1
|
Chawla M, Poater A, Oliva R, Cavallo L. Unveiling structural and energetic characterization of the emissive RNA alphabet anchored in the methylthieno[3,4- d]pyrimidine heterocycle core. Phys Chem Chem Phys 2024; 26:16358-16368. [PMID: 38805177 DOI: 10.1039/d3cp06136a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
This study presents a comprehensive theoretical exploration of the fluorescent non-natural emissive nucleobases- mthA, mthG, mthC, and mthU derived from the methylthieno[3,4-d]pyrimidine heterocycle. Our calculations, aligning with experimental findings, reveal that these non-natural bases exert minimal influence on the geometry of classical Watson-Crick base pairs within an RNA duplex, maintaining H-bonding akin to natural bases. In terms of energy, the impact of the modified bases, but for mthG, is also found to be little significant. We delved into an in-depth analysis of the photophysical properties of these non-natural bases. This investigation unveiled a correlation between their absorption/emission peaks and the substantial impact of the modification on the energy levels of the highest unoccupied molecular orbitals (HOMO) and the lowest unoccupied molecular orbital (LUMO). Notably, this alteration in energy levels resulted in a significant reduction of the HOMO-LUMO gap, from approximately 5.4-5.5 eV in the natural bases, to roughly 3.9-4.7 eV in the modified bases. This shift led to a consequential change in absorption and emission spectra towards longer wavelengths, elucidating their bathochromic shift.
Collapse
Affiliation(s)
- Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, KAUST Catalysis Center, Thuwal 23955-6900, Saudi Arabia.
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Ma Aurèlia Capmany 69, Girona 17003, Catalonia, Spain
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, Naples, I-80143, Italy
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, KAUST Catalysis Center, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
2
|
Lomakin IB, Devarkar SC, Patel S, Grada A, Bunick C. Sarecycline inhibits protein translation in Cutibacterium acnes 70S ribosome using a two-site mechanism. Nucleic Acids Res 2023; 51:2915-2930. [PMID: 36864821 PMCID: PMC10085706 DOI: 10.1093/nar/gkad103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 03/04/2023] Open
Abstract
Acne vulgaris is a chronic disfiguring skin disease affecting ∼1 billion people worldwide, often having persistent negative effects on physical and mental health. The Gram-positive anaerobe, Cutibacterium acnes is implicated in acne pathogenesis and is, therefore, a main target for antibiotic-based acne therapy. We determined a 2.8-Å resolution structure of the 70S ribosome of Cutibacterium acnes by cryogenic electron microscopy and discovered that sarecycline, a narrow-spectrum antibiotic against Cutibacterium acnes, may inhibit two active sites of this bacterium's ribosome in contrast to the one site detected previously on the model ribosome of Thermus thermophilus. Apart from the canonical binding site at the mRNA decoding center, the second binding site for sarecycline exists at the nascent peptide exit tunnel, reminiscent of the macrolides class of antibiotics. The structure also revealed Cutibacterium acnes-specific features of the ribosomal RNA and proteins. Unlike the ribosome of the Gram-negative bacterium Escherichia coli, Cutibacterium acnes ribosome has two additional proteins, bS22 and bL37, which are also present in the ribosomes of Mycobacterium smegmatis and Mycobacterium tuberculosis. We show that bS22 and bL37 have antimicrobial properties and may be involved in maintaining the healthy homeostasis of the human skin microbiome.
Collapse
Affiliation(s)
- Ivan B Lomakin
- Department of Dermatology, Yale University School of Medicine, New Haven, CT06520, USA
| | - Swapnil C Devarkar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06520, USA
| | - Shivali Patel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06520, USA
| | - Ayman Grada
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Christopher G Bunick
- Department of Dermatology, Yale University School of Medicine, New Haven, CT06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06520, USA
- Program in Translational Biomedicine, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
3
|
Chawla M, Kalra K, Cao Z, Cavallo L, Oliva R. Occurrence and stability of anion-π interactions between phosphate and nucleobases in functional RNA molecules. Nucleic Acids Res 2022; 50:11455-11469. [PMID: 36416268 PMCID: PMC9723503 DOI: 10.1093/nar/gkac1081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022] Open
Abstract
We present a systematic structural and energetic characterization of phosphate(OP)-nucleobase anion…π stacking interactions in RNAs. We observed OP-nucleobase stacking contacts in a variety of structural motifs other than regular helices and spanning broadly diverse sequence distances. Apart from the stacking between a phosphate and a guanine or a uracil two-residue upstream in specific U-turns, such interactions in RNA have been scarcely characterized to date. Our QM calculations showed an energy minimum at a distance between the OP atom and the nucleobase plane centroid slightly below 3 Å for all the nucleobases. By sliding the OP atom over the nucleobase plane we localized the optimal mutual positioning of the stacked moieties, corresponding to an energy minimum below -6 kcal•mol-1, for all the nucleobases, consistently with the projections of the OP atoms over the different π-rings we observed in experimental occurrences. We also found that the strength of the interaction clearly correlates with its electrostatic component, pointing to it as the most relevant contribution. Finally, as OP-uracil and OP-guanine interactions represent together 86% of the instances we detected, we also proved their stability under dynamic conditions in model systems simulated by state-of-the art DFT-MD calculations.
Collapse
Affiliation(s)
- Mohit Chawla
- Correspondence may also be addressed to Mohit Chawla. ;
| | - Kanav Kalra
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad 121002, Haryana, India
| | - Zhen Cao
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- Correspondence may also be addressed to Luigi Cavallo. Tel: +966 02 8027566; Fax: +966 02 8021347;
| | - Romina Oliva
- To whom correspondence should be addressed. Tel: +39 081 5476541; Fax: +39 081 5476514;
| |
Collapse
|
4
|
Mukherjee D, Maiti S, Gouda PK, Sharma R, Roy P, Bhattacharyya D. RNABPDB: Molecular Modeling of RNA Structure-From Base Pair Analysis in Crystals to Structure Prediction. Interdiscip Sci 2022; 14:759-774. [PMID: 35705797 DOI: 10.1007/s12539-022-00528-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
The stable three-dimensional structure of RNA is known to play several important biochemical roles, from post-transcriptional gene regulation to enzymatic action. These structures contain double-helical regions, which often have different types of non-canonical base pairs in addition to Watson-Crick base pairs. Hence, it is important to study their structures from experimentally obtained or even predicted ones, to understand their role, or to develop a drug against the potential targets. Molecular Modeling of RNA double helices containing non-canonical base pairs is a difficult process, particularly due to the unavailability of structural features of non-Watson-Crick base pairs. Here we show a composite web-server with an associated database that allows one to generate the structure of RNA double helix containing non-canonical base pairs using consensus parameters obtained from the database. The database classification is followed by an evaluation of the central tendency of the structural parameters as well as a quantitative estimation of interaction strengths. These parameters are used to construct three-dimensional structures of double helices composed of Watson-Crick and/or non-canonical base pairs. Our benchmark study to regenerate double-helical fragments of many experimentally derived RNA structures indicate very high accuracy. This composite server is expected to be highly useful in understanding functions of various pre-miRNA by modeling structures of the molecules and estimating binding efficiency. The database can be accessed from http://hdrnas.saha.ac.in/rnabpdb .
Collapse
Affiliation(s)
- Debasish Mukherjee
- Computational Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India.
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128, Mainz, Germany.
| | - Satyabrata Maiti
- Computational Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhaba National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Prasanta Kumar Gouda
- Computational Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Richa Sharma
- Computational Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Parthajit Roy
- Department of Computer Science, The University of Burdwan, Golapbag, Burdwan, 713104, India
| | - Dhananjay Bhattacharyya
- Computational Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhaba National Institute, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
5
|
Stephen C, Mishanina TV. Alkaline pH has an unexpected effect on transcriptional pausing during synthesis of the E. coli pH-responsive riboswitch. J Biol Chem 2022; 298:102302. [PMID: 35934054 PMCID: PMC9472077 DOI: 10.1016/j.jbc.2022.102302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/13/2022] [Accepted: 07/16/2022] [Indexed: 11/17/2022] Open
Abstract
Riboswitches are 5′-untranslated regions of mRNA that change their conformation in response to ligand binding, allowing post-transcriptional gene regulation. This ligand-based model of riboswitch function has been expanded with the discovery of a “pH-responsive element” (PRE) riboswitch in Escherichia coli. At neutral pH, the PRE folds into a translationally inactive structure with an occluded ribosome-binding sequence, whereas at alkaline pH, the PRE adopts a translationally active structure. This unique riboswitch does not rely on ligand binding in a traditional sense to modulate its alternative folding outcomes. Rather, pH controls riboswitch folding by two possible modes that are yet to be distinguished; pH either regulates the transcription rate of RNA polymerase (RNAP) or acts on the RNA itself. Previous work suggested that RNAP pausing is prolonged by alkaline pH at two sites, stimulating PRE folding into the active structure. To date, there has been no rigorous exploration into how pH influences RNAP pausing kinetics during PRE synthesis. To provide that understanding and distinguish between pH acting on RNAP versus RNA, we investigated RNAP pausing kinetics at key sites for PRE folding under different pH conditions. We find that pH influences RNAP pausing but not in the manner proposed previously. Rather, alkaline pH either decreases or has no effect on RNAP pause longevity, suggesting that the modulation of RNAP pausing is not the sole mechanism by which pH affects PRE folding. These findings invite the possibility that the RNA itself actively participates in the sensing of pH.
Collapse
|
6
|
Perez FP, Bandeira JP, Perez Chumbiauca CN, Lahiri DK, Morisaki J, Rizkalla M. Multidimensional insights into the repeated electromagnetic field stimulation and biosystems interaction in aging and age-related diseases. J Biomed Sci 2022; 29:39. [PMID: 35698225 PMCID: PMC9190166 DOI: 10.1186/s12929-022-00825-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/07/2022] [Indexed: 11/25/2022] Open
Abstract
We provide a multidimensional sequence of events that describe the electromagnetic field (EMF) stimulation and biological system interaction. We describe this process from the quantum to the molecular, cellular, and organismal levels. We hypothesized that the sequence of events of these interactions starts with the oscillatory effect of the repeated electromagnetic stimulation (REMFS). These oscillations affect the interfacial water of an RNA causing changes at the quantum and molecular levels that release protons by quantum tunneling. Then protonation of RNA produces conformational changes that allow it to bind and activate Heat Shock Transcription Factor 1 (HSF1). Activated HSF1 binds to the DNA expressing chaperones that help regulate autophagy and degradation of abnormal proteins. This action helps to prevent and treat diseases such as Alzheimer's and Parkinson's disease (PD) by increasing clearance of pathologic proteins. This framework is based on multiple mathematical models, computer simulations, biophysical experiments, and cellular and animal studies. Results of the literature review and our research point towards the capacity of REMFS to manipulate various networks altered in aging (Reale et al. PloS one 9, e104973, 2014), including delay of cellular senescence (Perez et al. 2008, Exp Gerontol 43, 307-316) and reduction in levels of amyloid-β peptides (Aβ) (Perez et al. 2021, Sci Rep 11, 621). Results of these experiments using REMFS at low frequencies can be applied to the treatment of patients with age-related diseases. The use of EMF as a non-invasive therapeutic modality for Alzheimer's disease, specifically, holds promise. It is also necessary to consider the complicated and interconnected genetic and epigenetic effects of the REMFS-biological system's interaction while avoiding any possible adverse effects.
Collapse
Affiliation(s)
- Felipe P Perez
- Indiana University School of Medicine, Indianapolis, IN, USA.
- Division of General Internal Medicine and Geriatrics, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Joseph P Bandeira
- Indiana University School of Medicine, Indianapolis, IN, USA
- Division of General Internal Medicine and Geriatrics, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cristina N Perez Chumbiauca
- Indiana University School of Medicine, Indianapolis, IN, USA
- Division of Rheumatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Debomoy K Lahiri
- Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Institute of Psychiatric Research, Neuroscience Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jorge Morisaki
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Maher Rizkalla
- Department of Electrical and Computer Engineering, Indiana University-Purdue University, Indianapolis, IN, USA
| |
Collapse
|
7
|
Investigation of protonated base pairs between hypoxanthine and DNA bases by MS and MP2 methods. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/j.cjac.2021.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Chawla M, Gorle S, Shaikh AR, Oliva R, Cavallo L. Replacing thymine with a strongly pairing fifth Base: A combined quantum mechanics and molecular dynamics study. Comput Struct Biotechnol J 2021; 19:1312-1324. [PMID: 33738080 PMCID: PMC7940798 DOI: 10.1016/j.csbj.2021.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 01/14/2023] Open
Abstract
The non-natural ethynylmethylpyridone C-nucleoside (W), a thymidine (T) analogue that can be incorporated in oligonucleotides by automated synthesis, has recently been reported to form a high fidelity base pair with adenosine (A) and to be well accommodated in B-DNA duplexes. The enhanced binding affinity for A of W, as compared to T, makes it an ideal modification for biotechnological applications, such as efficient probe hybridization for the parallel detection of multiple DNA strands. In order to complement the experimental study and rationalize the impact of the non-natural W nucleoside on the structure, stability and dynamics of DNA structures, we performed quantum mechanics (QM) calculations along with molecular dynamics (MD) simulations. Consistently with the experimental study, our QM calculations show that the A:W base pair has an increased stability as compared to the natural A:T pair, due to an additional CH-π interaction. Furthermore, we show that mispairing between W and guanine (G) causes a distortion in the planarity of the base pair, thus explaining the destabilization of DNA duplexes featuring a G:W pair. MD simulations show that incorporation of single or multiple consecutive A:W pairs in DNA duplexes causes minor changes to the intra- and inter-base geometrical parameters, while a moderate widening/shrinking of the major/minor groove of the duplexes is observed. QM calculations applied to selected stacks from the MD simulations also show an increased stacking energy for W, over T, with the neighboring bases.
Collapse
Affiliation(s)
- Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Suresh Gorle
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Abdul Rajjak Shaikh
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, I-80143 Naples, Italy
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
9
|
Kalra K, Gorle S, Cavallo L, Oliva R, Chawla M. Occurrence and stability of lone pair-π and OH-π interactions between water and nucleobases in functional RNAs. Nucleic Acids Res 2020; 48:5825-5838. [PMID: 32392301 PMCID: PMC7293021 DOI: 10.1093/nar/gkaa345] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 01/15/2023] Open
Abstract
We identified over 1000 instances of water-nucleobase stacking contacts in a variety of RNA molecules from a non-redundant set of crystal structures with resolution ≤3.0 Å. Such contacts may be of either the lone pair-π (lp-π) or the OH-π type, in nature. The distribution of the distances of the water oxygen from the nucleobase plane peaks at 3.5 Å for A, G and C, and approximately at 3.1-3.2 Å for U. Quantum mechanics (QM) calculations confirm, as expected, that the optimal energy is reached at a shorter distance for the lp-π interaction as compared to the OH-π one (3.0 versus 3.5 Å). The preference of each nucleobase for either type of interaction closely correlates with its electrostatic potential map. Furthermore, QM calculations show that for all the nucleobases a favorable interaction, of either the lp-π or the OH-π type, can be established at virtually any position of the water molecule above the nucleobase skeleton, which is consistent with the uniform projection of the OW atoms over the nucleobases ring we observed in the experimental occurrences. Finally, molecular dynamics simulations of a model system for the characterization of water-nucleobase stacking contacts confirm the stability of these interactions also under dynamic conditions.
Collapse
Affiliation(s)
- Kanav Kalra
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Suresh Gorle
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, I-80143 Naples, Italy
| | - Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
10
|
Cabaj MK, Dominiak PM. Frequency and hydrogen bonding of nucleobase homopairs in small molecule crystals. Nucleic Acids Res 2020; 48:8302-8319. [PMID: 32725210 PMCID: PMC7470937 DOI: 10.1093/nar/gkaa629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 11/16/2022] Open
Abstract
We used the high resolution and accuracy of the Cambridge Structural Database (CSD) to provide detailed information regarding base pairing interactions of selected nucleobases. We searched for base pairs in which nucleobases interact with each other through two or more hydrogen bonds and form more or less planar structures. The investigated compounds were either free forms or derivatives of adenine, guanine, hypoxanthine, thymine, uracil and cytosine. We divided our findings into categories including types of pairs, protonation patterns and whether they are formed by free bases or substituted ones. We found base pair types that are exclusive to small molecule crystal structures, some that can be found only in RNA containing crystal structures and many that are native to both environments. With a few exceptions, nucleobase protonation generally followed a standard pattern governed by pKa values. The lengths of hydrogen bonds did not depend on whether the nucleobases forming a base pair were charged or not. The reasons why particular nucleobases formed base pairs in a certain way varied significantly.
Collapse
Affiliation(s)
- Małgorzata Katarzyna Cabaj
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Paulina Maria Dominiak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warszawa, Poland
| |
Collapse
|
11
|
Ohri A, P Seelam P, Sharma P. A quantum chemical view of the interaction of RNA nucleobases and base pairs with the side chains of polar amino acids. J Biomol Struct Dyn 2020; 39:5411-5426. [PMID: 32662328 DOI: 10.1080/07391102.2020.1787225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hydrogen bonding between amino acids and nucleobases is important for RNA-protein recognition. As a first step toward understanding the physicochemical features of these contacts, the present work employs density functional theory calculations to critically analyze the intrinsic structures and strength of all theoretically possible model hydrogen-bonded complexes involving RNA nucleobase edges and polar amino acid side chains. Our geometry optimizations uncover a number of unique complexes that involve variable hydrogen-bonding characteristics, including conventional donor-acceptor interactions, bifurcated interactions and single hydrogen-bonded contacts. Further, significant strength of these complexes in the gas phase (-27 kJ mol-1 to -226 kJ mol-1) and solvent phase (-19 kJ mol-1 to -78 kJ mol-1) points toward the ability of associated contacts to provide stability to RNA-protein complexes. More importantly, for the first time, our study uncovers the features of complexes involving protonated nucleobases, as well as those involving the weakly polar cysteine side chain, and thereby highlights their potential importance in biological processes that involve RNA-protein interactions. Additional analysis on select base pair-amino acid complexes uncovers the ability of amino acid side chain to simultaneously interact with both nucleobases of the base pair, and highlights the greater strength of such interactions compared to base-amino acid interactions. Overall, our analysis provides a basic physicochemical framework for understanding the molecular basis of nucleic acid-protein interactions. Further, our quantum chemical data can be used to design better algorithms for automated search of these contacts at the RNA-protein interface.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ashita Ohri
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| | - Preethi P Seelam
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology Hyderabad (IIIT-H), Gachibowli, Hyderabad, Telangana, India.,Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| |
Collapse
|
12
|
Cheng R, Martens J, Fridgen TD. A vibrational spectroscopic and computational study of gaseous protonated and alkali metal cationized G-C base pairs. Phys Chem Chem Phys 2020; 22:11546-11557. [PMID: 32395733 DOI: 10.1039/d0cp00069h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structures and properties of metal cationized complexes of 9-ethylguanine (9eG) and 1-methylcytosine (1mC), (9eG:1mC)M+, where M+ = Li+, Na+, K+, Rb+, Cs+ as well as the protonated complex, (9eG:1mC)H+, have been studied using a combination of IRMPD spectroscopy and computational methods. For (9eG:1mC)H+, the dominant structure is a Hoogsteen type complex with the proton covalently bound to N3 of 1mC despite this being the third best protonation site of the two bases; based on proton affinities N7 of 9eG should be protonated. However, this structural oddity can be explained considering both the number of hydrogen bonds that can be formed when N3 of 1mC is protonated as well as the strong ion-induced dipole interaction that exists between an N3 protonated 1mC and 9eG due to the higher polarizability of 9eG. The anomalous dissociation of (9eG:1mC)H+, forming much more (1mC)H+ than would be predicted based on the computed thermochemistry, can be explained as being due to the structural oddity of the protonation site and that the barrier to proton transfer from N3 of 1mC to N7 of 9eG grows dramatically as the base pair begins to dissociate. For the (9eG:1mC)M+; M = Li+, Na+, K+, Rb+, Cs+ complexes, single unique structures could not be assigned. However, the experimental spectra were consistent with the computed spectra. For (9eG:1mC)Li+, the lowest energy structure is one in which Li+ is bound to O6 of 9eG and both O2 and N3 of 1mC; there is also an interbase hydrogen bond from the amine of 1mC to N7 of 9eG. For Na+, K+, and Rb+, similar binding of the metal cation to 1mC is calculated but, unlike Li+, the lowest energy structure is one in which the metal cation is bound to N7 of 9eG; there is also an interbase hydrogen bond between the amine of 1mC and the carbonyl of 9eG. The lowest energy structure for the Cs complex is the Watson-Crick type base pairing with Cs+ binding only to 9eG through O6 and N7 and with three hydrogen bonds between 9eG and 1mC. It also interesting to note that the Watson-Crick base pairing structure gets lower in Gibbs energy relative to the lowest energy complexes as the metal gets larger. This indicates that the smaller, more densely charged cations have a greater propensity to interfere with Watson-Crick base pairing than do the larger, less densely charged metal cations.
Collapse
Affiliation(s)
- Ruodi Cheng
- Department of Chemistry, Memorial University, St. John's, NL A1B 3X7, Canada.
| | | | | |
Collapse
|
13
|
Cheng R, Loire E, Martens J, Fridgen TD. An IRMPD spectroscopic and computational study of protonated guanine-containing mismatched base pairs in the gas phase. Phys Chem Chem Phys 2020; 22:2999-3007. [DOI: 10.1039/c9cp06393e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Infrared multiple photon dissociation spectroscopy has been used to probe the structures of the three protonated base-pair mismatches containing 9-ethylguanine (9eG) in the gas phase. Some of these protonated base-pairs have been identified in RNA.
Collapse
Affiliation(s)
- Ruodi Cheng
- Department of Chemistry
- Memorial University
- St. John's
- Canada
| | - Estelle Loire
- Laboratoire Chimie Physique – CLIO
- Campus Universite d’Orsay
- France
| | - Jonathan Martens
- Radboud University
- Institute for Molecules and Materials
- FELIX Laboratory
- Nijmegen
- The Netherlands
| | | |
Collapse
|
14
|
Pasquali S, Frezza E, Barroso da Silva FL. Coarse-grained dynamic RNA titration simulations. Interface Focus 2019; 9:20180066. [PMID: 31065339 DOI: 10.1098/rsfs.2018.0066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2019] [Indexed: 12/11/2022] Open
Abstract
Electrostatic interactions play a pivotal role in many biomolecular processes. The molecular organization and function in biological systems are largely determined by these interactions. Owing to the highly negative charge of RNA, the effect is expected to be more pronounced in this system. Moreover, RNA base pairing is dependent on the charge of the base, giving rise to alternative secondary and tertiary structures. The equilibrium between uncharged and charged bases is regulated by the solution pH, which is therefore a key environmental condition influencing the molecule's structure and behaviour. By means of constant-pH Monte Carlo simulations based on a fast proton titration scheme, coupled with the coarse-grained model HiRE-RNA, molecular dynamic simulations of RNA molecules at constant pH enable us to explore the RNA conformational plasticity at different pH values as well as to compute electrostatic properties as local pK a values for each nucleotide.
Collapse
Affiliation(s)
- S Pasquali
- Laboratoire de Cristallographie et RMN Biologiques, CNRS UMR 8015, Université Paris Descartes, Paris 75006, France
| | - E Frezza
- Laboratoire de Cristallographie et RMN Biologiques, CNRS UMR 8015, Université Paris Descartes, Paris 75006, France
| | - F L Barroso da Silva
- Departamento de Física e Química, Faculdade de Ciência s Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do café, s/no, Ribeirão Preto, SP BR-14040-903, Brazil.,Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
15
|
Bhattacharya S, Jhunjhunwala A, Halder A, Bhattacharyya D, Mitra A. Going beyond base-pairs: topology-based characterization of base-multiplets in RNA. RNA (NEW YORK, N.Y.) 2019; 25:573-589. [PMID: 30792229 PMCID: PMC6467009 DOI: 10.1261/rna.068551.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/18/2019] [Indexed: 05/17/2023]
Abstract
Identification and characterization of base-multiplets, which are essentially mediated by base-pairing interactions, can provide insights into the diversity in the structure and dynamics of complex functional RNAs, and thus facilitate hypothesis driven biological research. The necessary nomenclature scheme, an extension of the geometric classification scheme for base-pairs by Leontis and Westhof, is however available only for base-triplets. In the absence of information on topology, this scheme is not applicable to quartets and higher order multiplets. Here we propose a topology-based classification scheme which, in conjunction with a graph-based algorithm, can be used for the automated identification and characterization of higher order base-multiplets in RNA structures. Here, the RNA structure is represented as a graph, where nodes represent nucleotides and edges represent base-pairing connectivity. Sets of connected components (of n nodes) within these graphs constitute subgraphs representing multiplets of "n" nucleotides. The different topological variants of the RNA multiplets thus correspond to different nonisomorphic forms of these subgraphs. To annotate RNA base-multiplets unambiguously, we propose a set of topology-based nomenclature rules for quartets, which are extendable to higher multiplets. We also demonstrate the utility of our approach toward the identification and annotation of higher order RNA multiplets, by investigating the occurrence contexts of selected examples in order to gain insights regarding their probable functional roles.
Collapse
Affiliation(s)
- Sohini Bhattacharya
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, India
| | - Ayush Jhunjhunwala
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, India
| | - Antarip Halder
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, India
| | - Dhananjay Bhattacharyya
- Computational Science Division, Saha Institute of Nuclear Physics (SINP), 1/AF, Bidhannagar, Kolkata 700064, India
| | - Abhijit Mitra
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, India
| |
Collapse
|
16
|
Halder A, Vemuri S, Roy R, Katuri J, Bhattacharyya D, Mitra A. Evidence for Hidden Involvement of N3-Protonated Guanine in RNA Structure and Function. ACS OMEGA 2019; 4:699-709. [PMID: 30775644 PMCID: PMC6372247 DOI: 10.1021/acsomega.8b02908] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/25/2018] [Indexed: 05/05/2023]
Abstract
Charged nucleobases have been found to occur in several known RNA molecules and are considered essential for their structure and function. The mechanism of their involvement is however not yet fully understood. Revelation of the role of N7-protonated guanine, in modulating the geometry and stability of noncanonical base pairs formed through its unprotonated edges [Watson-Crick (WC) and sugar], has triggered the need to evaluate the feasibility of similar roles of other protonated nucleobases [Halder et al., Phys Chem Chem Phys, 2015, 17, 26249]. In this context, N3 protonation of guanine makes an interesting case as its influence on the charge distribution of the WC edge is similar to that of N7 protonation, though its thermodynamic cost of protonation is significantly higher. In this work, we have carried out structural bioinformatics analyses and quantum mechanics-based calculations to show that N3 protonation of guanine may take place in a cellular environment, at least in the G:C W:W Trans and G:G W:H Cis base pairs. Our results provide a reasonable starting point for future investigations in order to address the larger mechanistic question.
Collapse
Affiliation(s)
- Antarip Halder
- Center
for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology,
Hyderabad (IIIT-H), Gachibowli, Hyderabad 500032, Telangana, India
| | - Saurabh Vemuri
- Center
for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology,
Hyderabad (IIIT-H), Gachibowli, Hyderabad 500032, Telangana, India
| | - Rohit Roy
- Center
for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology,
Hyderabad (IIIT-H), Gachibowli, Hyderabad 500032, Telangana, India
| | - Jayanth Katuri
- Center
for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology,
Hyderabad (IIIT-H), Gachibowli, Hyderabad 500032, Telangana, India
| | - Dhananjay Bhattacharyya
- Computational
Science Division, Saha Institute of Nuclear
Physics (SINP), 1/AF,
Bidhannagar, Kolkata 700064, India
| | - Abhijit Mitra
- Center
for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology,
Hyderabad (IIIT-H), Gachibowli, Hyderabad 500032, Telangana, India
| |
Collapse
|
17
|
Kumar P, Cabaj MK, Pazio A, Dominiak PM. Protonated nucleobases are not fully ionized in their chloride salt crystals and form metastable base pairs further stabilized by the surrounding anions. IUCRJ 2018; 5:449-469. [PMID: 30002846 PMCID: PMC6038959 DOI: 10.1107/s2052252518006346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
This paper presents experimental charge-density studies of cytosinium chloride, adeninium chloride hemihydrate and guaninium dichloride crystals based on ultra-high-resolution X-ray diffraction data and extensive theoretical calculations. The results confirm that the cohesive energies of the studied systems are dominated by contributions from intermolecular electrostatic interactions, as expected for ionic crystals. Electrostatic interaction energies (Ees) usually constitute 95% of the total interaction energy. The Ees energies in this study were several times larger in absolute value when compared, for example, with dimers of neutral nucleobases. However, they were not as large as some theoretical calculations have predicted. This was because the molecules appeared not to be fully ionized in the studied crystals. Apart from charge transfer from chlorine to the protonated nucleobases, small but visible charge redistribution within the nucleobase cations was observed. Some dimers of singly protonated bases in the studied crystals, namely a cytosinium-cytosinium trans sugar/sugar edge pair and an adeninium-adeninium trans Hoogsteen/Hoogsteen edge pair, exhibited attractive interactions (negative values of Ees) or unusually low repulsion despite identical molecular charges. The pairs are metastable as a result of strong hydrogen bonding between bases which overcompensates the overall cation-cation repulsion, the latter being weakened due to charge transfer and molecular charge-density polarization.
Collapse
Affiliation(s)
- Prashant Kumar
- Biological and Chemical Research Center, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Malgorzata Katarzyna Cabaj
- Biological and Chemical Research Center, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Aleksandra Pazio
- Biological and Chemical Research Center, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Paulina Maria Dominiak
- Biological and Chemical Research Center, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, Warszawa 02-089, Poland
| |
Collapse
|
18
|
Yang L, Zhong Z, Tong C, Jia H, Liu Y, Chen G. Single-Molecule Mechanical Folding and Unfolding of RNA Hairpins: Effects of Single A-U to A·C Pair Substitutions and Single Proton Binding and Implications for mRNA Structure-Induced -1 Ribosomal Frameshifting. J Am Chem Soc 2018; 140:8172-8184. [PMID: 29884019 DOI: 10.1021/jacs.8b02970] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A wobble A·C pair can be protonated at near physiological pH to form a more stable wobble A+·C pair. Here, we constructed an RNA hairpin (rHP) and three mutants with one A-U base pair substituted with an A·C mismatch on the top (near the loop, U22C), middle (U25C), and bottom (U29C) positions of the stem, respectively. Our results on single-molecule mechanical (un)folding using optical tweezers reveal the destabilization effect of A-U to A·C pair substitution and protonation-dependent enhancement of mechanical stability facilitated through an increased folding rate, or decreased unfolding rate, or both. Our data show that protonation may occur rapidly upon the formation of an apparent mechanical folding transition state. Furthermore, we measured the bulk -1 ribosomal frameshifting efficiencies of the hairpins by a cell-free translation assay. For the mRNA hairpins studied, -1 frameshifting efficiency correlates with mechanical unfolding force at equilibrium and folding rate at around 15 pN. U29C has a frameshifting efficiency similar to that of rHP (∼2%). Accordingly, the bottom 2-4 base pairs of U29C may not form under a stretching force at pH 7.3, which is consistent with the fact that the bottom base pairs of the hairpins may be disrupted by ribosome at the slippery site. U22C and U25C have a similar frameshifting efficiency (∼1%), indicating that both unfolding and folding rates of an mRNA hairpin in a crowded environment may affect frameshifting. Our data indicate that mechanical (un)folding of RNA hairpins may mimic how mRNAs unfold and fold in the presence of translating ribosomes.
Collapse
Affiliation(s)
- Lixia Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Zhensheng Zhong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371.,School of Physics, and State Key Laboratory of Optoelectronic Materials and Technologies , Sun Yat-sen University , Guangzhou 510275 , People's Republic of China
| | - Cailing Tong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Huan Jia
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Yiran Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| |
Collapse
|
19
|
Chawla M, Poater A, Besalú-Sala P, Kalra K, Oliva R, Cavallo L. Theoretical characterization of sulfur-to-selenium substitution in an emissive RNA alphabet: impact on H-bonding potential and photophysical properties. Phys Chem Chem Phys 2018; 20:7676-7685. [PMID: 29497733 DOI: 10.1039/c7cp07656h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We employ density functional theory (DFT) and time-dependent DFT (TDDFT) calculations to investigate the structural, energetic and optical properties of a new computationally designed RNA alphabet, where the nucleobases, tsA, tsG, tsC, and tsU (ts-bases), have been derived by replacing sulfur with selenium in the previously reported tz-bases, based on the isothiazolo[4,3-d]pyrimidine heterocycle core. We find out that the modeled non-natural bases have minimal impact on the geometry and energetics of the classical Watson-Crick base pairs, thus potentially mimicking the natural bases in a RNA duplex in terms of H-bonding. In contrast, our calculations indicate that H-bonded base pairs involving the Hoogsteen edge of purines are destabilized as compared to their natural counterparts. We also focus on the photophysical properties of the non-natural bases and correlate their absorption/emission peaks to the strong impact of the modification on the energy of the lowest unoccupied molecular orbital. It is indeed stabilized by roughly 1.1-1.6 eV as compared to the natural analogues, resulting in a reduction of the gap between the highest occupied and the lowest unoccupied molecular orbital from 5.3-5.5 eV in the natural bases to 3.9-4.2 eV in the modified ones, with a consequent bathochromic shift in the absorption and emission spectra. Overall, our analysis clearly indicates that the newly modelled ts-bases are expected to exhibit better fluorescent properties as compared to the previously reported tz-bases, while retaining similar H-bonding properties. In addition, we show that a new RNA alphabet based on size-extended benzo-homologated ts-bases can also form stable Watson-Crick base pairs with the natural complementary nucleobases.
Collapse
Affiliation(s)
- Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, KAUST Catalysis Center, Thuwal 23955-6900, Saudi Arabia.
| | | | | | | | | | | |
Collapse
|
20
|
Chawla M, Autiero I, Oliva R, Cavallo L. Energetics and dynamics of the non-natural fluorescent 4AP:DAP base pair. Phys Chem Chem Phys 2018; 20:3699-3709. [DOI: 10.1039/c7cp07400j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Quantum mechanics and molecular dynamics methods are used to compare the non-natural 4AP–DAP base pair to natural base pairs.
Collapse
Affiliation(s)
- Mohit Chawla
- King Abdullah University of Science and Technology (KAUST)
- Physical Sciences and Engineering Division
- Thuwal 23955-6900
- Saudi Arabia
| | - Ida Autiero
- King Abdullah University of Science and Technology (KAUST)
- Physical Sciences and Engineering Division
- Thuwal 23955-6900
- Saudi Arabia
| | - Romina Oliva
- Department of Sciences and Technologies
- University Parthenope of Naples
- Centro Direzionale Isola C4
- Naples
- Italy
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST)
- Physical Sciences and Engineering Division
- Thuwal 23955-6900
- Saudi Arabia
| |
Collapse
|
21
|
Chawla M, Chermak E, Zhang Q, Bujnicki JM, Oliva R, Cavallo L. Occurrence and stability of lone pair-π stacking interactions between ribose and nucleobases in functional RNAs. Nucleic Acids Res 2017; 45:11019-11032. [PMID: 28977572 PMCID: PMC5737201 DOI: 10.1093/nar/gkx757] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022] Open
Abstract
The specific folding pattern and function of RNA molecules lies in various weak interactions, in addition to the strong base-base pairing and stacking. One of these relatively weak interactions, characterized by the stacking of the O4' atom of a ribose on top of the heterocycle ring of a nucleobase, has been known to occur but has largely been ignored in the description of RNA structures. We identified 2015 ribose-base stacking interactions in a high-resolution set of non-redundant RNA crystal structures. They are widespread in structured RNA molecules and are located in structural motifs other than regular stems. Over 50% of them involve an adenine, as we found ribose-adenine contacts to be recurring elements in A-minor motifs. Fewer than 50% of the interactions involve a ribose and a base of neighboring residues, while approximately 30% of them involve a ribose and a nucleobase at least four residues apart. Some of them establish inter-domain or inter-molecular contacts and often implicate functionally relevant nucleotides. In vacuo ribose-nucleobase stacking interaction energies were calculated by quantum mechanics methods. Finally, we found that lone pair-π stacking interactions also occur between ribose and aromatic amino acids in RNA-protein complexes.
Collapse
Affiliation(s)
- Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Thuwal 23955-6900, Saudi Arabia.,Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Edrisse Chermak
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Thuwal 23955-6900, Saudi Arabia.,Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Qingyun Zhang
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Thuwal 23955-6900, Saudi Arabia
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland.,Laboratory of Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, I-80143 Naples, Italy.,King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Thuwal 23955-6900, Saudi Arabia.,Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
22
|
Barroso da Silva FL, Derreumaux P, Pasquali S. Fast coarse-grained model for RNA titration. J Chem Phys 2017; 146:035101. [PMID: 28109220 DOI: 10.1063/1.4972986] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A new numerical scheme for RNA (ribonucleic acid) titration based on the Debye-Hückel framework for the salt description is proposed in an effort to reduce the computational costs for further applications to study protein-RNA systems. By means of different sets of Monte Carlo simulations, we demonstrated that this new scheme is able to correctly reproduce the experimental titration behavior and salt pKa shifts. In comparison with other theoretical approaches, similar or even better outcomes are achieved at much lower computational costs. The model was tested on the lead-dependent ribozyme, the branch-point helix, and the domain 5 from Azotobacter vinelandii Intron 5.
Collapse
Affiliation(s)
- Fernando Luís Barroso da Silva
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ave. do café, s/no, BR-14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Philippe Derreumaux
- Laboratoire de Biochimie Theórique, UPR 9080 CNRS, Institut de Biologie Physico Chimique, Université Paris Diderot - Paris 7 et Université Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Samuela Pasquali
- Laboratoire de Biochimie Theórique, UPR 9080 CNRS, Institut de Biologie Physico Chimique, Université Paris Diderot - Paris 7 et Université Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
23
|
Martinez-Zapien D, Legrand P, McEwen AG, Proux F, Cragnolini T, Pasquali S, Dock-Bregeon AC. The crystal structure of the 5΄ functional domain of the transcription riboregulator 7SK. Nucleic Acids Res 2017; 45:3568-3579. [PMID: 28082395 PMCID: PMC5389472 DOI: 10.1093/nar/gkw1351] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/06/2017] [Indexed: 12/22/2022] Open
Abstract
In vertebrates, the 7SK RNA forms the scaffold of a complex, which regulates transcription pausing of RNA-polymerase II. By binding to the HEXIM protein, the complex comprising proteins LARP7 and MePCE captures the positive transcription elongation factor P-TEFb and prevents phosphorylation of pausing factors. The HEXIM-binding site embedded in the 5΄-hairpin of 7SK (HP1) encompasses a short signature sequence, a GAUC repeat framed by single-stranded uridines. The present crystal structure of HP1 shows a remarkably straight helical stack involving several unexpected triples formed at a central region. Surprisingly, two uridines of the signature sequence make triple interactions in the major groove of the (GAUC)2. The third uridine is turned outwards or inward, wedging between the other uridines, thus filling the major groove. A molecular dynamics simulation indicates that these two conformations of the signature sequence represent stable alternatives. Analyses of the interaction with the HEXIM protein confirm the importance of the triple interactions at the signature sequence. Altogether, the present structural analysis of 7SK HP1 highlights an original mechanism of swapping bases, which could represent a possible ‘7SK signature’ and provides new insight into the functional importance of the plasticity of RNA.
Collapse
Affiliation(s)
- Denise Martinez-Zapien
- Biotechnologie et signalisation cellulaire, CNRS UMR 7242, Ecole Supérieure de Biotechnologie de Strasbourg, F-67412 Illkirch, France
| | - Pierre Legrand
- Synchrotron SOLEIL, L'Orme des Merisiers, F-91190 Gif-sur-Yvette, France
| | - Alastair G McEwen
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Florence Proux
- Department of functional genomics, CNRS UMR 8197, Institut de Biologie de l΄Ecole Normale Supérieure F-75005 Paris, France.,Department of functional genomics, INSERM-U1024, Institut de Biologie de l΄Ecole Normale Supérieure F-75005 Paris, France
| | | | - Samuela Pasquali
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR 9080, Université Sorbonne Paris Cite, Paris Diderot, 75005 Paris, France
| | - Anne-Catherine Dock-Bregeon
- Department of functional genomics, CNRS UMR 8197, Institut de Biologie de l΄Ecole Normale Supérieure F-75005 Paris, France.,Department of functional genomics, INSERM-U1024, Institut de Biologie de l΄Ecole Normale Supérieure F-75005 Paris, France.,Sorbonne Universités UPMC, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France.,CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
| |
Collapse
|
24
|
Zhu Y, Roy HA, Cunningham NA, Strobehn SF, Gao J, Munshi MU, Berden G, Oomens J, Rodgers MT. Effects of sodium cationization versus protonation on the conformations and N-glycosidic bond stabilities of sodium cationized Urd and dUrd: solution conformation of [Urd+Na] + is preserved upon ESI. Phys Chem Chem Phys 2017; 19:17637-17652. [PMID: 28665436 DOI: 10.1039/c7cp02377d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Uridine (Urd) is one of the naturally occurring pyrimidine nucleosides of RNA. 2'-Deoxyuridine (dUrd) is a naturally occurring modified form of Urd, but is not one of the canonical DNA nucleosides. In order to understand the effects of sodium cationization on the conformations and energetics of Urd and dUrd, infrared multiple photon dissociation (IRMPD) action spectroscopy experiments and density functional theory (DFT) calculations are performed. By comparing the calculated IR spectra of [Urd+Na]+ and [dUrd+Na]+ with the measured IRMPD spectra, the stable low-energy conformers populated in the experiments are determined. Anti oriented bidentate O2 and O2' binding conformers of [Urd+Na]+ are the dominant conformers populated in the experiments, whereas syn oriented tridentate O2, O4', and O5' binding conformers of [dUrd+Na]+ are dominantly populated in the experiments. The 2'-hydroxyl substituent of Urd stabilizes the anti oriented O2 binding conformers of [Urd+Na]+. Significant differences between the measured IRMPD and calculated IR spectra for complexes of [Urd+Na]+ and [dUrd+Na]+ involving minor tautomeric forms of the nucleobase make it obvious that none are populated in the experiments. Survival yield analyses based on energy-resolved collision-induced dissociation (ER-CID) experiments suggest that the relative stabilities of protonated and sodium cationized Urd and dUrd follow the order: [dUrd+H]+ < [Urd+H]+ < [dUrd+Na]+ < [Urd+Na]+. The 2'-deoxy modification is found to weaken the glycosidic bond of dUrd versus that of Urd for the sodium cationized uridine nucleosides.
Collapse
Affiliation(s)
- Y Zhu
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | - H A Roy
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | - N A Cunningham
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | - S F Strobehn
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | - J Gao
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - M U Munshi
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - G Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - J Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
25
|
Seelam PP, Sharma P, Mitra A. Structural landscape of base pairs containing post-transcriptional modifications in RNA. RNA (NEW YORK, N.Y.) 2017; 23:847-859. [PMID: 28341704 PMCID: PMC5435857 DOI: 10.1261/rna.060749.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/23/2017] [Indexed: 05/20/2023]
Abstract
Base pairs involving post-transcriptionally modified nucleobases are believed to play important roles in a wide variety of functional RNAs. Here we present our attempts toward understanding the structural and functional role of naturally occurring modified base pairs using a combination of X-ray crystal structure database analysis, sequence analysis, and advanced quantum chemical methods. Our bioinformatics analysis reveals that despite their presence in all major secondary structural elements, modified base pairs are most prevalent in tRNA crystal structures and most commonly involve guanine or uridine modifications. Further, analysis of tRNA sequences reveals additional examples of modified base pairs at structurally conserved tRNA regions and highlights the conservation patterns of these base pairs in three domains of life. Comparison of structures and binding energies of modified base pairs with their unmodified counterparts, using quantum chemical methods, allowed us to classify the base modifications in terms of the nature of their electronic structure effects on base-pairing. Analysis of specific structural contexts of modified base pairs in RNA crystal structures revealed several interesting scenarios, including those at the tRNA:rRNA interface, antibiotic-binding sites on the ribosome, and the three-way junctions within tRNA. These scenarios, when analyzed in the context of available experimental data, allowed us to correlate the occurrence and strength of modified base pairs with their specific functional roles. Overall, our study highlights the structural importance of modified base pairs in RNA and points toward the need for greater appreciation of the role of modified bases and their interactions, in the context of many biological processes involving RNA.
Collapse
Affiliation(s)
- Preethi P Seelam
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology Hyderabad (IIIT-H), Gachibowli, Hyderabad, Telangana 500032, India
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Abhijit Mitra
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology Hyderabad (IIIT-H), Gachibowli, Hyderabad, Telangana 500032, India
| |
Collapse
|
26
|
S. P. P, Sharma P, Mitra A. Higher order structures involving post transcriptionally modified nucleobases in RNA. RSC Adv 2017. [DOI: 10.1039/c7ra05284g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Quantum chemical studies are carried out to understand the structures and stabilities of higher order structures involving post-transcriptionally modified nucleobases in RNA.
Collapse
Affiliation(s)
- Preethi S. P.
- Center for Computational Natural Sciences and Bioinformatics
- International Institute of Information Technology Hyderabad (IIIT-H)
- Hyderabad
- India
| | - Purshotam Sharma
- Computational Biochemistry Laboratory
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - Abhijit Mitra
- Center for Computational Natural Sciences and Bioinformatics
- International Institute of Information Technology Hyderabad (IIIT-H)
- Hyderabad
- India
| |
Collapse
|
27
|
Wu RR, Yang B, Frieler CE, Berden G, Oomens J, Rodgers MT. Diverse mixtures of 2,4-dihydroxy tautomers and O4 protonated conformers of uridine and 2'-deoxyuridine coexist in the gas phase. Phys Chem Chem Phys 2016. [PMID: 26225730 DOI: 10.1039/c5cp02227d] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The gas-phase conformations of protonated uridine, [Urd+H](+), and its modified form, protonated 2'-deoxyuridine, [dUrd+H](+), generated by electrospray ionization are investigated using infrared multiple photon dissociation (IRMPD) action spectroscopy techniques. IRMPD action spectra of [Urd+H](+) and [dUrd+H](+) are measured over the IR fingerprint and hydrogen-stretching regions. [Urd+H](+) and [dUrd+H](+) exhibit very similar IRMPD spectral profiles. However, the IRMPD yields of [Urd+H](+) exceed those of [dUrd+H](+) in both the IR fingerprint and hydrogen-stretching regions. The measured spectra are compared to the linear IR spectra predicted for the stable low-energy structures of these species computed at the B3LYP/6-311+G(d,p) level of theory to determine the tautomeric conformations populated by electrospray ionization. Both B3LYP and MP2 methods find O4 and O2 protonated canonical as well as 2,4-dihydroxy tautomers among the stable low-energy structures of [Urd+H](+) and [dUrd+H](+). Comparison between the measured IRMPD and calculated linear IR spectra suggests that these species exist in their ring-closed forms and that both 2,4-dihydroxy tautomers as well as O4 protonated canonical conformers coexist in the population generated by electrospray ionization for both [Urd+H](+) and [dUrd+H](+). The 2'-deoxy modification of [dUrd+H](+) reduces the variety of 2,4-dihydroxy tautomers populated in the experiments vs. those of [Urd+H](+).
Collapse
Affiliation(s)
- R R Wu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Chawla M, Poater A, Oliva R, Cavallo L. Structural and energetic characterization of the emissive RNA alphabet based on the isothiazolo[4,3-d]pyrimidine heterocycle core. Phys Chem Chem Phys 2016; 18:18045-53. [PMID: 27328414 DOI: 10.1039/c6cp03268k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We present theoretical characterization of fluorescent non-natural nucleobases, (tz)A, (tz)G, (tz)C, and (tz)U, derived from the isothiazolo[4,3-d]pyrimidine heterocycle. Consistent with the experimental evidence, our calculations show that the non-natural bases have minimal impact on the geometry and stability of the classical Watson-Crick base pairs, allowing them to accurately mimic natural bases in a RNA duplex, in terms of H-bonding. In contrast, our calculations indicate that H-bonded base pairs involving the Hoogsteen edge are destabilized relative to their natural counterparts. Analysis of the photophysical properties of the non-natural bases allowed us to correlate their absorption/emission peaks to the strong impact of the modification on the energy of the lowest unoccupied molecular orbital, LUMO, which is stabilized by roughly 1.0-1.2 eV relative to the natural analogues, while the highest occupied molecular orbital, HOMO, is not substantially affected. As a result, the HOMO-LUMO gap is reduced from 5.3-5.5 eV in the natural bases to 4.0-4.4 eV in the modified ones, with a consequent bathochromic shift in the absorption and emission spectra.
Collapse
Affiliation(s)
- Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, KAUST Catalysis Center, Thuwal 23955-6900, Saudi Arabia.
| | | | | | | |
Collapse
|
29
|
Chawla M, Credendino R, Chermak E, Oliva R, Cavallo L. Theoretical Characterization of the H-Bonding and Stacking Potential of Two Nonstandard Nucleobases Expanding the Genetic Alphabet. J Phys Chem B 2016; 120:2216-24. [DOI: 10.1021/acs.jpcb.6b00125] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mohit Chawla
- Physical
Sciences and Engineering Division (PSE), Kaust Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Raffaele Credendino
- Physical
Sciences and Engineering Division (PSE), Kaust Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Edrisse Chermak
- Physical
Sciences and Engineering Division (PSE), Kaust Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Romina Oliva
- Department
of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, I-80143 Naples, Italy
| | - Luigi Cavallo
- Physical
Sciences and Engineering Division (PSE), Kaust Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
30
|
Chawla M, Credendino R, Oliva R, Cavallo L. Structural and Energetic Impact of Non-Natural 7-Deaza-8-Azaadenine and Its 7-Substituted Derivatives on H-Bonding Potential with Uracil in RNA Molecules. J Phys Chem B 2015; 119:12982-9. [PMID: 26389789 DOI: 10.1021/acs.jpcb.5b06861] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-natural (synthetic) nucleobases, including 7-ethynyl- and 7-triazolyl-8-aza-7-deazaadenine, have been introduced in RNA molecules for targeted applications, and have been characterized experimentally. However, no theoretical characterization of the impact of these modifications on the structure and energetics of the corresponding H-bonded base pair is available. To fill this gap, we performed quantum mechanics calculations, starting with the analysis of the impact of the 8-aza-7-deaza modification of the adenine skeleton, and we moved then to analyze the impact of the specific substituents on the modified 8-aza-7-deazaadenine. Our analysis indicates that, despite of these severe structural modifications, the H-bonding properties of the modified base pair gratifyingly replicate those of the unmodified base pair. Similar behavior is predicted when the same skeleton modifications are applied to guanine when paired to cytosine. To stress further the H-bonding pairing in the modified adenine-uracil base pair, we explored the impact of strong electron donor and electron withdrawing substituents on the C7 position. Also in this case we found minimal impact on the base pair geometry and energy, confirming the validity of this modification strategy to functionalize RNAs without perturbing its stability and biological functionality.
Collapse
Affiliation(s)
- Mohit Chawla
- Physical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900, Saudi Arabia
| | - Raffaele Credendino
- Physical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900, Saudi Arabia
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples , Centro Direzionale Isola C4, I-80143, Naples, Italy
| | - Luigi Cavallo
- Physical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
31
|
Chawla M, Oliva R, Bujnicki JM, Cavallo L. An atlas of RNA base pairs involving modified nucleobases with optimal geometries and accurate energies. Nucleic Acids Res 2015; 43:6714-29. [PMID: 26117545 PMCID: PMC4538814 DOI: 10.1093/nar/gkv606] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/28/2015] [Indexed: 01/08/2023] Open
Abstract
Posttranscriptional modifications greatly enhance the chemical information of RNA molecules, contributing to explain the diversity of their structures and functions. A significant fraction of RNA experimental structures available to date present modified nucleobases, with half of them being involved in H-bonding interactions with other bases, i.e. ‘modified base pairs’. Herein we present a systematic investigation of modified base pairs, in the context of experimental RNA structures. To this end, we first compiled an atlas of experimentally observed modified base pairs, for which we recorded occurrences and structural context. Then, for each base pair, we selected a representative for subsequent quantum mechanics calculations, to find out its optimal geometry and interaction energy. Our structural analyses show that most of the modified base pairs are non Watson–Crick like and are involved in RNA tertiary structure motifs. In addition, quantum mechanics calculations quantify and provide a rationale for the impact of the different modifications on the geometry and stability of the base pairs they participate in.
Collapse
Affiliation(s)
- Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, I-80143, Naples, Italy
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland Laboratory of Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
32
|
Halder A, Halder S, Bhattacharyya D, Mitra A. Feasibility of occurrence of different types of protonated base pairs in RNA: a quantum chemical study. Phys Chem Chem Phys 2015; 16:18383-96. [PMID: 25070186 DOI: 10.1039/c4cp02541e] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Protonated nucleobases have significant roles in facilitating catalytic functions of RNA, and in stabilizing different structural motifs. Reported pKa values of nucleobase protonation suggest that the population of neutral nucleobases is 10(3)-10(4) times higher than that of protonated nucleobases under physiological conditions (pH ∼ 7.4). Therefore, a molecular level understanding of various putative roles of protonated nucleobases cannot be achieved without addressing the question of how their occurrence propensities and stabilities are related to the free energy costs associated with the process of protonation under physiological conditions. With water as the proton donor, we use advanced QM methods to evaluate the site specific protonation propensities of nucleobases in terms of their associated free energy changes (ΔGprot). Quantitative follow up on the energetics of base pair formation and database search for evaluating their occurrence frequencies, reveal a lack of correlation between base pair stability and occurrence propensities on the one hand, and ease of protonation on the other. For example, although N7 protonated adenine (ΔGprot = 40.0 kcal mol(-1)) is found to participate in stable base pairing, base pairs involving N7 protonated guanine (ΔGprot = 36.8 kcal mol(-1)), on geometry optimization, converge to a minima where guanine transfers its extra proton to its partner base. Such observations, along with examples of weak base pairs involving N3 protonation of cytosine (ΔGprot = 37.0 kcal mol(-1)) are rationalized by analysing the protonation induced charge redistributions which are found to significantly influence, both positively and negatively, the hydrogen bonding potentials of different functional sites of individual nucleobases. Protonation induced charge redistribution is also found to strongly influence (i) the aromatic character of the rings of the participating bases and (ii) hydrogen bonding potential of the free edges of the protonated base pair. Comprehensive analysis of a non-redundant RNA crystal structure dataset further reveals that, while availability of stabilization possibilities determine the feasibility of occurrence of protonated bases, their occurrence context and specific functional roles are important factors determining their occurrence propensities.
Collapse
Affiliation(s)
- Antarip Halder
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, India.
| | | | | | | |
Collapse
|
33
|
Bhattacharya S, Mittal S, Panigrahi S, Sharma P, S P P, Paul R, Halder S, Halder A, Bhattacharyya D, Mitra A. RNABP COGEST: a resource for investigating functional RNAs. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav011. [PMID: 25776022 PMCID: PMC4360618 DOI: 10.1093/database/bav011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Structural bioinformatics of RNA has evolved mainly in response to the rapidly accumulating evidence that non-(protein)-coding RNAs (ncRNAs) play critical roles in gene regulation and development. The structures and functions of most ncRNAs are however still unknown. Most of the available RNA structural databases rely heavily on known 3D structures, and contextually correlate base pairing geometry with actual 3D RNA structures. None of the databases provide any direct information about stabilization energies. However, the intrinsic interaction energies of constituent base pairs can provide significant insights into their roles in the overall dynamics of RNA motifs and structures. Quantum mechanical (QM) computations provide the only approach toward their accurate quantification and characterization. ‘RNA Base Pair Count, Geometry and Stability’ (http://bioinf.iiit.ac.in/RNABPCOGEST) brings together information, extracted from literature data, regarding occurrence frequency, experimental and quantum chemically optimized geometries, and computed interaction energies, for non-canonical base pairs observed in a non-redundant dataset of functional RNA structures. The database is designed to enable the QM community, on the one hand, to identify appropriate biologically relevant model systems and also enable the biology community to easily sift through diverse computational results to gain theoretical insights which could promote hypothesis driven biological research. Database URL:http://bioinf.iiit.ac.in/RNABPCOGEST
Collapse
Affiliation(s)
- Sohini Bhattacharya
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, and Computational Science Division, Saha Institute of Nuclear Physics (SINP), 1/AF Bidhannagar, Kolkata 700064, India
| | - Shriyaa Mittal
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, and Computational Science Division, Saha Institute of Nuclear Physics (SINP), 1/AF Bidhannagar, Kolkata 700064, India
| | - Swati Panigrahi
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, and Computational Science Division, Saha Institute of Nuclear Physics (SINP), 1/AF Bidhannagar, Kolkata 700064, India
| | - Purshotam Sharma
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, and Computational Science Division, Saha Institute of Nuclear Physics (SINP), 1/AF Bidhannagar, Kolkata 700064, India
| | - Preethi S P
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, and Computational Science Division, Saha Institute of Nuclear Physics (SINP), 1/AF Bidhannagar, Kolkata 700064, India
| | - Rahul Paul
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, and Computational Science Division, Saha Institute of Nuclear Physics (SINP), 1/AF Bidhannagar, Kolkata 700064, India
| | - Sukanya Halder
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, and Computational Science Division, Saha Institute of Nuclear Physics (SINP), 1/AF Bidhannagar, Kolkata 700064, India
| | - Antarip Halder
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, and Computational Science Division, Saha Institute of Nuclear Physics (SINP), 1/AF Bidhannagar, Kolkata 700064, India
| | - Dhananjay Bhattacharyya
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, and Computational Science Division, Saha Institute of Nuclear Physics (SINP), 1/AF Bidhannagar, Kolkata 700064, India
| | - Abhijit Mitra
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, and Computational Science Division, Saha Institute of Nuclear Physics (SINP), 1/AF Bidhannagar, Kolkata 700064, India
| |
Collapse
|
34
|
Halder A, Bhattacharya S, Datta A, Bhattacharyya D, Mitra A. The role of N7 protonation of guanine in determining the structure, stability and function of RNA base pairs. Phys Chem Chem Phys 2015; 17:26249-63. [DOI: 10.1039/c5cp04894j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ab initio computations and bioinformatics studies reveal that stabilization of some important RNA structural motifs might involve N7 protonation of guanine.
Collapse
Affiliation(s)
- Antarip Halder
- Center for Computational Natural Sciences and Bioinformatics (CCNSB)
- International Institute of Information Technology (IIIT-H)
- Hyderabad 500032
- India
| | - Sohini Bhattacharya
- Center for Computational Natural Sciences and Bioinformatics (CCNSB)
- International Institute of Information Technology (IIIT-H)
- Hyderabad 500032
- India
| | - Ayan Datta
- Department of Spectroscopy
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | | | - Abhijit Mitra
- Center for Computational Natural Sciences and Bioinformatics (CCNSB)
- International Institute of Information Technology (IIIT-H)
- Hyderabad 500032
- India
| |
Collapse
|
35
|
Gupta S, Chavan S, Deobagkar DN, Deobagkar DD. Bio/chemoinformatics in India: an outlook. Brief Bioinform 2014; 16:710-31. [PMID: 25159593 DOI: 10.1093/bib/bbu028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/28/2014] [Indexed: 12/25/2022] Open
Abstract
With the advent of significant establishment and development of Internet facilities and computational infrastructure, an overview on bio/chemoinformatics is presented along with its multidisciplinary facts, promises and challenges. The Government of India has paved the way for more profound research in biological field with the use of computational facilities and schemes/projects to collaborate with scientists from different disciplines. Simultaneously, the growth of available biomedical data has provided fresh insight into the nature of redundant and compensatory data. Today, bioinformatics research in India is characterized by a powerful grid computing systems, great variety of biological questions addressed and the close collaborations between scientists and clinicians, with a full spectrum of focuses ranging from database building and methods development to biological discoveries. In fact, this outlook provides a resourceful platform highlighting the funding agencies, institutes and industries working in this direction, which would certainly be of great help to students seeking their career in bioinformatics. Thus, in short, this review highlights the current bio/chemoinformatics trend, educations, status, diverse applicability and demands for further development.
Collapse
|
36
|
Halder A, Datta A, Bhattacharyya D, Mitra A. Why does substitution of thymine by 6-ethynylpyridone increase the thermostability of DNA double helices? J Phys Chem B 2014; 118:6586-96. [PMID: 24857638 DOI: 10.1021/jp412416p] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Efficiency of 6-ethynylpyridone (E), a potential thymine (T) analogue, which forms high-fidelity base pairs with adenine (A) and gives rise to stabler DNA duplexes, with stability comparable to those containing canonical cytosine(C):guanine(G) base pairs, has been reported recently. Estimates of the interaction energies, involving geometry optimization at the DFT level (including middle range dispersion interactions) followed by single point energy calculation at MP2 level, in excellent correlation with the experimentally observed trends, show that E binds more strongly and more discriminately with A than T does. Detailed analysis reveals that the increase in base-base interaction arises out of conjugation of acetylenic π electrons with the ring π system of E, which results in not only an extra stabilizing C-H···π interaction in the EA pair, but also a strengthening of the conventional hydrogen bonds. However, the computed base-base interaction energy for the EA pair was found to be much less than that of the canonical CG pair, implying that the difference in the TA versus EA base pairing interaction alone cannot explain the large experimentally observed increase in the thermostability of DNA duplexes, where a TA pair is replaced with an EA pair. Our computations show that the conjugation of acetylenic π electrons with the ring π system also possibly plays a role in increasing the stacking potential of the EA pair, which in turn can explain its marked influence in the enhancement of duplex stability.
Collapse
Affiliation(s)
- Antarip Halder
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology Hyderabad , Gachibowli, Hyderabad, 500032, AP, India
| | | | | | | |
Collapse
|
37
|
Chawla M, Abdel-Azeim S, Oliva R, Cavallo L. Higher order structural effects stabilizing the reverse Watson-Crick Guanine-Cytosine base pair in functional RNAs. Nucleic Acids Res 2013; 42:714-26. [PMID: 24121683 PMCID: PMC3902895 DOI: 10.1093/nar/gkt800] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The G:C reverse Watson-Crick (W:W trans) base pair, also known as Levitt base pair in the context of tRNAs, is a structurally and functionally important base pair that contributes to tertiary interactions joining distant domains in functional RNA molecules and also participates in metabolite binding in riboswitches. We previously indicated that the isolated G:C W:W trans base pair is a rather unstable geometry, and that dicationic metal binding to the Guanine base or posttranscriptional modification of the Guanine can increase its stability. Herein, we extend our survey and report on other H-bonding interactions that can increase the stability of this base pair. To this aim, we performed a bioinformatics search of the PDB to locate all the occurencies of G:C trans base pairs. Interestingly, 66% of the G:C trans base pairs in the PDB are engaged in additional H-bonding interactions with other bases, the RNA backbone or structured water molecules. High level quantum mechanical calculations on a data set of representative crystal structures were performed to shed light on the structural stability and energetics of the various crystallographic motifs. This analysis was extended to the binding of the preQ1 metabolite to a preQ1-II riboswitch.
Collapse
Affiliation(s)
- Mohit Chawla
- Physical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia and Department of Sciences and Technologies, University of Naples 'Parthenope', Centro Direzionale Isola C4, I-80143, Naples, Italy
| | | | | | | |
Collapse
|
38
|
Halder S, Bhattacharyya D. RNA structure and dynamics: a base pairing perspective. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 113:264-83. [PMID: 23891726 DOI: 10.1016/j.pbiomolbio.2013.07.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/25/2013] [Accepted: 07/16/2013] [Indexed: 12/12/2022]
Abstract
RNA is now known to possess various structural, regulatory and enzymatic functions for survival of cellular organisms. Functional RNA structures are generally created by three-dimensional organization of small structural motifs, formed by base pairing between self-complementary sequences from different parts of the RNA chain. In addition to the canonical Watson-Crick or wobble base pairs, several non-canonical base pairs are found to be crucial to the structural organization of RNA molecules. They appear within different structural motifs and are found to stabilize the molecule through long-range intra-molecular interactions between basic structural motifs like double helices and loops. These base pairs also impart functional variation to the minor groove of A-form RNA helices, thus forming anchoring site for metabolites and ligands. Non-canonical base pairs are formed by edge-to-edge hydrogen bonding interactions between the bases. A large number of theoretical studies have been done to detect and analyze these non-canonical base pairs within crystal or NMR derived structures of different functional RNA. Theoretical studies of these isolated base pairs using ab initio quantum chemical methods as well as molecular dynamics simulations of larger fragments have also established that many of these non-canonical base pairs are as stable as the canonical Watson-Crick base pairs. This review focuses on the various structural aspects of non-canonical base pairs in the organization of RNA molecules and the possible applications of these base pairs in predicting RNA structures with more accuracy.
Collapse
Affiliation(s)
- Sukanya Halder
- Biophysics division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700 064, India
| | | |
Collapse
|
39
|
Panigrahi S, Pal R, Bhattacharyya D. Structure and energy of non-canonical basepairs: comparison of various computational chemistry methods with crystallographic ensembles. J Biomol Struct Dyn 2012; 29:541-56. [PMID: 22066539 DOI: 10.1080/07391102.2011.10507404] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Different types of non-canonical basepairs, in addition to the Watson-Crick ones, are observed quite frequently in RNA. Their importance in the three dimensional structure is not fully understood, but their various roles have been proposed by different groups. We have analyzed the energetics and geometry of 32 most frequently observed basepairs in the functional RNA crystal structures using different popular empirical, semi-empirical and ab initio quantum chemical methods and compared their optimized geometry with the crystal data. These basepairs are classified into three categories: polar, non-polar and sugar-mediated, depending on the types of atoms involved in hydrogen bonding. In case of polar basepairs, most of the methods give rise to optimized structures close to their initial geometry. The interaction energies also follow similar trends, with the polar ones having more attractive interaction energies. Some of the C-H...O/N hydrogen bond mediated non-polar basepairs are also found to be significantly stable in terms of their interaction energy values. Few polar basepairs, having amino or carboxyl groups not hydrogen bonded to anything, such as G:G H:W C, show large flexibility. Most of the non-polar basepairs, except A:G s:s T and A:G w:s C, are found to be stable; indicating C-H...O/N interaction also plays a prominent role in stabilizing the basepairs. The sugar mediated basepairs show variability in their structures, due to the involvement of flexible ribose sugar. These presumably indicate that the most of the polar basepairs along with few non-polar ones act as seed for RNA folding while few may act as some conformational switch in the RNA.
Collapse
Affiliation(s)
- Swati Panigrahi
- Biophysics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | | | | |
Collapse
|
40
|
Halder S, Bhattacharyya D. Structural Variations of Single and Tandem Mismatches in RNA Duplexes: A Joint MD Simulation and Crystal Structure Database Analysis. J Phys Chem B 2012; 116:11845-56. [PMID: 22953716 DOI: 10.1021/jp305628v] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sukanya Halder
- Biophysics
Division and ‡Computational Science Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, 700 064, India
| | - Dhananjay Bhattacharyya
- Biophysics
Division and ‡Computational Science Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, 700 064, India
| |
Collapse
|
41
|
Mládek A, Šponer JE, Kulhánek P, Lu XJ, Olson WK, Šponer J. Understanding the Sequence Preference of Recurrent RNA Building Blocks using Quantum Chemistry: The Intrastrand RNA Dinucleotide Platform. J Chem Theory Comput 2012; 8:335-347. [PMID: 22712001 PMCID: PMC3375708 DOI: 10.1021/ct200712b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Folded RNA molecules are shaped by an astonishing variety of highly conserved noncanonical molecular interactions and backbone topologies. The dinucleotide platform is a widespread recurrent RNA modular building submotif formed by the side-by-side pairing of bases from two consecutive nucleotides within a single strand, with highly specific sequence preferences. This unique arrangement of bases is cemented by an intricate network of noncanonical hydrogen bonds and facilitated by a distinctive backbone topology. The present study investigates the gas-phase intrinsic stabilities of the three most common RNA dinucleotide platforms - 5'-GpU-3', ApA, and UpC - via state-of-the-art quantum-chemical (QM) techniques. The mean stability of base-base interactions decreases with sequence in the order GpU > ApA > UpC. Bader's atoms-in-molecules analysis reveals that the N2(G)…O4(U) hydrogen bond of the GpU platform is stronger than the corresponding hydrogen bonds in the other two platforms. The mixed-pucker sugar-phosphate backbone conformation found in most GpU platforms, in which the 5'-ribose sugar (G) is in the C2'-endo form and the 3'-sugar (U) in the C3'-endo form, is intrinsically more stable than the standard A-RNA backbone arrangement, partially as a result of a favorable O2'…O2P intra-platform interaction. Our results thus validate the hypothesis of Lu et al. (Lu Xiang-Jun, et al. Nucleic Acids Res. 2010, 38, 4868-4876), that the superior stability of GpU platforms is partially mediated by the strong O2'…O2P hydrogen bond. In contrast, ApA and especially UpC platform-compatible backbone conformations are rather diverse and do not display any characteristic structural features. The average stabilities of ApA and UpC derived backbone conformers are also lower than those of GpU platforms. Thus, the observed structural and evolutionary patterns of the dinucleotide platforms can be accounted for, to a large extent, by their intrinsic properties as described by modern QM calculations. In contrast, we show that the dinucleotide platform is not properly described in the course of atomistic explicit-solvent simulations. Our work also gives methodological insights into QM calculations of experimental RNA backbone geometries. Such calculations are inherently complicated by rather large data and refinement uncertainties in the available RNA experimental structures, which often preclude reliable energy computations.
Collapse
Affiliation(s)
- Arnošt Mládek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | - Judit E. Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Kulhánek
- CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
| | - Xiang-Jun Lu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Wilma K. Olson
- Department of Chemistry & Chemical Biology, BioMaPS Institute for Quantitative Biology, Rutgers - The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jiřĺ Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|