; 137:22A543. [DOI: 10.1063/1.4754505] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
34
|
Auer B, Soudackov AV, Hammes-Schiffer S. Nonadiabatic dynamics of photoinduced proton-coupled electron transfer: comparison of explicit and implicit solvent simulations. J Phys Chem B 2012; 116:7695-708. [PMID: 22651684 DOI: 10.1021/jp3031682] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Theoretical approaches for simulating the ultrafast dynamics of photoinduced proton-coupled electron transfer (PCET) reactions in solution are developed and applied to a series of model systems. These processes are simulated by propagating nonadiabatic surface hopping trajectories on electron-proton vibronic surfaces that depend on the solute and solvent nuclear coordinates. The PCET system is represented by a four-state empirical valence bond model, and the solvent is treated either as explicit solvent molecules or as a dielectric continuum, in which case the solvent dynamics is described in terms of two collective solvent coordinates corresponding to the energy gaps associated with electron and proton transfer. The explicit solvent simulations reveal two distinct solvent relaxation time scales, where the faster time scale relaxation corresponds to librational motions of solvent molecules in the first solvation shell, and the slower time scale relaxation corresponds to the bulk solvent dielectric response. The charge transfer dynamics is strongly coupled to both the fast and slow time scale solvent dynamics. The dynamical multistate continuum theory is extended to include the effects of two solvent relaxation time scales, and the resulting coupled generalized Langevin equations depend on parameters that can be extracted from equilibrium molecular dynamics simulations. The implicit and explicit solvent approaches lead to qualitatively similar charge transfer and solvent dynamics for model PCET systems, suggesting that the implicit solvent treatment captures the essential elements of the nonequilibrium solvent dynamics for many systems. A combination of implicit and explicit solvent approaches will enable the investigation of photoinduced PCET processes in a variety of condensed phase systems.
Collapse
Affiliation(s)
- Benjamin Auer
- Department of Chemistry, 104 Chemistry Building, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
35
|
Sovdat T, Bassolino G, Liebel M, Schnedermann C, Fletcher SP, Kukura P. Backbone modification of retinal induces protein-like excited state dynamics in solution. J Am Chem Soc 2012; 134:8318-20. [PMID: 22536821 DOI: 10.1021/ja3007929] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The drastically different reactivity of the retinal chromophore in solution compared to the protein environment is poorly understood. Here, we show that the addition of a methyl group to the C═C backbone of all-trans retinal protonated Schiff base accelerates the electronic decay in solution making it comparable to the proton pump bacteriorhodopsin. Contrary to the notion that reaction speed and efficiency are linked, we observe a concomitant 50% reduction in the isomerization yield. Our results demonstrate that minimal synthetic engineering of potential energy surfaces based on theoretical predictions can induce drastic changes in electronic dynamics toward those observed in an evolution-optimized protein pocket.
Collapse
Affiliation(s)
- Tina Sovdat
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, UK
| | | | | | | | | | | |
Collapse
|
36
|
Zgrablić G, Novello AM, Parmigiani F. Population Branching in the Conical Intersection of the Retinal Chromophore Revealed by Multipulse Ultrafast Optical Spectroscopy. J Am Chem Soc 2011; 134:955-61. [DOI: 10.1021/ja205763x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Goran Zgrablić
- T-ReX Laboratory, Sincrotrone Trieste, S.S. 14 km 163.5 in Area Science
Park, I-34012 Basovizza Trieste, Italy
| | - Anna Maria Novello
- T-ReX Laboratory, Sincrotrone Trieste, S.S. 14 km 163.5 in Area Science
Park, I-34012 Basovizza Trieste, Italy
- Department of Condensed Matter
Physics, University of Geneva, Rue du Général-
Dufour 24, 1204 Geneva, Switzerland
| | - Fulvio Parmigiani
- T-ReX Laboratory, Sincrotrone Trieste, S.S. 14 km 163.5 in Area Science
Park, I-34012 Basovizza Trieste, Italy
- Department of Physics, Università degli studi di Trieste, Piazzale
Europa 1, I-34127 Trieste, Italy
| |
Collapse
|
37
|
Soudackov AV, Hazra A, Hammes-Schiffer S. Multidimensional treatment of stochastic solvent dynamics in photoinduced proton-coupled electron transfer processes: Sequential, concerted, and complex branching mechanisms. J Chem Phys 2011; 135:144115. [DOI: 10.1063/1.3651083] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
38
|
Cusati T, Granucci G, Persico M. Photodynamics and Time-Resolved Fluorescence of Azobenzene in Solution: A Mixed Quantum-Classical Simulation. J Am Chem Soc 2011; 133:5109-23. [DOI: 10.1021/ja1113529] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Teresa Cusati
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, v. Risorgimento 35, I-56126 Pisa, Italy
| | - Giovanni Granucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, v. Risorgimento 35, I-56126 Pisa, Italy
| | - Maurizio Persico
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, v. Risorgimento 35, I-56126 Pisa, Italy
| |
Collapse
|
39
|
Hazra A, Soudackov AV, Hammes-Schiffer S. Isotope Effects on the Nonequilibrium Dynamics of Ultrafast Photoinduced Proton-Coupled Electron Transfer Reactions in Solution. J Phys Chem Lett 2011; 2:36-40. [PMID: 26295211 DOI: 10.1021/jz101532g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The hydrogen/deuterium isotope effects on the ultrafast dynamics of photoinduced proton-coupled electron transfer (PCET) are investigated with a recently developed nonadiabatic dynamics approach. An ensemble of surface hopping trajectories is propagated according to a Langevin equation on electron-proton vibronic free energy surfaces that depend on a collective solvent coordinate. The calculations illustrate that ultrafast PCET reactions could exhibit a significant normal isotope effect, where PCET is faster for hydrogen than deuterium, but could also exhibit a negligible isotope effect or even a slight inverse isotope effect. The isotope effect is very small or absent when highly excited electron-proton vibronic states dictate the nonadiabatic dynamics and increases with greater participation of lower vibronic states. Thus, although the presence of a significant isotope effect strongly suggests that proton motion is coupled to electron transfer, the absence of an isotope effect does not exclude the possibility that proton transfer accompanies electron transfer in ultrafast photoinduced charge transfer processes.
Collapse
Affiliation(s)
- Anirban Hazra
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alexander V Soudackov
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|