1
|
Otovat F, Bozorgmehr MR, Mahmoudi A, Morsali A. Porphyrin-based ligand interaction with G-quadruplex: Metal cation effects. J Mol Recognit 2023; 36:e3017. [PMID: 37025015 DOI: 10.1002/jmr.3017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/14/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
The G-quadruplex planar-ligand complex is used to detect heavy metal cations such as Ag+ , Cu2+ , Pb2+ , Hg2+ , organic molecules, nucleic acids, and proteins. The interaction of the three planar porphyrins (L1), 5,10,15,20-tetrakis (1-ethyl-1-λ4 -pyridine-4-yl) porphyrin (L2), and 5,10,15,20-tetrakis (1-methyl-1-λ4 -pyridine-4-yl) porphyrin (L3), coming from the porphyrin family, with G-quadruplex obtained from human DNA telomeres in the presence of lithium, sodium, potassium, rubidium, cesium, magnesium, and calcium ions was studied by molecular dynamics simulation. When G-quadruplex containing divalent ions of magnesium and calcium interacts with L1, L2, and L3 ligands, the hydrogen bonds of the lower G-quadruplex sheet are more affected by ligands and the distance between guanines in the lower tetrad increases. In the case of G-quadruplex interactions containing monovalent ions with ligands, the hydrogen bond between the sheets does not follow a specific trend. For example, in the presence of lithium ions, the upper and middle sheets are more affected by ligands, while they are less affected by ligands in the presence of sodium. The binding pocket and the binding energy of the three ligands to the G-quadruplex were also obtained in the various systems. The results show that ligands make the G-quadruplex more stable through the penetration between the sheets and the interaction with the loops. Among the ligands mentioned, the interaction level of the ligand L2 is greater than the others. Our calculations are consistent with the previous experimental observations so that it can help to understand the molecular mechanism of porphyrin interaction and its derivatives with the G-quadruplex.
Collapse
Affiliation(s)
- Fahimeh Otovat
- Faculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | | | - Ali Mahmoudi
- Faculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Ali Morsali
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
2
|
Maddah M, Karami L. An atomistic investigation on the interaction of distamycin A and its derivative with the telomeric G-Quadruplex as anticancer agents by molecular dynamics simulation. Arch Biochem Biophys 2021; 701:108797. [PMID: 33607110 DOI: 10.1016/j.abb.2021.108797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 10/22/2022]
Abstract
Human telomerase that activates within cancer cells has a telomeric sequence at the 3' end. Each factor that stabilizes the G-quadruplex in guanine-rich telomeric sequences can inhibit the regular telomerase activity. Therefore, the telomeric G-quadruplex is known as a promising target in cancer treatment. In this work, we studied the binding of positively charged distamycin A and its uncharged derivative to the G-quadruplex in a solution environment by Molecular Dynamics (MD) simulation. The binding mechanism and subtle conformational changes were investigated as a result of the ligand attachment. Moreover, binding free energy and clustering analysis describe the stability and flexibility of G-quadruplexes upon ligand binding. Structural analyses displayed that the favorable binding of both ligands imposes significant stability and rigidity in G-quadruplex conformation compared to free G-quadruplex, especially charged distamycin. Hydration pattern and ion distribution were different for free G-quadruplex and both of the ligand complexes. Energy decomposition reveals the electrostatic effect on the stability of G-quadruplex. The radial distribution function displayed the solvent shell and ion moving away from the groove. The hydrogen bond played an essential role in the binding of both ligands, especially for the charged derivative. van der Waals interaction is the only factor that is more important in binding uncharged distamycin into G-quadruplex than the charged one. The calculated ΔGbind showed the stability of both ligands within grooves and good agreement with the experimental binding free energy data. Finally, the results suggest that ligand modification improves the binding mode toward stabilizing G-quadruplexes.
Collapse
Affiliation(s)
- Mina Maddah
- Depatment of Chemistry, K. N. Toosi University of Technology, Tehran, Iran; Super Computing Institute, University of Tehran, Tehran, Iran.
| | - Leila Karami
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| |
Collapse
|
3
|
Wang Z, Li G, Tian Z, Lou X, Huang Y, Wang L, Li J, Hou T, Liu JP. Insight Derived from Molecular Dynamics Simulation into the Selectivity Mechanism Targeting c-MYC G-Quadruplex. J Phys Chem B 2020; 124:9773-9784. [DOI: 10.1021/acs.jpcb.0c05029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhiguo Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Guo Li
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou 571199, Hainan, China
| | - Zhou Tian
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Xiaoqin Lou
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yining Huang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Lihui Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Jianfeng Li
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Tingjun Hou
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jun-Ping Liu
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
- Department of Immunology, Monash University Faculty of Medicine, Melbourne, Victoria 3004, Australia
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
4
|
Li F, Guo D, Kang L. Study on the recognition of G-quadruplexes by two stereoisomers of alkaloids. Anal Bioanal Chem 2019; 411:5555-5561. [PMID: 31197422 DOI: 10.1007/s00216-019-01937-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/06/2019] [Accepted: 05/21/2019] [Indexed: 11/26/2022]
Abstract
G-quadruplexes have been widely researched as new targets for cancer treatment owing to their non-canonical structure and crucial role in biological processes. Although attention has been paid to the development of selective G-quadruplex ligands, few studies have focused on the binding affinity of stereoisomers towards G-quadruplex, which will be conducive to support the optimal design of G-quadruplex ligands in future studies. Here, tetrandrine and isotetrandrine were used to study the binding affinity and difference of stereoisomers towards G-quadruplex structures. The results showed that tetrandrine had a high possibility of binding to the N-myc and Bcl-2 G-quadruplexes through hydrogen bonding, whereas the possibility of binding of isotetrandrine was low and it seemed to have no possibility of forming hydrogen bonds. Our study shows that optical isomerism of ligand molecules has an important effect on G-quadruplex recognition, which is helpful for the design of G-quadruplex ligands in future studies. Graphical abstract.
Collapse
Affiliation(s)
- Fangyuan Li
- Central Research Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Dan Guo
- Central Research Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Lin Kang
- Central Research Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| |
Collapse
|
5
|
Binding of BRACO19 to a Telomeric G-Quadruplex DNA Probed by All-Atom Molecular Dynamics Simulations with Explicit Solvent. Molecules 2019; 24:molecules24061010. [PMID: 30871220 PMCID: PMC6471034 DOI: 10.3390/molecules24061010] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/01/2019] [Accepted: 03/09/2019] [Indexed: 11/30/2022] Open
Abstract
Although BRACO19 is a potent G-quadruplex binder, its potential for clinical usage is hindered by its low selectivity towards DNA G-quadruplex over duplex. High-resolution structures of BRACO19 in complex with neither single-stranded telomeric DNA G-quadruplexes nor B-DNA duplex are available. In this study, the binding pathway of BRACO19 was probed by 27.5 µs molecular dynamics binding simulations with a free ligand (BRACO19) to a DNA duplex and three different topological folds of the human telomeric DNA G-quadruplex (parallel, anti-parallel and hybrid). The most stable binding modes were identified as end stacking and groove binding for the DNA G-quadruplexes and duplex, respectively. Among the three G-quadruplex topologies, the MM-GBSA binding energy analysis suggested that BRACO19′s binding to the parallel scaffold was most energetically favorable. The two lines of conflicting evidence plus our binding energy data suggest conformation-selection mechanism: the relative population shift of three scaffolds upon BRACO19 binding (i.e., an increase of population of parallel scaffold, a decrease of populations of antiparallel and/or hybrid scaffold). This hypothesis appears to be consistent with the fact that BRACO19 was specifically designed based on the structural requirements of the parallel scaffold and has since proven effective against a variety of cancer cell lines as well as toward a number of scaffolds. In addition, this binding mode is only slightly more favorable than BRACO19s binding to the duplex, explaining the low binding selectivity of BRACO19 to G-quadruplexes over duplex DNA. Our detailed analysis suggests that BRACO19′s groove binding mode may not be stable enough to maintain a prolonged binding event and that the groove binding mode may function as an intermediate state preceding a more energetically favorable end stacking pose; base flipping played an important role in enhancing binding interactions, an integral feature of an induced fit binding mechanism.
Collapse
|
6
|
Sullivan HJ, Readmond C, Radicella C, Persad V, Fasano TJ, Wu C. Binding of Telomestatin, TMPyP4, BSU6037, and BRACO19 to a Telomeric G-Quadruplex-Duplex Hybrid Probed by All-Atom Molecular Dynamics Simulations with Explicit Solvent. ACS OMEGA 2018; 3:14788-14806. [PMID: 30555989 PMCID: PMC6289566 DOI: 10.1021/acsomega.8b01574] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 09/11/2018] [Indexed: 06/09/2023]
Abstract
A promising anticancer therapeutic strategy is the stabilization of telomeric G-quadruplexes using G-quadruplex-binding small molecules. Although many G-quadruplex-specific ligands have been developed, their low potency and selectivity to G-quadruplexes over duplex remains unsolved. Recently, a crystal structure of a telomeric 3' quadruplex-duplex hybrid was reported and the quadruplex-duplex interface was suggested to a good target to address the issues. However, there are no high-resolution complex structures reported for G-quadruplex ligands except for a docked BSU6037. In this study, molecular dynamic (MD) binding simulations with a free ligand were used to study binding poses and dynamics of four representative ligands: telomestatin, TMPyP4, BSU6037, and BRACO19. The MD data showed that BSU6037 was able to fully intercalate into the interface whereas TMPyP4 and BRACO19 could only maintain partial intercalation into the interface and telomestatin only binds at the quadruplex and duplex ends. Both linear ligands, BSU6037 and BRACO19, were able to interact with the interface, yet they were not selective over duplex DNA. The DNA geometry, binding modes, and binding pathways were systematically characterized, and the binding energy was calculated and compared for each system. The interaction of the ligands to the interface was by the means of an induced-fit binding mechanism rather than a lock-key mechanism, consisting of the DNA unfolding at the interface to allow entrance of the drug and then the refolding and repacking of the DNA and the ligand to further stabilize the G-quadruplex. On the basis of the findings in this study, modifications were suggested to optimize the interface binding for TMPyp4 and telomestatin.
Collapse
Affiliation(s)
- Holli-Joi Sullivan
- Chemistry
& Biochemistry and Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Carolyn Readmond
- Chemistry
& Biochemistry and Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Christina Radicella
- Chemistry
& Biochemistry and Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Victoria Persad
- Chemistry
& Biochemistry and Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Thomas J. Fasano
- Chemistry
& Biochemistry and Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Chun Wu
- Chemistry
& Biochemistry and Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
7
|
|
8
|
The estimation of H-bond and metal ion-ligand interaction energies in the G-Quadruplex ⋯ Mn+ complexes. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Mulholland K, Siddiquei F, Wu C. Binding modes and pathway of RHPS4 to human telomeric G-quadruplex and duplex DNA probed by all-atom molecular dynamics simulations with explicit solvent. Phys Chem Chem Phys 2018; 19:18685-18694. [PMID: 28696445 DOI: 10.1039/c7cp03313c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RHPS4, a potent binder to human telomeric DNA G-quadruplex, shows high efficacy in tumor cell growth inhibition. However, it's preferential binding to DNA G-quadruplex over DNA duplex (about 10 fold) remains to be improved toward its clinical application. A high resolution structure of the single-stranded telomeric DNA G-quadruplexes, or B-DNA duplex, in complex with RHPS4 is not available yet, and the binding nature of this ligand to these DNA forms remains to be elusive. In this study, we carried out 40 μs molecular dynamics binding simulations with a free ligand to decipher the binding pathway of RHPS4 to a DNA duplex and three G-quadruplex folders (parallel, antiparallel and hybrid) of the human telomeric DNA sequence. The most stable binding mode identified for the duplex, parallel, antiparallel and hybrid G-quadruplexes is an intercalation, bottom stacking, top intercalation and bottom intercalation mode, respectively. The intercalation mode with similar binding strength to both the duplex and the G-quadruplexes, explains the lack of binding selectivity of RHPS4 to the G-quadruplex form. Therefore, a ligand modification that destabilizes the duplex intercalation mode but stabilizes the G-quadruplex intercalation mode will improve the binding selectivity toward G-quadruplex. The intercalation mode of RHPS4 to both the duplex and the antiparallel and the hybrid G-quadruplex follows a base flipping-insertion mechanism rather than an open-insertion mechanism. The groove binding, the side binding and the intercalation with flipping out of base were observed to be intermediate states before the full intercalation state with paired bases.
Collapse
Affiliation(s)
- Kelly Mulholland
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA.
| | | | | |
Collapse
|
10
|
Kurniawan F, Miura Y, Kartasasmita RE, Yoshioka N, Mutalib A, Tjahjono DH. In Silico Study, Synthesis, and Cytotoxic Activities of Porphyrin Derivatives. Pharmaceuticals (Basel) 2018; 11:ph11010008. [PMID: 29361701 PMCID: PMC5874704 DOI: 10.3390/ph11010008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/14/2018] [Accepted: 01/19/2018] [Indexed: 01/10/2023] Open
Abstract
Five known porphyrins, 5,10,15,20-tetrakis(p-tolyl)porphyrin (TTP), 5,10,15,20-tetrakis(p-bromophenyl)porphyrin (TBrPP), 5,10,15,20-tetrakis(p-aminophenyl)porphyrin (TAPP), 5,10,15-tris(tolyl)-20-mono(p-nitrophenyl)porphyrin (TrTMNP), 5,10,15-tris(tolyl)-20-mono(p-aminophenyl)porphyrin (TrTMAP), and three novel porphyrin derivatives, 5,15-di-[bis(3,4-ethylcarboxymethylenoxy)phenyl]-10,20-di(p-tolyl)porphyrin (DBECPDTP), 5,10-di-[bis(3,4-ethylcarboxymethylenoxy)phenyl]-15,20-di-(methylpyrazole-4-yl)porphyrin (cDBECPDPzP), 5,15-di-[bis(3,4-ethylcarboxymethylenoxy)phenyl]-10,20-di-(methylpyrazole-4-yl)porphyrin (DBECPDPzP), were used to study their interaction with protein targets (in silico study), and were synthesized. Their cytotoxic activities against cancer cell lines were tested using 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazolium bromide (MTT) assay. The interaction of porphyrin derivatives with carbonic anhydrase IX (CAIX) and REV-ERBβ proteins were studied by molecular docking and molecular dynamic simulation. In silico study results reveal that DBECPDPzP and TrTMNP showed the highest binding interaction with REV- ERBβ and CAIX, respectively, and both complexes of DBECPDPzP-REV-ERBβ and TrTMNP-CAIX showed good and comparable stability during molecular dynamic simulation. The studied porphyrins have selective growth inhibition activities against tested cancer cells and are categorized as marginally active compounds based on their IC50.
Collapse
Affiliation(s)
- Fransiska Kurniawan
- School of Pharmacy, Bandung Institute of Technology, Jalan Ganesha 10, Bandung 40132, Indonesia.
| | - Youhei Miura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | | | - Naoki Yoshioka
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Abdul Mutalib
- Center for Radioisotope and Radiopharmaceutical Technology, National Nuclear Energy Agency (BATAN), Serpong, Tangerang 15310, Indonesia.
| | - Daryono Hadi Tjahjono
- School of Pharmacy, Bandung Institute of Technology, Jalan Ganesha 10, Bandung 40132, Indonesia.
| |
Collapse
|
11
|
McRae EKS, Booy EP, Padilla-Meier GP, McKenna SA. On Characterizing the Interactions between Proteins and Guanine Quadruplex Structures of Nucleic Acids. J Nucleic Acids 2017; 2017:9675348. [PMID: 29250441 PMCID: PMC5700478 DOI: 10.1155/2017/9675348] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/08/2017] [Indexed: 01/07/2023] Open
Abstract
Guanine quadruplexes (G4s) are four-stranded secondary structures of nucleic acids which are stabilized by noncanonical hydrogen bonding systems between the nitrogenous bases as well as extensive base stacking, or pi-pi, interactions. Formation of these structures in either genomic DNA or cellular RNA has the potential to affect cell biology in many facets including telomere maintenance, transcription, alternate splicing, and translation. Consequently, G4s have become therapeutic targets and several small molecule compounds have been developed which can bind such structures, yet little is known about how G4s interact with their native protein binding partners. This review focuses on the recognition of G4s by proteins and small peptides, comparing the modes of recognition that have thus far been observed. Emphasis will be placed on the information that has been gained through high-resolution crystallographic and NMR structures of G4/peptide complexes as well as biochemical investigations of binding specificity. By understanding the molecular features that lead to specificity of G4 binding by native proteins, we will be better equipped to target protein/G4 interactions for therapeutic purposes.
Collapse
Affiliation(s)
- Ewan K. S. McRae
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Evan P. Booy
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | | | - Sean A. McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Institute for Materials, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
12
|
Machireddy B, Kalra G, Jonnalagadda S, Ramanujachary K, Wu C. Probing the Binding Pathway of BRACO19 to a Parallel-Stranded Human Telomeric G-Quadruplex Using Molecular Dynamics Binding Simulation with AMBER DNA OL15 and Ligand GAFF2 Force Fields. J Chem Inf Model 2017; 57:2846-2864. [PMID: 29028340 DOI: 10.1021/acs.jcim.7b00287] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human telomeric DNA G-quadruplex has been identified as a good therapeutic target in cancer treatment. G-quadruplex-specific ligands that stabilize the G-quadruplex have great potential to be developed as anticancer agents. Two crystal structures (an apo form of parallel stranded human telomeric G-quadruplex and its holo form in complex with BRACO19, a potent G-quadruplex ligand) have been solved, yet the binding mechanism and pathway remain elusive. In this study, we simulated the binding of a free BRACO19 molecule to the apo form of the G-quadruplex using the latest AMBER DNA (OL15) and ligand (GAFF2) force fields. Three binding modes have been identified: top stacking, bottom intercalation, and groove binding. Bottom intercalation (51% of the population) resembles the bottom binding pose in the complex crystal structure very well. The groove binding mode is less stable than the bottom binding mode and is likely to be an intermediate state leading to the bottom binding mode. A flip-insertion mechanism was observed in the bottom intercalation mode, during which flipping of the bases outward makes space for ligand insertion, after which the bases flip back to increase the stability of the complex. In addition to reproducing the base-flipping behavior for some loop residues upon ligand binding, the direct alignment type of the ATAT-tetrad was observed in our simulations for the first time. These successes provide initial support for using this combination of the OL15 and GAFF2 force fields to study quadruplex-ligand interactions.
Collapse
Affiliation(s)
- Babitha Machireddy
- College of Science and Mathematics, Rowan University , Glassboro, New Jersey 08028, United States
| | - Gurmannat Kalra
- College of Science and Mathematics, Rowan University , Glassboro, New Jersey 08028, United States
| | - Subash Jonnalagadda
- College of Science and Mathematics, Rowan University , Glassboro, New Jersey 08028, United States
| | - Kandalam Ramanujachary
- College of Science and Mathematics, Rowan University , Glassboro, New Jersey 08028, United States
| | - Chun Wu
- College of Science and Mathematics, Rowan University , Glassboro, New Jersey 08028, United States
| |
Collapse
|
13
|
Islam B, Stadlbauer P, Gil-Ley A, Pérez-Hernández G, Haider S, Neidle S, Bussi G, Banas P, Otyepka M, Sponer J. Exploring the Dynamics of Propeller Loops in Human Telomeric DNA Quadruplexes Using Atomistic Simulations. J Chem Theory Comput 2017; 13:2458-2480. [PMID: 28475322 PMCID: PMC5514396 DOI: 10.1021/acs.jctc.7b00226] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
We
have carried out a series of extended unbiased molecular dynamics
(MD) simulations (up to 10 μs long, ∼162 μs in
total) complemented by replica-exchange with the collective variable
tempering (RECT) approach for several human telomeric DNA G-quadruplex
(GQ) topologies with TTA propeller loops. We used different AMBER
DNA force-field variants and also processed simulations by Markov
State Model (MSM) analysis. The slow conformational transitions in
the propeller loops took place on a scale of a few μs, emphasizing
the need for long simulations in studies of GQ dynamics. The propeller
loops sampled similar ensembles for all GQ topologies and for all
force-field dihedral-potential variants. The outcomes of standard
and RECT simulations were consistent and captured similar spectrum
of loop conformations. However, the most common crystallographic loop
conformation was very unstable with all force-field versions. Although
the loss of canonical γ-trans state of the
first propeller loop nucleotide could be related to the indispensable
bsc0 α/γ dihedral potential, even supporting this particular
dihedral by a bias was insufficient to populate the experimentally
dominant loop conformation. In conclusion, while our simulations were
capable of providing a reasonable albeit not converged sampling of
the TTA propeller loop conformational space, the force-field description
still remained far from satisfactory.
Collapse
Affiliation(s)
- Barira Islam
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic
| | - Petr Stadlbauer
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University , 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
| | - Guillermo Pérez-Hernández
- Department for Mathematics and Computer Science, Freie Universität Berlin , Arnimallee 6, Berlin 14195, Germany
| | - Shozeb Haider
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, U.K
| | - Stephen Neidle
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, U.K
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
| | - Pavel Banas
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University , 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Michal Otyepka
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University , 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Jiri Sponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University , 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
14
|
Effects of the central potassium ions on the G-quadruplex and stabilizer binding. J Mol Graph Model 2017; 72:168-177. [PMID: 28092835 DOI: 10.1016/j.jmgm.2017.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/20/2016] [Accepted: 01/04/2017] [Indexed: 12/30/2022]
Abstract
Human telomeres undertake the structure of intra-molecular parallel G-quadruplex in the presence of K+ in eukaryotic cell. Stabilization of the telomere G-quadruplex represents a potential strategy to prevent telomere lengthening by telomerase in cancer therapy. Current work demonstrates that the binding of central K+ with the parallel G-quadruplex is a coordinated water directed step-wise process. The K+ above the top G-tetrad is prone to leak into environment and the 5'-adenine quickly flips over the top G-tetrad, leading to the bottom gate of G-tetrads as the only viable pathway of K+ binding. Present molecular dynamics studies on the two most potent stabilizers RHPS4 and BRACO-19 reveal that the central K+ has little influence on the binding conformations of the bound stabilizers. But without the central K+, either RHPS4 or BRACO-19 cannot stabilize the structure of G-quadruplex. The binding strength of stabilizers evaluated by the MM-PBSA method follows the order of BRACO-19> RHPS4, which agrees with the experimental results. The difference in binding affinities between RHPS4 and BRACO-19 is probably related to the ability to form intramolecular hydrogen bonds and favorable van del Waals interactions with G-quadruplex. In the models that have one central K+ located at the upper/lower binding site, the corresponding top/bottom stacked stabilizers show more favorable binding affinities, indicating the apparent promoting effect of central K+ on the stabilizer binding. Our findings provide further insights into the regulatory effect of K+ on the G-quadruplex targeted binding, which is meaningful to the development of G-quadruplex stabilizers.
Collapse
|
15
|
Scaglioni L, Mondelli R, Artali R, Sirtori FR, Mazzini S. Nemorubicin and doxorubicin bind the G-quadruplex sequences of the human telomeres and of the c-MYC promoter element Pu22. Biochim Biophys Acta Gen Subj 2016; 1860:1129-38. [PMID: 26922833 DOI: 10.1016/j.bbagen.2016.02.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/12/2016] [Accepted: 02/21/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Intra-molecular G-quadruplex structures are present in the guanine rich regions of human telomeres and were found to be prevalent in gene promoters. More recently, the targeting of c-MYC transcriptional control has been suggested, because the over expression of the c-MYC oncogene is one of the most common aberration found in a wide range of human tumors. METHODS The interaction of nemorubicin and doxorubicin with DNA G-quadruplex structures has been studied by NMR, ESI-MS and molecular modelling, in order to obtain further information about the complex and the multiple mechanisms of action of these drugs. RESULTS AND CONCLUSIONS Nemorubicin intercalates between A3 and G4 of d(TTAGGGT)4 and form cap-complex at the G6pT7 site. The presence of the adenine in this sequence is important for the stabilization of the complex, as was shown by the interaction with d(TTGGGTT)4 and d(TTTGGGT)4, which form only a 1:1 complex. The interaction of doxorubicin with d(TTAGGGT)4 is similar, but the complex appears less stable. Nemorubicin also binds with high efficiency the c-MYC G-quadruplex sequence Pu22, to form a very well defined complex. Two nemorubicin molecules bind to the 3'-end and to the 5'-end, forming an additional plane of stacking over each external G-tetrad. The wild type c-MYCPu22 sequence forms with nemorubicin the same complex. GENERAL SIGNIFICANCE Nemorubicin and doxorubicin, not only intercalate into the duplex DNA, but also result in significant ligands for G-quadruplex DNA segments, stabilizing their structure; this may in part explain the multiple mechanisms of action of their antitumor activity.
Collapse
Affiliation(s)
- Leonardo Scaglioni
- Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, University of Milan, Via Celoria 2, 20133 Milano, Italy
| | - Rosanna Mondelli
- Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, University of Milan, Via Celoria 2, 20133 Milano, Italy
| | | | - Federico Riccardi Sirtori
- Nerviano, Medical Sciences, Oncology-Chemical Core, Technologies Department, viale Pasteur, 10, 20014 Nerviano, Milano, Italy
| | - Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, University of Milan, Via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
16
|
Islam B, Stadlbauer P, Krepl M, Koca J, Neidle S, Haider S, Sponer J. Extended molecular dynamics of a c-kit promoter quadruplex. Nucleic Acids Res 2015; 43:8673-93. [PMID: 26245347 PMCID: PMC4605300 DOI: 10.1093/nar/gkv785] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/21/2015] [Indexed: 01/29/2023] Open
Abstract
The 22-mer c-kit promoter sequence folds into a parallel-stranded quadruplex with a unique structure, which has been elucidated by crystallographic and NMR methods and shows a high degree of structural conservation. We have carried out a series of extended (up to 10 μs long, ∼50 μs in total) molecular dynamics simulations to explore conformational stability and loop dynamics of this quadruplex. Unfolding no-salt simulations are consistent with a multi-pathway model of quadruplex folding and identify the single-nucleotide propeller loops as the most fragile part of the quadruplex. Thus, formation of propeller loops represents a peculiar atomistic aspect of quadruplex folding. Unbiased simulations reveal μs-scale transitions in the loops, which emphasizes the need for extended simulations in studies of quadruplex loops. We identify ion binding in the loops which may contribute to quadruplex stability. The long lateral-propeller loop is internally very stable but extensively fluctuates as a rigid entity. It creates a size-adaptable cleft between the loop and the stem, which can facilitate ligand binding. The stability gain by forming the internal network of GA base pairs and stacks of this loop may be dictating which of the many possible quadruplex topologies is observed in the ground state by this promoter quadruplex.
Collapse
Affiliation(s)
- Barira Islam
- Central European Institute of Technology (CEITEC), Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Stadlbauer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Jaroslav Koca
- Central European Institute of Technology (CEITEC), Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic National Center for Biomolecular Research, Faculty of Science, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Stephen Neidle
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Shozeb Haider
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jiri Sponer
- Central European Institute of Technology (CEITEC), Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| |
Collapse
|
17
|
Model of complex chiral drug metabolic systems and numerical simulation of the remaining chirality toward analysis of dynamical pharmacological activity. J Theor Biol 2015; 373:117-31. [PMID: 25791284 DOI: 10.1016/j.jtbi.2015.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/06/2015] [Accepted: 03/07/2015] [Indexed: 11/22/2022]
Abstract
In this study, systems of complicated pathways involved in chiral drug metabolism were investigated. The development of chiral drugs resulted in significant improvement in the remedies available for the treatment of various severe sicknesses. Enantiopure drugs undergo various biological transformations that involve chiral inversion and thus result in the generation of multiple enantiomeric metabolites. Identification of the specific active substances determining a given drug׳s efficacy among such a mixture of different metabolites remains a challenge. To comprehend this complexity, we constructed a mathematical model representing the complicated metabolic pathways simultaneously involving chiral inversion. Moreover, this model is applied to the metabolism of thalidomide, which has recently been revived as a potentially effective prescription drug for a number of intractable diseases. The numerical simulation results indicate that retained chirality in the metabolites reflects the original chirality of the unmetabolized drug, and a higher level of enantiomeric purity is preserved during spontaneous degradation. In addition, chirality remaining after equilibration is directly related to the rate constant not only for chiral inversion but also for generation and degradation. Furthermore, the retention of chirality is quantitatively predictable using this combination of kinetic parameters. Our simulation results well explain the behavior of thalidomide in the practical biological experimental data. Therefore, this model promises a comprehensive understanding of dynamic metabolic systems involving chiral drugs that express multiple enantiospecific drug efficacies.
Collapse
|
18
|
Arba M, Kartasasmita RE, Tjahjono DH. Molecular docking and dynamics simulations on the interaction of cationic porphyrin-anthraquinone hybrids with DNA G-quadruplexes. J Biomol Struct Dyn 2015; 34:427-38. [PMID: 25808513 DOI: 10.1080/07391102.2015.1033015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A series of cationic porphyrin-anthraquinone hybrids bearing either pyridine, imidazole, or pyrazole rings at the meso-positions have been investigated for their interaction with DNA G-quadruplexes by employing molecular docking and molecular dynamics simulations. Three types of DNA G-quadruplexes were utilized, which comprise parallel, antiparallel, and mixed hybrid topologies. The porphyrin hybrids have a preference to bind with parallel and mixed hybrid structures compared to the antiparallel structure. This preference arises from the end stacking of porphyrin moiety following G-stem and loop binding of anthraquinone tail, which is not found in the antiparallel due to the presence of diagonal and lateral loops that crowd the G-quartet. The binding to the antiparallel, instead, occurred with poorer affinity through both the loop and wide groove. All sites of porphyrin binding were confirmed by 6 ns molecular dynamics simulation, as well as by the negative value of the total binding free energies that were calculated using the MMPBSA method. Free energy analysis shows that the favorable contribution came from the electrostatic term, which supposedly originated from the interaction of either cationic pyridinium, pyrazole, or imidazole groups and the anionic phosphate backbone, and also from the van der Waals energy, which primarily contributed through end stacking interaction.
Collapse
Affiliation(s)
- Muhammad Arba
- a School of Pharmacy , Bandung Institute of Technology , Jalan Ganesha 10, Bandung 40132 , Indonesia.,b Department of Chemistry , Halu Oleo University , Jl. HEA Mokodompit, Kendari 93232 , Indonesia
| | - Rahmana E Kartasasmita
- a School of Pharmacy , Bandung Institute of Technology , Jalan Ganesha 10, Bandung 40132 , Indonesia
| | - Daryono H Tjahjono
- a School of Pharmacy , Bandung Institute of Technology , Jalan Ganesha 10, Bandung 40132 , Indonesia
| |
Collapse
|
19
|
Verdian Doghaei A, Housaindokht M, Bozorgmehr M. Molecular crowding effects on conformation and stability of G-quadruplex DNA structure: Insights from molecular dynamics simulation. J Theor Biol 2015; 364:103-12. [DOI: 10.1016/j.jtbi.2014.09.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 07/14/2014] [Accepted: 09/10/2014] [Indexed: 11/25/2022]
|
20
|
Bagherzadeh K, Shirgahi Talari F, Sharifi A, Ganjali MR, Saboury AA, Amanlou M. A new insight into mushroom tyrosinase inhibitors: docking, pharmacophore-based virtual screening, and molecular modeling studies. J Biomol Struct Dyn 2014; 33:487-501. [PMID: 24601849 DOI: 10.1080/07391102.2014.893203] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Tyrosinase, a widely spread enzyme in micro-organisms, animals, and plants, participates in two rate-limiting steps in melanin formation pathway which is responsible for skin protection against UV lights' harm whose functional deficiency result in serious dermatological diseases. This enzyme seems to be responsible for neuromelanin formation in human brain as well. In plants, the enzyme leads the browning pathway which is commonly observed in injured tissues that is economically very unfavorable. Among different types of tyrosinase, mushroom tyrosinase has the highest homology with the mammalian tyrosinase and the only commercial tyrosinase available. In this study, ligand-based pharmacophore drug discovery method was applied to rapidly identify mushroom tyrosinase enzyme inhibitors using virtual screening. The model pharmacophore of essential interactions was developed and refined studying already experimentally discovered potent inhibitors employing Docking analysis methodology. After pharmacophore virtual screening and binding modes prediction, 14 compounds from ZINC database were identified as potent inhibitors of mushroom tyrosinase which were classified into five groups according to their chemical structures. The inhibition behavior of the discovered compounds was further studied through Classical Molecular Dynamic Simulations and the conformational changes induced by the presence of the studied ligands were discussed and compared to those of the substrate, tyrosine. According to the obtained results, five novel leads are introduced to be further optimized or directly used as potent inhibitors of mushroom tyrosinase.
Collapse
Affiliation(s)
- Kowsar Bagherzadeh
- a Department of Medicinal Chemistry, Faculty of Pharmacy and Medicinal Plants Research Center , Tehran University of Medical Sciences , Tehran , Iran
| | | | | | | | | | | |
Collapse
|
21
|
Arba M, Tjahjono DH. The binding modes of cationic porphyrin-anthraquinone hybrids to DNA duplexes: in silico study. J Biomol Struct Dyn 2014; 33:657-65. [PMID: 24580066 DOI: 10.1080/07391102.2014.887480] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cationic porphyrin-anthraquinone hybrids bearing peripheral substituents, either pyridine, imidazole, or pyrazole rings have been investigated for their binding mode to DNA duplexes. The four kinds of DNA duplexes were used, which represent intercalation and groove binding modes. AutoDock 4.2 was used to dock nine hybrid compounds to four DNA duplexes, while monitoring of conformational changes of four best hybrid-DNA complexes during 2 ns was performed by Amber9 molecular dynamics package. The binding energy calculation of best four complexes was then carried out using MMPBSA method. The hybrid compounds interacted to DNA duplexes through intercalation and groove binding modes. The minor groove binding of DNA was energetically preferred by cationic porphyrin hybrids due to favorable electrostatic and van der Waals interactions. Both electrostatic and van der Waals contributions were able to distinguish the binding mode of porphyrin hybrid to DNA duplexes.
Collapse
Affiliation(s)
- Muhammad Arba
- a School of Pharmacy, Bandung Institute of Technology , Jalan Ganesha 10, Bandung 40132 , Indonesia
| | | |
Collapse
|
22
|
Gkionis K, Kruse H, Platts JA, Mládek A, Koča J, Šponer J. Ion Binding to Quadruplex DNA Stems. Comparison of MM and QM Descriptions Reveals Sizable Polarization Effects Not Included in Contemporary Simulations. J Chem Theory Comput 2014; 10:1326-40. [DOI: 10.1021/ct4009969] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Konstantinos Gkionis
- CEITEC
- Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Holger Kruse
- CEITEC
- Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - James A. Platts
- School
of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Arnošt Mládek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| | - Jaroslav Koča
- CEITEC
- Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiří Šponer
- CEITEC
- Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| |
Collapse
|
23
|
Abstract
While the Watson-Crick base pairs are known to stabilize the DNA double helix and play a vital role in storage/replication of genetic information, their replacement with non-Watson-Crick base pairs has recently been shown to have interesting practical applications. Nowadays, theoretical calculations are routinely performed on very complex systems to gain a better understanding of how molecules interact with each other. We not only bring together some of the basic concepts of how mispaired or unnatural nucleobases interact with each other but also look at how such an understanding influences the prediction of novel properties and development of new materials. We highlight the recent developments in this field of research. In this Perspective, we discuss the success of DFT methods, particularly, dispersion-corrected DFT, for applications such as pH-controlled molecular switching, electric-field-induced stacking of disk-like molecules with guanine quartets, and optical birefringence of alkali-metal-coordinated guanine quartets. The synergy between theoretical models and real applications is highlighted.
Collapse
Affiliation(s)
- A K Jissy
- Department of Spectroscopy, Indian Association for the Cultivation of Science, Jadavpur 700032 West Bengal, India
| | - Ayan Datta
- Department of Spectroscopy, Indian Association for the Cultivation of Science, Jadavpur 700032 West Bengal, India
| |
Collapse
|
24
|
Chen SB, Shi QX, Peng D, Huang SY, Ou TM, Li D, Tan JH, Gu LQ, Huang ZS. The role of positive charges on G-quadruplex binding small molecules: learning from bisaryldiketene derivatives. Biochim Biophys Acta Gen Subj 2013; 1830:5006-13. [PMID: 23880070 DOI: 10.1016/j.bbagen.2013.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/10/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND G-quadruplexes are promising therapeutic targets for small molecules. In general, the introduction of steady positive charges through the in situ alkylation of nitrogen atoms within potential G-quadruplex ligands can significantly improve their quadruplex binding and stabilization abilities. However, our previous studies on bisaryldiketene derivatives showed that the derivative M4, whose central piperidone moiety is quaternized, exhibits a poor G-quadruplex stabilization ability. METHODS To clarify this unusual finding, CD, ITC, UV and NMR analyses were performed to determine the binding behaviors of M4 and its non-quaternized analog M2 to G-quadruplex DNA [d(TGGGT)]4. Molecular modeling approaches were also employed to help illustrate ligand-quadruplex DNA interactions. RESULTS The CD melting and ITC analyses revealed that M2 exhibited much stronger stabilization and binding abilities to [d(TGGGT)]4 compared to M4. Moreover, the CD and ITC analyses in combination with UV, NMR and MD simulations revealed that M2 tended to be end-stacked on the G-quartet, whereas M4 tended to be bound in the groove region. Analysis of the electrostatic potential showed that the charged surface of M4 was more positive than that of M2 and other reported ligands that bind to the G-quadruplex via end-stacking interactions. CONCLUSIONS The results indicated that the different positively charged surfaces of M2 and M4 might be the key reason for their different binding modes. These different binding modes also lead to different binding affinities and stabilization abilities for [d(TGGGT)]4. GENERAL SIGNIFICANCE These results provide new clues for the rational design of G-quadruplex-binding small molecules with steady positive charges.
Collapse
Affiliation(s)
- Shuo-Bin Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
New insights from molecular dynamic simulation studies of the multiple binding modes of a ligand with G-quadruplex DNA. J Comput Aided Mol Des 2012; 26:1355-68. [PMID: 23239169 DOI: 10.1007/s10822-012-9619-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 11/27/2012] [Indexed: 01/06/2023]
Abstract
G-quadruplexes are higher-order DNA and RNA structures formed from guanine-rich sequences. These structures have recently emerged as a new class of potential molecular targets for anticancer drugs. An understanding of the three-dimensional interactions between small molecular ligands and their G-quadruplex targets in solution is crucial for rational drug design and the effective optimization of G-quadruplex ligands. Thus far, rational ligand design has been focused mainly on the G-quartet platform. It should be noted that small molecules can also bind to loop nucleotides, as observed in crystallography studies. Hence, it would be interesting to elucidate the mechanism underlying how ligands in distinct binding modes influence the flexibility of G-quadruplex. In the present study, based on a crystal structure analysis, the models of a tetra-substituted naphthalene diimide ligand bound to a telomeric G-quadruplex with different modes were built and simulated with a molecular dynamics simulation method. Based on a series of computational analyses, the structures, dynamics, and interactions of ligand-quadruplex complexes were studied. Our results suggest that the binding of the ligand to the loop is viable in aqueous solutions but dependent on the particular arrangement of the loop. The binding of the ligand to the loop enhances the flexibility of the G-quadruplex, while the binding of the ligand simultaneously to both the quartet and the loop diminishes its flexibility. These results add to our understanding of the effect of a ligand with different binding modes on G-quadruplex flexibility. Such an understanding will aid in the rational design of more selective and effective G-quadruplex binding ligands.
Collapse
|
26
|
Jissy AK, Datta A. Effect of External Electric Field on H-Bonding and π-Stacking Interactions in Guanine Aggregates. Chemphyschem 2012; 13:4163-72. [DOI: 10.1002/cphc.201200690] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 09/07/2012] [Indexed: 01/19/2023]
|
27
|
šponer J, Cang X, Cheatham TE. Molecular dynamics simulations of G-DNA and perspectives on the simulation of nucleic acid structures. Methods 2012; 57:25-39. [PMID: 22525788 PMCID: PMC3775459 DOI: 10.1016/j.ymeth.2012.04.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 04/04/2012] [Accepted: 04/06/2012] [Indexed: 11/29/2022] Open
Abstract
The article reviews the application of biomolecular simulation methods to understand the structure, dynamics and interactions of nucleic acids with a focus on explicit solvent molecular dynamics simulations of guanine quadruplex (G-DNA and G-RNA) molecules. While primarily dealing with these exciting and highly relevant four-stranded systems, where recent and past simulations have provided several interesting results and novel insight into G-DNA structure, the review provides some general perspectives on the applicability of the simulation techniques to nucleic acids.
Collapse
Affiliation(s)
- Jiří šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
- CEITEC – Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Xiaohui Cang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Thomas E. Cheatham
- Department of Medicinal Chemistry, College of Pharmacy, Skaggs Hall 201, 2000 East 30 South, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
28
|
JISSY AK, RAMANA JHV, DATTA AYAN. π-Stacking interactions between G-quartets and circulenes: A computational study. J CHEM SCI 2011. [DOI: 10.1007/s12039-011-0155-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Murat P, Singh Y, Defrancq E. Methods for investigating G-quadruplex DNA/ligand interactions. Chem Soc Rev 2011; 40:5293-307. [PMID: 21720638 DOI: 10.1039/c1cs15117g] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
DNA is considered an important target for drug design and development. Until recently, the focus was on double-stranded (duplex) DNA structures. However, it has now been shown that single stranded DNA can fold into hairpin, triplex, i-motif and G-quadruplex structures. The more interesting G-quadruplex DNA structures comprise four strands of stacked guanine (G)-tetrads formed by the coplanar arrangement of four guanines, held together by Hoogsteen bonds. The DNA sequences with potential to form G-quadruplex structures are found at the chromosomal extremities (i.e. the telomeres) and also at the intra-chromosomal region (i.e. oncogenic promoters) in several important oncogenes. The formation of G-quadruplex structures is considered to have important consequences at the cellular level and such structures have been evoked in the control of expression of certain genes involved in carcinogenesis (c-myc, c-kit, K-ras etc.) as well as in the perturbation of telomeric organization. It has been shown that the formation of quadruplexes inhibits the telomere extension by the telomerase enzyme, which is up-regulated in cancer cells. Therefore, G-quadruplex structures are an important target for drug design and development and there is a huge interest in design and development of small molecules (ligands) to target these structures. A large number of so-called G-quadruplex ligands, displaying varying degrees of affinity and more importantly selectivity (i.e. the ability to interact only with quadruplex-DNA and not duplex-DNA), have been reported. Access to efficient and robust in vitro assays is needed to effectively monitor and quantify the G-quadruplex DNA/ligand interactions. This tutorial review provides an overview of G-quadruplex ligands and biophysical techniques available to monitor such interactions.
Collapse
Affiliation(s)
- Pierre Murat
- Department of Chemistry, The University of Cambridge, Cambridge CB2 1EW, UK.
| | | | | |
Collapse
|
30
|
Nakayama S, Kelsey I, Wang J, Sintim HO. c-di-GMP can form remarkably stable G-quadruplexes at physiological conditions in the presence of some planar intercalators. Chem Commun (Camb) 2011; 47:4766-8. [PMID: 21399808 DOI: 10.1039/c0cc05432a] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ubiquitous bacterial biofilm regulator, c-di-GMP can form G-quadruplexes at physiological conditions in the presence of some aromatic compounds, such as acriflavine and proflavine. The fluorescence of these compounds is quenched upon c-di-GMP binding and some of the formed c-di-GMP G-quadruplexes are stable even at 75 °C.
Collapse
Affiliation(s)
- Shizuka Nakayama
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
31
|
Hou JQ, Tan JH, Wang XX, Chen SB, Huang SY, Yan JW, Chen SH, Ou TM, Luo HB, Li D, Gu LQ, Huang ZS. Impact of planarity of unfused aromatic molecules on G-quadruplex binding: Learning from isaindigotone derivatives. Org Biomol Chem 2011; 9:6422-36. [DOI: 10.1039/c1ob05884c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|