1
|
Nys J, Pescia G, Sinibaldi A, Carleo G. Ab-initio variational wave functions for the time-dependent many-electron Schrödinger equation. Nat Commun 2024; 15:9404. [PMID: 39477974 PMCID: PMC11525644 DOI: 10.1038/s41467-024-53672-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
Understanding the real-time evolution of many-electron quantum systems is essential for studying dynamical properties in condensed matter, quantum chemistry, and complex materials, yet it poses a significant theoretical and computational challenge. Our work introduces a variational approach for fermionic time-dependent wave functions, surpassing mean-field approximations by accurately capturing many-body correlations. We employ time-dependent Jastrow factors and backflow transformations, enhanced through neural networks parameterizations. To compute the optimal time-dependent parameters, we employ the time-dependent variational Monte Carlo technique and introduce a new method based on Taylor-root expansions of the propagator, enhancing the accuracy of our simulations. The approach is demonstrated in three distinct systems. In all cases, we show clear signatures of many-body correlations in the dynamics. The results showcase the ability of our variational approach to accurately describe the time evolution, providing insight into quantum dynamical effects in interacting electronic systems, beyond the capabilities of mean-field.
Collapse
Affiliation(s)
- Jannes Nys
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Center for Quantum Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Gabriel Pescia
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Center for Quantum Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Alessandro Sinibaldi
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Center for Quantum Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Giuseppe Carleo
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
- Center for Quantum Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
2
|
Morassut C, Ravindran A, Ciavardini A, Luppi E, De Ninno G, Coccia E. High-Harmonic Generation Spectroscopy of Gas-Phase Bromoform. J Phys Chem A 2024; 128:2015-2024. [PMID: 38469750 DOI: 10.1021/acs.jpca.3c07699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
High-Harmonic Generation (HHG) spectra of randomly aligned bromoform (CHBr3) molecules have been experimentally measured and theoretically simulated at various laser pulse intensities. From the experiments, we obtained a significant number of harmonics that goes beyond the cutoff limit predicted by the three-step model (3SM) with ionization from HOMO. To interpret the experiment, we resorted to real-time time-dependent configuration interaction with single excitations. We found that electronic bound states provide an appreciable contribution to the harmonics. More in detail, we analyzed the electron dynamics by decomposing the HHG signal in terms of single molecular-orbital contributions, to explain the appearance of harmonics around 20-30 eV beyond the expected cutoff due to HOMO. HHG spectra can be therefore explained by considering the contribution at high energy of HOMO-6 and HOMO-9, thus indicating a complex multiple-orbital strong-field dynamics. However, even though the presence of the bromoform cation should be not enough to produce such a signal, we could not exclude a priori that the origin of harmonics in the H29-H45 to be due to the cation, which has more energetic ionization channels.
Collapse
Affiliation(s)
- Chiara Morassut
- Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris F-75005, France
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Arun Ravindran
- Laboratory of Quantum Optics, University of Nova Gorica, Si-5270 Ajdovščina, Slovenija
| | - Alessandra Ciavardini
- Laboratory of Quantum Optics, University of Nova Gorica, Si-5270 Ajdovščina, Slovenija
| | - Eleonora Luppi
- Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris F-75005, France
| | - Giovanni De Ninno
- Laboratory of Quantum Optics, University of Nova Gorica, Si-5270 Ajdovščina, Slovenija
- Elettra-Sincrotrone Trieste S.C.p.A., S.S. 14-km 163.5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Emanuele Coccia
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
3
|
Dong X, Thompson LM. Time propagation of electronic wavefunctions using nonorthogonal determinant expansions. J Chem Phys 2024; 160:024106. [PMID: 38189613 DOI: 10.1063/5.0179601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024] Open
Abstract
The use of truncated configuration interaction in real-time time-dependent simulations of electron dynamics provides a balance of computational cost and accuracy, while avoiding some of the failures associated with real-time time-dependent density functional theory. However, low-order truncated configuration interaction also has limitations, such as overestimation of polarizability in configuration interaction singles, even when perturbative doubles are included. Increasing the size of the determinant expansion may not be computationally feasible, and so, in this work, we investigate the use of nonorthogonality in the determinant expansion to establish the extent to which higher-order substitutions can be recovered, providing an improved description of electron dynamics. Model systems are investigated to quantify the extent to which different methods accurately reproduce the (hyper)polarizability, including the high-harmonic generation spectrum of H2, water, and butadiene.
Collapse
Affiliation(s)
- Xinju Dong
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40205, USA
| | - Lee M Thompson
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40205, USA
| |
Collapse
|
4
|
Williams-Young DB, Yuwono SH, DePrince III AE, Yang C. Approximate Exponential Integrators for Time-Dependent Equation-of-Motion Coupled Cluster Theory. J Chem Theory Comput 2023; 19:9177-9186. [PMID: 38086060 PMCID: PMC10753770 DOI: 10.1021/acs.jctc.3c00911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 12/27/2023]
Abstract
With a growing demand for time-domain simulations of correlated many-body systems, the development of efficient and stable integration schemes for the time-dependent Schrödinger equation is of keen interest in modern electronic structure theory. In this work, we present two approaches for the formation of the quantum propagator for time-dependent equation-of-motion coupled cluster theory based on the Chebyshev and Arnoldi expansions of the complex, nonhermitian matrix exponential, respectively. The proposed algorithms are compared with the short-iterative Lanczos method of Cooper et al. [J. Phys. Chem. A 2021 125, 5438-5447], the fourth-order Runge-Kutta method, and exact dynamics for a set of small but challenging test problems. For each of the cases studied, both of the proposed integration schemes demonstrate superior accuracy and efficiency relative to the reference simulations.
Collapse
Affiliation(s)
- David B. Williams-Young
- Applied
Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Stephen H. Yuwono
- Department
of Chemistry and Biochemistry, Florida State
University, Tallahassee, Florida 32306, United States
| | - A. Eugene DePrince III
- Department
of Chemistry and Biochemistry, Florida State
University, Tallahassee, Florida 32306, United States
| | - Chao Yang
- Applied
Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Morassut C, Coccia E, Luppi E. Quantitative performance analysis and comparison of optimal-continuum Gaussian basis sets for high-harmonic generation spectra. J Chem Phys 2023; 159:124108. [PMID: 38127378 DOI: 10.1063/5.0153825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/24/2023] [Indexed: 12/23/2023] Open
Abstract
Quantum-chemistry methods in the time domain with Gaussian basis sets are increasingly used to compute high-harmonic generation (HHG) spectra of atomic and molecular systems. The quality of these approaches is limited by the accuracy of Gaussian basis sets to describe continuum energy states. In the literature, optimal-continuum Gaussian basis sets have been proposed: Kaufmann et al. [J. Phys. B: At., Mol. Opt. Phys. 22, 2223 (1989)], Woźniak et al. [J. Chem. Phys. 154, 094111 (2021)], Nestmann and Peyerimhoff [J. Phys. B: At., Mol. Opt. Phys. 23, L773 (1990)], Faure et al. [Comput. Phys. Commun. 144, 224 (2002)], and Krause et al. [J. Chem. Phys. 140, 174113 (2014)]. In this work, we have compared the performances of these basis sets to simulate HHG spectra of H atom at different laser intensities. We have also investigated different strategies to balance basis sets with these continuum functions, together with the role of angular momentum. To quantify the performance of the different basis sets, we introduce local and global HHG descriptors. Comparisons with the grid and exact calculations are also provided.
Collapse
Affiliation(s)
- C Morassut
- Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris F-75005, France
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - E Coccia
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - E Luppi
- Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris F-75005, France
| |
Collapse
|
6
|
Luppi E, Coccia E. Role of Inner Molecular Orbitals in High-Harmonic Generation Spectra of Aligned Uracil. J Phys Chem A 2023; 127:7335-7343. [PMID: 37640677 DOI: 10.1021/acs.jpca.3c03990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
In this work, we decompose the high-harmonic generation (HHG) signal of aligned gas-phase uracil into single molecular-orbital (MO) contributions. We compute HHG spectra for a pulse linearly polarized perpendicular to the molecular plane, with an intensity of 0.6 and 0.85 × 1014 W/cm2 and a wavelength of 800 nm. We use the real-time time-dependent Configuration Interaction with singles method, coupled to a Gaussian-based representation of the time-dependent wavefunction. The strong-field dynamics is affected by the energy of the ionization/recombination channels and by the coupling between the orbital symmetry and laser polarization. In the configuration studied here, we expect that π-type MOs favorably couple with the incoming pulse and play a substantial role in generating the HHG spectrum. Indeed, we show that HOMO, HOMO - 1, and HOMO - 4, which all are π-like, determine the intensity of harmonic peaks at different energies, while HOMO - 2 and HOMO - 3 provide a smaller contribution. It is worth mentioning that HOMO - 4 produces a stronger signal than that from HOMO - 1, even though the corresponding ionization energy, in an one-electron picture, is around 2.5 eV larger and more than 4 eV larger than the HOMO one.
Collapse
Affiliation(s)
- Eleonora Luppi
- Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris F-75005, France
| | - Emanuele Coccia
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, Trieste 34127, Italy
| |
Collapse
|
7
|
Yuwono SH, Cooper BC, Zhang T, Li X, DePrince AE. Time-dependent equation-of-motion coupled-cluster simulations with a defective Hamiltonian. J Chem Phys 2023; 159:044113. [PMID: 37497820 DOI: 10.1063/5.0157852] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
Simulations of laser-induced electron dynamics in a molecular system are performed using time-dependent (TD) equation-of-motion (EOM) coupled-cluster (CC) theory. The target system has been chosen to highlight potential shortcomings of truncated TD-EOM-CC methods [represented in this work by TD-EOM-CC with single and double excitations (TD-EOM-CCSD)], where unphysical spectroscopic features can emerge. Specifically, we explore driven resonant electronic excitations in magnesium fluoride in the proximity of an avoided crossing. Near the avoided crossing, the CCSD similarity-transformed Hamiltonian is defective, meaning that it has complex eigenvalues, and oscillator strengths may take on negative values. When an external field is applied to drive transitions to states exhibiting these traits, unphysical dynamics are observed. For example, the stationary states that make up the time-dependent state acquire populations that can be negative, exceed one, or even complex-valued.
Collapse
Affiliation(s)
- Stephen H Yuwono
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA
| | - Brandon C Cooper
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA
| | - Tianyuan Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - A Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA
| |
Collapse
|
8
|
Ranka K, Isborn CM. Size-dependent errors in real-time electron density propagation. J Chem Phys 2023; 158:2887545. [PMID: 37125706 DOI: 10.1063/5.0142515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/14/2023] [Indexed: 05/02/2023] Open
Abstract
Real-time (RT) electron density propagation with time-dependent density functional theory (TDDFT) or Hartree-Fock (TDHF) is one of the most popular methods to model the charge transfer in molecules and materials. However, both RT-TDHF and RT-TDDFT within the adiabatic approximation are known to produce inaccurate evolution of the electron density away from the ground state in model systems, leading to large errors in charge transfer and erroneous shifting of peaks in absorption spectra. Given the poor performance of these methods with small model systems and the widespread use of the methods with larger molecular and material systems, here we bridge the gap in our understanding of these methods and examine the size-dependence of errors in RT density propagation. We analyze the performance of RT density propagation for systems of increasing size during the application of a continuous resonant field to induce Rabi-like oscillations, during charge-transfer dynamics, and for peak shifting in simulated absorption spectra. We find that the errors in the electron dynamics are indeed size dependent for these phenomena, with the largest system producing the results most aligned with those expected from linear response theory. The results suggest that although the RT-TDHF and RT-TDDFT methods may produce severe errors for model systems, the errors in charge transfer and resonantly driven electron dynamics may be much less significant for more realistic, large-scale molecules and materials.
Collapse
Affiliation(s)
- Karnamohit Ranka
- Chemistry and Biochemistry, University of California Merced, Merced, California 95343, USA
| | - Christine M Isborn
- Chemistry and Biochemistry, University of California Merced, Merced, California 95343, USA
| |
Collapse
|
9
|
Yehorova D, Kretchmer JS. A multi-fragment real-time extension of projected density matrix embedding theory: Non-equilibrium electron dynamics in extended systems. J Chem Phys 2023; 158:131102. [PMID: 37031109 DOI: 10.1063/5.0146973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
In this work, we derive a multi-fragment real-time extension of the projected density matrix embedding theory (pDMET) designed to treat non-equilibrium electron dynamics in strongly correlated systems. As in the previously developed static pDMET, the real time pDMET partitions the total system into many fragments; the coupling between each fragment and the rest of the system is treated through a compact representation of the environment in terms of a quantum bath. The real-time pDMET involves simultaneously propagating the wavefunctions for each separate fragment–bath embedding system along with an auxiliary mean-field wavefunction of the total system. The equations of motion are derived by (i) projecting the time-dependent Schrödinger equation in the fragment and bath space associated with each separate fragment and by (ii) enforcing the pDMET matching conditions between the global 1-particle reduced density matrix (1-RDM) obtained from the fragment calculations and the mean-field 1-RDM at all points in time. The accuracy of the method is benchmarked through comparisons to time-dependent density-matrix renormalization group and time-dependent Hartree–Fock (TDHF) theory; the methods were applied to a one- and two-dimensional single-impurity Anderson model and multi-impurity Anderson models with ordered and disordered distributions of the impurities. The results demonstrate a large improvement over TDHF and rapid convergence to the exact dynamics with an increase in fragment size. Our results demonstrate that the real-time pDMET is a promising and flexible method that balances accuracy and efficiency to simulate the non-equilibrium electron dynamics in heterogeneous systems of large size.
Collapse
Affiliation(s)
- Dariia Yehorova
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Joshua S. Kretchmer
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
10
|
Monti M, Stener M, Coccia E. Electronic circular dichroism from real-time propagation in state space. J Chem Phys 2023; 158:084102. [PMID: 36859092 DOI: 10.1063/5.0136392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this paper, we propose to compute the electronic circular dichroism (ECD) spectra of chiral molecules using a real-time propagation of the time-dependent Schrödinger equation (TDSE) in the space of electronic field-free eigenstates, by coupling TDSE with a given treatment of the electronic structure of the target. The time-dependent induced magnetic moment is used to compute the ECD spectrum from an explicit electric perturbation. The full matrix representing the transition magnetic moment in the space of electronic states is generated from that among pairs of molecular orbitals. In the present work, we show the ECD spectra of methyloxirane, of several conformers of L-alanine, and of the Λ-Co(acac)3 complex, computed from a singly excited ansatz of time-dependent density functional theory eigenstates. The time-domain ECD spectra properly reproduce the frequency-domain ones obtained in the linear-response regime and quantitatively agree with the available experimental data. Moreover, the time-domain approach to ECD allows us to naturally go beyond the ground-state rotationally averaged ECD spectrum, which is the standard outcome of the linear-response theory, e.g., by computing the ECD spectra from electronic excited states.
Collapse
Affiliation(s)
- M Monti
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - M Stener
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - E Coccia
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
11
|
Han R, Mattiat J, Luber S. Automatic purpose-driven basis set truncation for time-dependent Hartree-Fock and density-functional theory. Nat Commun 2023; 14:106. [PMID: 36609507 PMCID: PMC9822955 DOI: 10.1038/s41467-022-35694-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/14/2022] [Indexed: 01/09/2023] Open
Abstract
Real-time time-dependent density-functional theory (RT-TDDFT) and linear response time-dependent density-functional theory (LR-TDDFT) are two important approaches to simulate electronic spectra. However, the basis sets used in such calculations are usually the ones designed mainly for electronic ground state calculations. In this work, we propose a systematic and robust scheme to truncate the atomic orbital (AO) basis set employed in TDDFT and TD Hartree-Fock (TDHF) calculations. The truncated bases are tested for both LR- and RT-TDDFT as well as RT-TDHF approaches, and provide an acceleration up to an order of magnitude while the shifts of excitation energies of interest are generally within 0.2 eV. The procedure only requires one extra RT calculation with 1% of the total propagation time and a simple modification on basis set file, which allows an instant application in any quantum chemistry package supporting RT-/LR-TDDFT calculations. Aside from the reduced computational effort, this approach also offers valuable insight into the effect of different basis functions on computed electronic excitations and further ideas on the design of basis sets for special purposes.
Collapse
Affiliation(s)
- Ruocheng Han
- grid.7400.30000 0004 1937 0650Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Johann Mattiat
- grid.7400.30000 0004 1937 0650Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Sandra Luber
- grid.7400.30000 0004 1937 0650Department of Chemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Langkabel F, Bande A. Quantum-Compute Algorithm for Exact Laser-Driven Electron Dynamics in Molecules. J Chem Theory Comput 2022; 18:7082-7092. [PMID: 36399652 DOI: 10.1021/acs.jctc.2c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this work, we investigate the capability of known quantum computing algorithms for fault-tolerant quantum computing to simulate the laser-driven electron dynamics of excitation and ionization processes in small molecules such as lithium hydride, which can be benchmarked against the most accurate time-dependent full configuration interaction (TD-FCI) calculations. The conventional TD-FCI wave packet propagation is reproduced using the Jordan-Wigner transformation for wave function and operators and the Trotter product formula for expressing the propagator. In addition, the time-dependent dipole moment, as an example of a time-dependent expectation value, is calculated using the Hadamard test. To include non-Hermitian operators in the ionization dynamics, a similar approach to the quantum imaginary time evolution (QITE) algorithm is employed to translate the propagator, including a complex absorption potential, into quantum gates. The computations are executed on a quantum computer simulator. By construction, all quantum computer algorithms, except for the QITE algorithm used only for ionization but not for excitation dynamics, would scale polynomially on a quantum computer with fully entangled qubits. In contrast, TD-FCI scales exponentially. Hence, quantum computation holds promises for substantial progress in the understanding of electron dynamics of excitation processes in increasingly large molecular systems, as has already been witnessed in electronic structure theory.
Collapse
Affiliation(s)
- Fabian Langkabel
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109Berlin, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195Berlin, Germany
| | - Annika Bande
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109Berlin, Germany
| |
Collapse
|
13
|
Wozniak AP, Przybytek M, Lewenstein M, Moszynski R. Effects of electronic correlation on the high harmonic generation in helium: a time-dependent configuration interaction singles vs time-dependent full configuration interaction study. J Chem Phys 2022; 156:174106. [DOI: 10.1063/5.0087384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this paper, we investigate the effects of full electronic correlation on the high harmonic generation in the helium atom subjected to laser pulses of extremely high intensity. To do this, we perform real-time propagations of the helium atom wavefunction using quantum chemistry methods coupled to Gaussian basis sets. The calculations are done within the real-time time-dependent configuration interaction framework, at two levels of theory: time-dependent configuration interation with single excitations (TD-CIS, uncorrelated method) and time-dependent full configuration interaction (TD-FCI, fully correlated method). The electronic wavefunction is expanded in Dunning basis sets supplemented with functions adapted to describing highly excited and continuum states. We also compare the TD-CI results with grid-based propagations of the helium atom within the single-active-electron approximation. Our results show that when including the dynamical electron correlation, a noticeable improvement to the description of HHG can be achieved, in terms of e.g. a more constant intensity in the lower energy part of the harmonic plateau. However, such effects can be captured only if the basis set used suffices to reproduce the most basic features, such as the HHG cutoff position, at the uncorrelated level of theory.
Collapse
|
14
|
Durden AS, Levine BG. Floquet Time-Dependent Configuration Interaction for Modeling Ultrafast Electron Dynamics. J Chem Theory Comput 2022; 18:795-806. [DOI: 10.1021/acs.jctc.1c01009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Andrew S. Durden
- Department of Chemistry and Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, United States
| | - Benjamin G. Levine
- Department of Chemistry and Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
15
|
Coccia E, Luppi E. Time-dependent ab initioapproaches for high-harmonic generation spectroscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:073001. [PMID: 34731835 DOI: 10.1088/1361-648x/ac3608] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
High-harmonic generation (HHG) is a nonlinear physical process used for the production of ultrashort pulses in XUV region, which are then used for investigating ultrafast phenomena in time-resolved spectroscopies. Moreover, HHG signal itself encodes information on electronic structure and dynamics of the target, possibly coupled to the nuclear degrees of freedom. Investigating HHG signal leads to HHG spectroscopy, which is applied to atoms, molecules, solids and recently also to liquids. Analysing the number of generated harmonics, their intensity and shape gives a detailed insight of, e.g., ionisation and recombination channels occurring in the strong-field dynamics. A number of valuable theoretical models has been developed over the years to explain and interpret HHG features, with the three-step model being the most known one. Originally, these models neglect the complexity of the propagating electronic wavefunction, by only using an approximated formulation of ground and continuum states. Many effects unravelled by HHG spectroscopy are instead due to electron correlation effects, quantum interference, and Rydberg-state contributions, which are all properly captured by anab initioelectronic-structure approach. In this review we have collected recent advances in modelling HHG by means ofab initiotime-dependent approaches relying on the propagation of the time-dependent Schrödinger equation (or derived equations) in presence of a very intense electromagnetic field. We limit ourselves to gas-phase atomic and molecular targets, and to solids. We focus on the various levels of theory employed for describing the electronic structure of the target, coupled with strong-field dynamics and ionisation approaches, and on the basis used to represent electronic states. Selected applications and perspectives for future developments are also given.
Collapse
Affiliation(s)
- Emanuele Coccia
- Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste, via Giorgieri 1, 34127 Trieste, Italy
| | - Eleonora Luppi
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris, France
- CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris, France
| |
Collapse
|
16
|
Abstract
The reactivity and dynamics of molecular systems can be explored computationally by classical trajectory calculations. The traditional approach involves fitting a functional form of a potential energy surface (PES) to the energies from a large number of electronic structure calculations and then integrating numerous trajectories on this fitted PES to model the molecular dynamics. The ever-decreasing cost of computing and continuing advances in computational chemistry software have made it possible to use electronic structure calculations directly in molecular dynamics simulations without first having to construct a fitted PES. In this "on-the-fly" approach, every time the energy and its derivatives are needed for the integration of the equations of motion, they are obtained directly from quantum chemical calculations. This approach started to become practical in the mid-1990s as a result of increased availability of inexpensive computer resources and improved computational chemistry software. The application of direct dynamics calculations has grown rapidly over the last 25 years and would require a lengthy review article. The present Account is limited to some of our contributions to methods development and various applications. To improve the efficiency of direct dynamics calculations, we developed a Hessian-based predictor-corrector algorithm for integrating classical trajectories. Hessian updating made this even more efficient. This approach was also used to improve algorithms for following the steepest descent reaction paths. For larger molecular systems, we developed an extended Lagrangian approach in which the electronic structure is propagated along with the molecular structure. Strong field chemistry is a rapidly growing area, and to improve the accuracy of molecular dynamics in intense laser fields, we included the time-varying electric field in a novel predictor-corrector trajectory integration algorithm. Since intense laser fields can excite and ionize molecules, we extended our studies to include electron dynamics. Specifically, we developed code for time-dependent configuration interaction electron dynamics to simulate strong field ionization by intense laser pulses. Our initial application of ab initio direct dynamics in 1994 was to CH2O → H2 + CO; the calculated vibrational distributions in the products were in very good agreement with experiment. In the intervening years, we have used direct dynamics to explore energy partitioning in various dissociation reactions, unimolecular dissociations yielding three fragments, reactions with branching after the transition state, nonstatistical dynamics of chemically activated molecules, dynamics of molecular fragmentation by intense infrared laser pulses, selective activation of specific dissociation channels by aligned intense infrared laser fields, angular dependence of strong field ionization, and simulation of sequential double ionization.
Collapse
Affiliation(s)
- H. Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
17
|
Grobas Illobre P, Marsili M, Corni S, Stener M, Toffoli D, Coccia E. Time-Resolved Excited-State Analysis of Molecular Electron Dynamics by TDDFT and Bethe-Salpeter Equation Formalisms. J Chem Theory Comput 2021; 17:6314-6329. [PMID: 34486881 PMCID: PMC8515806 DOI: 10.1021/acs.jctc.1c00211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 12/16/2022]
Abstract
In this work, a theoretical and computational set of tools to study and analyze time-resolved electron dynamics in molecules, under the influence of one or more external pulses, is presented. By coupling electronic-structure methods with the resolution of the time-dependent Schrödinger equation, we developed and implemented the time-resolved induced density of the electronic wavepacket, the time-resolved formulation of the differential projection density of states (ΔPDOS), and of transition contribution map (TCM) to look at the single-electron orbital occupation and localization change in time. Moreover, to further quantify the possible charge transfer, we also defined the energy-integrated ΔPDOS and the fragment-projected TCM. We have used time-dependent density-functional theory (TDDFT), as implemented in ADF software, and the Bethe-Salpeter equation, as provided by MolGW package, for the description of the electronic excited states. This suite of postprocessing tools also provides the time evolution of the electronic states of the system of interest. To illustrate the usefulness of these postprocessing tools, excited-state populations have been computed for HBDI (the chromophore of GFP) and DNQDI molecules interacting with a sequence of two pulses. Time-resolved descriptors have been applied to study the time-resolved electron dynamics of HBDI, DNQDI, LiCN (being a model system for dipole switching upon highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) electronic excitation), and Ag22. The computational analysis tools presented in this article can be employed to help the interpretation of fast and ultrafast spectroscopies on molecular, supramolecular, and composite systems.
Collapse
Affiliation(s)
- P. Grobas Illobre
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Universitá
di Trieste, via L. Giorgieri 1, Trieste 34127, Italy
| | - M. Marsili
- Dipartimento
di Scienze Chimiche, Universitá di
Padova, via Marzolo 1, Padova 35131, Italy
| | - S. Corni
- Dipartimento
di Scienze Chimiche, Universitá di
Padova, via Marzolo 1, Padova 35131, Italy
- CNR
Istituto di Nanoscienze, via Campi 213/A, Modena 41125, Italy
| | - M. Stener
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Universitá
di Trieste, via L. Giorgieri 1, Trieste 34127, Italy
| | - D. Toffoli
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Universitá
di Trieste, via L. Giorgieri 1, Trieste 34127, Italy
| | - E. Coccia
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Universitá
di Trieste, via L. Giorgieri 1, Trieste 34127, Italy
| |
Collapse
|
18
|
Cooper BC, Koulias LN, Nascimento DR, Li X, DePrince AE. Short Iterative Lanczos Integration in Time-Dependent Equation-of-Motion Coupled-Cluster Theory. J Phys Chem A 2021; 125:5438-5447. [PMID: 34121405 DOI: 10.1021/acs.jpca.1c01102] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A time-dependent (TD) formulation of equation-of-motion coupled-cluster (EOM-CC) theory can provide excited-state information over an arbitrarily wide energy window with a reduced memory footprint relative to conventional, frequency-domain EOM-CC theory. However, the floating-point costs of the time-integration required by TD-EOM-CC are generally far larger than those of the frequency-domain form of the approach. This work considers the potential of the short iterative Lanczos (SIL) integration scheme [J. Chem. Phys. 1986, 85, 5870-5876] to reduce the floating-point costs of TD-EOM-CC simulations. Low-energy and K-edge absorption features for small molecules are evaluated using TD-EOM-CC with single and double excitations, with the time-integrations carried out via SIL and fourth-order Runge-Kutta (RK4) schemes. Spectra derived from SIL- and RK4-driven simulations are nearly indistinguishable, and with an appropriately chosen subspace dimension, the SIL requires far fewer floating-point operations than are required by RK4. For K-edge spectra, SIL is the more efficient scheme by an average factor of 7.2.
Collapse
Affiliation(s)
- Brandon C Cooper
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Lauren N Koulias
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Daniel R Nascimento
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - A Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
19
|
Moreno Carrascosa A, Yang M, Yong H, Ma L, Kirrander A, Weber PM, Lopata K. Mapping static core-holes and ring-currents with X-ray scattering. Faraday Discuss 2021; 228:60-81. [PMID: 33605956 DOI: 10.1039/d0fd00124d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Measuring the attosecond movement of electrons in molecules is challenging due to the high temporal and spatial resolutions required. X-ray scattering-based methods are promising, but many questions remain concerning the sensitivity of the scattering signals to changes in density, as well as the means of reconstructing the dynamics from these signals. In this paper, we present simulations of stationary core-holes and electron dynamics following inner-shell ionization of the oxazole molecule. Using a combination of time-dependent density functional theory simulations along with X-ray scattering theory, we demonstrate that the sudden core-hole ionization produces a significant change in the X-ray scattering response and how the electron currents across the molecule should manifest as measurable modulations to the time dependent X-ray scattering signal. This suggests that X-ray scattering is a viable probe for measuring electronic processes at time scales faster than nuclear motion.
Collapse
Affiliation(s)
| | - Mengqi Yang
- Department of Chemistry, 232 Choppin Hall, Baton Rouge, Louisiana 70803, USA
| | - Haiwang Yong
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Lingyu Ma
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Adam Kirrander
- EaStCHEM, School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK
| | - Peter M Weber
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Kenneth Lopata
- Department of Chemistry, 232 Choppin Hall, Baton Rouge, Louisiana 70803, USA and Center for Computation and Technology, Louisiana State University, Baton Roug, Louisiana 70803, USA.
| |
Collapse
|
20
|
Woźniak AP, Lesiuk M, Przybytek M, Efimov DK, Prauzner-Bechcicki JS, Mandrysz M, Ciappina M, Pisanty E, Zakrzewski J, Lewenstein M, Moszyński R. A systematic construction of Gaussian basis sets for the description of laser field ionization and high-harmonic generation. J Chem Phys 2021; 154:094111. [PMID: 33685145 DOI: 10.1063/5.0040879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A precise understanding of mechanisms governing the dynamics of electrons in atoms and molecules subjected to intense laser fields has a key importance for the description of attosecond processes such as the high-harmonic generation and ionization. From the theoretical point of view, this is still a challenging task, as new approaches to solve the time-dependent Schrödinger equation with both good accuracy and efficiency are still emerging. Until recently, the purely numerical methods of real-time propagation of the wavefunction using finite grids have been frequently and successfully used to capture the electron dynamics in small one- or two-electron systems. However, as the main focus of attoscience shifts toward many-electron systems, such techniques are no longer effective and need to be replaced by more approximate but computationally efficient ones. In this paper, we explore the increasingly popular method of expanding the wavefunction of the examined system into a linear combination of atomic orbitals and present a novel systematic scheme for constructing an optimal Gaussian basis set suitable for the description of excited and continuum atomic or molecular states. We analyze the performance of the proposed basis sets by carrying out a series of time-dependent configuration interaction calculations for the hydrogen atom in fields of intensity varying from 5 × 1013 W/cm2 to 5 × 1014 W/cm2. We also compare the results with the data obtained using Gaussian basis sets proposed previously by other authors.
Collapse
Affiliation(s)
| | - Michał Lesiuk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Michał Przybytek
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Dmitry K Efimov
- Institute of Theoretical Physics, Jagiellonian University in Krakow, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Jakub S Prauzner-Bechcicki
- Marian Smoluchowski Institute of Physics, Jagiellonian University in Krakow, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Michał Mandrysz
- Institute of Theoretical Physics, Jagiellonian University in Krakow, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Marcelo Ciappina
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860, Castelldefels, Barcelona, Spain
| | - Emilio Pisanty
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860, Castelldefels, Barcelona, Spain
| | - Jakub Zakrzewski
- Institute of Theoretical Physics, Jagiellonian University in Krakow, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Maciej Lewenstein
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860, Castelldefels, Barcelona, Spain
| | - Robert Moszyński
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
21
|
Luppi E, Coccia E. Probing the molecular frame of uracil and thymine with high-harmonic generation spectroscopy. Phys Chem Chem Phys 2021; 23:3729-3738. [PMID: 33395454 DOI: 10.1039/d0cp05559j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we present the computed high-harmonic generation (HHG) spectra of uracil and thymine molecules, by means of the real-time time-dependent formulation of Gaussian-based configuration interaction with single excitations (RT-TD-CIS). According to the experimental work [Hutchison et al., Comparison of high-order harmonic generation in uracil and thymine ablation plumes, Phys. Chem. Chem. Phys., 2013, 15, 12308], a pulse wavelength of 780 nm has been used, together with an intensity of 1014 W cm-2 and a pulse duration of 23 optical cycles. In order to examine the effect of pulse polarisation, rotationally averaged (to mimic the gas-phase sample) and single-polarisations have been computed for both molecules. Our results show that the HHG signal for both molecules possibly originates from different ionisation channels, involving HOMO, HOMO-1, HOMO-2 and HOMO-3 orbitals, which lie within 4 eV. We characterize the HHG spectrum of thymine, supporting the idea that the absence of the thymine signal in the original work does not depend on the single-molecule behaviour. Present results for uracil are consistent with the experimental data. Moreover, we have observed that states below and above the chosen ionisation threshold provide different contributions to the HHG spectrum in averaged and single-polarisation calculations.
Collapse
Affiliation(s)
- Eleonora Luppi
- Laboratoire de Chimie Théorique, Sorbonne Université and CNRS, F-75005 Paris, France and CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris, France
| | - Emanuele Coccia
- Dipartimento di Scienze Chimiche e Farmaceutiche, via Giorgieri 1, 34127 Trieste, Italy.
| |
Collapse
|
22
|
Pedersen TB, Kristiansen HE, Bodenstein T, Kvaal S, Schøyen ØS. Interpretation of Coupled-Cluster Many-Electron Dynamics in Terms of Stationary States. J Chem Theory Comput 2021; 17:388-404. [PMID: 33337895 PMCID: PMC7808707 DOI: 10.1021/acs.jctc.0c00977] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Indexed: 01/06/2023]
Abstract
We demonstrate theoretically and numerically that laser-driven many-electron dynamics, as described by bivariational time-dependent coupled-cluster (CC) theory, may be analyzed in terms of stationary-state populations. Projectors heuristically defined from linear response theory and equation-of-motion CC theory are proposed for the calculation of stationary-state populations during interaction with laser pulses or other external forces, and conservation laws of the populations are discussed. Numerical tests of the proposed projectors, involving both linear and nonlinear optical processes for He and Be atoms and for LiH, CH+, and LiF molecules show that the laser-driven evolution of the stationary-state populations at the coupled-cluster singles-and-doubles (CCSD) level is very close to that obtained by full configuration interaction (FCI) theory, provided that all stationary states actively participating in the dynamics are sufficiently well approximated. When double-excited states are important for the dynamics, the quality of the CCSD results deteriorates. Observing that populations computed from the linear response projector may show spurious small-amplitude, high-frequency oscillations, the equation-of-motion projector emerges as the most promising approach to stationary-state populations.
Collapse
Affiliation(s)
- Thomas Bondo Pedersen
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, N-0315 Oslo, Norway
| | - Håkon Emil Kristiansen
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, N-0315 Oslo, Norway
| | - Tilmann Bodenstein
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, N-0315 Oslo, Norway
| | - Simen Kvaal
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, N-0315 Oslo, Norway
| | | |
Collapse
|
23
|
Pauletti CF, Coccia E, Luppi E. Role of exchange and correlation in high-harmonic generation spectra of H 2, N 2, and CO 2: Real-time time-dependent electronic-structure approaches. J Chem Phys 2021; 154:014101. [PMID: 33412879 DOI: 10.1063/5.0033072] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This study arises from the attempt to answer the following question: how different descriptions of electronic exchange and correlation affect the high-harmonic generation (HHG) spectroscopy of H2, N2, and CO2 molecules? We compare HHG spectra for H2, N2, and CO2 with different ab initio electronic structure methods: real-time time-dependent configuration interaction and real-time time-dependent density functional theory (RT-TDDFT) using truncated basis sets composed of correlated wave functions expanded on Gaussian basis sets. In the framework of RT-TDDFT, we employ Perdew-Burke-Ernzerhof (PBE) and long-range corrected Perdew-Burke-Ernzerhof (LC-ωPBE) functionals. We study HHG spectroscopy by disentangling the effect of electronic exchange and correlation. We first analyze the electronic exchange alone, and in the case of RT-TDDFT with LC-ωPBE, we use ω = 0.3 and ω = 0.4 to tune the percentage of long-range Hartree-Fock exchange and short-range exchange PBE. Then, we added the correlation as described by the PBE functional. All the methods give very similar HHG spectra, and they seem not to be particularly sensitive to the different description of exchange and correlation or to the correct asymptotic behavior of the Coulomb potential. Despite this general trend, some differences are found in the region connecting the cutoff and the background. Here, the harmonics can be resolved with different accuracy depending on the theoretical schemes used. We believe that the investigation of the molecular continuum and its coupling with strong fields merits further theoretical investigations in the near future.
Collapse
Affiliation(s)
| | - Emanuele Coccia
- Dipartimento di Scienze Chimiche e Farmaceutiche, Via Giorgieri 1, Trieste Italy
| | - Eleonora Luppi
- Laboratoire de Chimie Théorique, Sorbonne Université and CNRS, F-75005 Paris, France
| |
Collapse
|
24
|
Li X, Govind N, Isborn C, DePrince AE, Lopata K. Real-Time Time-Dependent Electronic Structure Theory. Chem Rev 2020; 120:9951-9993. [DOI: 10.1021/acs.chemrev.0c00223] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Christine Isborn
- Department of Chemistry and Chemical Biology, University of California, Merced, California 95343, United States
| | - A. Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Kenneth Lopata
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
25
|
Dall'Osto G, Coccia E, Guido CA, Corni S. Investigating ultrafast two-pulse experiments on single DNQDI fluorophores: a stochastic quantum approach. Phys Chem Chem Phys 2020; 22:16734-16746. [PMID: 32658228 DOI: 10.1039/d0cp02557g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ultrafast two-pulse experiments on single molecules are invaluable tools to investigate the microscopic dynamics of a fluorophore. The first pulse generates electronic or vibronic coherence and the second pulse probes the time-evolution of the coherence. A protocol that is able to simulate ultrafast experiments on single molecules is applied in this study. It is based on a coupled quantum-mechanical description of the fluorophore and real-time dynamics of the system vibronic wave packet interacting with an electric field, described by means of the stochastic Schrödinger equation within the Markovian limit. This approach is applied to the DNQDI fluorophore, previously investigated experimentally [D. Brinks et al., Nature, 2010, 465, 905-908]. We find this to be in good agreement with the experimental outcomes and provide microscopic and atomistic interpretation.
Collapse
Affiliation(s)
- Giulia Dall'Osto
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova, Italy.
| | | | | | | |
Collapse
|
26
|
Pavošević F, Tao Z, Culpitt T, Zhao L, Li X, Hammes-Schiffer S. Frequency and Time Domain Nuclear-Electronic Orbital Equation-of-Motion Coupled Cluster Methods: Combination Bands and Electronic-Protonic Double Excitations. J Phys Chem Lett 2020; 11:6435-6442. [PMID: 32658486 DOI: 10.1021/acs.jpclett.0c01891] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The accurate description of excited vibronic states is important for modeling a wide range of photoinduced processes. The nuclear-electronic orbital (NEO) approach, which treats specified protons on the same level as the electrons, can describe excited electronic-protonic states. Herein the multicomponent equation-of-motion coupled cluster with singles and doubles (NEO-EOM-CCSD) method and its time-domain counterpart, TD-NEO-EOM-CCSD, are developed and implemented. The application of these methods to the HCN molecule highlights their capabilities. These methods predict qualitatively reasonable energies and intensities for a combination band corresponding to simultaneous excitation of two vibrational modes, as well as an overtone. These methods also describe states with double excitation character, such as excited electronic-protonic states corresponding to the simultaneous excitation of an electron and a proton. The ability of the NEO-EOM-CCSD method and its time-dependent counterpart to describe combination bands, overtones, and double excitations will enable a wide range of photochemical applications.
Collapse
Affiliation(s)
- Fabijan Pavošević
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Zhen Tao
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Tanner Culpitt
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Luning Zhao
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
27
|
Kowalski K, Bauman NP. Sub-system quantum dynamics using coupled cluster downfolding techniques. J Chem Phys 2020; 152:244127. [DOI: 10.1063/5.0008436] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Karol Kowalski
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Nicholas P. Bauman
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| |
Collapse
|
28
|
Lingerfelt DB, Ganesh P, Jakowski J, Sumpter BG. Understanding Beam-Induced Electronic Excitations in Materials. J Chem Theory Comput 2020; 16:1200-1214. [DOI: 10.1021/acs.jctc.9b00792] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David B. Lingerfelt
- Nanomaterials Theory Institute, Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Panchapakesan Ganesh
- Nanomaterials Theory Institute, Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jacek Jakowski
- Nanomaterials Theory Institute, Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Bobby G. Sumpter
- Nanomaterials Theory Institute, Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
29
|
Nascimento DR, DePrince AE. A general time-domain formulation of equation-of-motion coupled-cluster theory for linear spectroscopy. J Chem Phys 2019; 151:204107. [DOI: 10.1063/1.5125494] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Daniel R. Nascimento
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA
| | - A. Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA
| |
Collapse
|
30
|
Park YC, Perera A, Bartlett RJ. Equation of motion coupled-cluster for core excitation spectra: Two complementary approaches. J Chem Phys 2019; 151:164117. [PMID: 31675901 DOI: 10.1063/1.5117841] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This paper presents core excitation spectra from coupled-cluster (CC) theory obtained from both a time-independent and a new time-dependent formalism. The conventional time-independent CC formulation for excited states is the equation-of-motion (EOM-CC) method whose eigenvalues and eigenvectors describe the core excited states. An alternative computational procedure is offered by a time-dependent CC description. In that case, the dipole transition operator is expressed in the CC effective Hamiltonian form and propagated with respect to time. The absorption spectrum is obtained from the CC dipole autocorrelation function via a Fourier transformation. Comparisons are made among the time-dependent results obtained from second-order perturbation theory, to coupled cluster doubles and their linearized forms (CCD and LCCD), to CC singles and doubles (CCSD) and the linearized form (LCCSD). In the time-independent case, considerations of triples (EOM-CCSDT) and quadruples (EOM-CCSDTQ) are used to approach sub-electron volt accuracy. A particular target is the allyl radical, as an example of an open-shell molecule. As the results have to ultimately be the same, the two procedures offer a complementary approach toward analyzing experimental results.
Collapse
Affiliation(s)
- Young Choon Park
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| | - Ajith Perera
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| | - Rodney J Bartlett
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
31
|
Koulias LN, Williams-Young DB, Nascimento DR, DePrince AE, Li X. Relativistic Real-Time Time-Dependent Equation-of-Motion Coupled-Cluster. J Chem Theory Comput 2019; 15:6617-6624. [DOI: 10.1021/acs.jctc.9b00729] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lauren N. Koulias
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - David B. Williams-Young
- Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road MS 50A-3111, Berkeley, California 94720, United States
| | - Daniel R. Nascimento
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - A. Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
32
|
Baiardi A, Reiher M. Large-Scale Quantum Dynamics with Matrix Product States. J Chem Theory Comput 2019; 15:3481-3498. [DOI: 10.1021/acs.jctc.9b00301] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Alberto Baiardi
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
33
|
Peng WT, Fales BS, Levine BG. Simulating Electron Dynamics of Complex Molecules with Time-Dependent Complete Active Space Configuration Interaction. J Chem Theory Comput 2018; 14:4129-4138. [PMID: 29986143 DOI: 10.1021/acs.jctc.8b00381] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Time-dependent electronic structure methods are growing in popularity as tools for modeling ultrafast and/or nonlinear processes, for computing spectra, and as the electronic structure component of mean-field molecular dynamics simulations. Time-dependent configuration interaction (TD-CI) offers several advantages over the widely used real-time time-dependent density functional theory: namely, that it correctly models Rabi oscillations; it offers a spin-pure description of open-shell systems; and a hierarchy of TD-CI methods can be defined that systematically approach the exact solution of the time-dependent Schrodinger equation (TDSE). In this work, we present a novel TD-CI approach that extends TD-CI to large complete active-space configuration expansions. Such extension is enabled by use of a direct configuration interaction approach that eliminates the need to explicitly build, store, or diagonalize the Hamiltonian matrix. Graphics processing unit (GPU) acceleration enables fast solution of the TDSE even for large active spaces-up to 12 electrons in 12 orbitals (853776 determinants) in this work. A symplectic split operator propagator yields long-time norm conservation. We demonstrate the applicability of our approach by computing the response of a large molecule with a strongly correlated ground state, decacene (C42H24), to various pulses (δ-function, transform limited, chirped). Our simulations predict that chirped pulses can be used to induce dipole-forbidden transitions. Simulations of decacene using the 6-31G(d) basis set and a 12 electrons/12 orbitals active space took 20.1 h to propagate for 100 fs with a 1 attosecond time step on a single NVIDIA K40 GPU. Convergence with respect to time step is found to depend on the property being computed and the chosen active space.
Collapse
Affiliation(s)
- Wei-Tao Peng
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| | - B Scott Fales
- Department of Chemistry and the PULSE Institute , Stanford University , Stanford , California 94305 , United States.,SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| | - Benjamin G Levine
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| |
Collapse
|
34
|
Norman P, Dreuw A. Simulating X-ray Spectroscopies and Calculating Core-Excited States of Molecules. Chem Rev 2018; 118:7208-7248. [DOI: 10.1021/acs.chemrev.8b00156] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Patrick Norman
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| |
Collapse
|
35
|
Ulusoy IS, Stewart Z, Wilson AK. The role of the CI expansion length in time-dependent studies. J Chem Phys 2018; 148:014107. [DOI: 10.1063/1.5004412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Inga S. Ulusoy
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824-1322, USA
| | - Zachary Stewart
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824-1322, USA
| | - Angela K. Wilson
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824-1322, USA
| |
Collapse
|
36
|
Lestrange PJ, Hoffmann MR, Li X. Time-Dependent Configuration Interaction Using the Graphical Unitary Group Approach: Nonlinear Electric Properties. NOVEL ELECTRONIC STRUCTURE THEORY: GENERAL INNOVATIONS AND STRONGLY CORRELATED SYSTEMS 2018. [DOI: 10.1016/bs.aiq.2017.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Goings JJ, Lestrange PJ, Li X. Real‐time time‐dependent electronic structure theory. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1341] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Xiaosong Li
- Department of ChemistryUniversity of Washington Seattle WA USA
| |
Collapse
|
38
|
Hermann G, Pohl V, Tremblay JC. An open-source framework for analyzing N
-electron dynamics. II. Hybrid density functional theory/configuration interaction methodology. J Comput Chem 2017; 38:2378-2387. [DOI: 10.1002/jcc.24896] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Gunter Hermann
- Institut für Chemie und Biochemie, Freie Universität Berlin; Takustraße 3, Berlin 14195 Germany
| | - Vincent Pohl
- Institut für Chemie und Biochemie, Freie Universität Berlin; Takustraße 3, Berlin 14195 Germany
| | | |
Collapse
|
39
|
Nascimento DR, DePrince AE. Linear Absorption Spectra from Explicitly Time-Dependent Equation-of-Motion Coupled-Cluster Theory. J Chem Theory Comput 2016; 12:5834-5840. [DOI: 10.1021/acs.jctc.6b00796] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel R. Nascimento
- Department of Chemistry and
Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - A. Eugene DePrince
- Department of Chemistry and
Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
40
|
Optimal-continuum and multicentered Gaussian basis sets for high-harmonic generation spectroscopy. Theor Chem Acc 2016. [DOI: 10.1007/s00214-015-1770-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
White AF, Heide CJ, Saalfrank P, Head-Gordon M, Luppi E. Computation of high-harmonic generation spectra of the hydrogen molecule using time-dependent configuration-interaction. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1119900] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Alec F. White
- Department of Chemistry, Kenneth S. Pitzer Center for Theoretical Chemistry, University of California Berkeley, and Lawrence Berkeley National Laboratory, Chemical Sciences Division, University of California, Berkeley, CA, USA
| | | | - Peter Saalfrank
- Laboratoire de Chimie Théorique, UPMC Univ Paris 06, UMR 7616, Sorbonne Universités, Paris, France
| | - Martin Head-Gordon
- Department of Chemistry, Kenneth S. Pitzer Center for Theoretical Chemistry, University of California Berkeley, and Lawrence Berkeley National Laboratory, Chemical Sciences Division, University of California, Berkeley, CA, USA
| | - Eleonora Luppi
- Laboratoire de Chimie Théorique, UPMC Univ Paris 06, UMR 7616, Sorbonne Universités, Paris, France
- Laboratoire de Chimie Théorique, CNRS, UMR 7616, Paris, France
| |
Collapse
|
42
|
Oliveira MJT, Mignolet B, Kus T, Papadopoulos TA, Remacle F, Verstraete MJ. Computational Benchmarking for Ultrafast Electron Dynamics: Wave Function Methods vs Density Functional Theory. J Chem Theory Comput 2015; 11:2221-33. [DOI: 10.1021/acs.jctc.5b00167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Micael J. T. Oliveira
- Department
of Physics, University of Liège, European Theoretical Spectroscopy Facility, B-4000, Liège, Belgium
| | - Benoit Mignolet
- Department
of Chemistry, University of Liège, B-4000, Liège, Belgium
| | - Tomasz Kus
- Department
of Chemistry, University of Liège, B-4000, Liège, Belgium
| | - Theodoros A. Papadopoulos
- Department
of Natural Sciences, University of Chester, Thornton Science Park, CH2 4NU, Chester, U. K
| | - F. Remacle
- Department
of Chemistry, University of Liège, B-4000, Liège, Belgium
| | - Matthieu J. Verstraete
- Department
of Physics, University of Liège, European Theoretical Spectroscopy Facility, B-4000, Liège, Belgium
| |
Collapse
|
43
|
Krause P, Schlegel HB. Strong-field ionization rates of linear polyenes simulated with time-dependent configuration interaction with an absorbing potential. J Chem Phys 2014; 141:174104. [DOI: 10.1063/1.4900576] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Pascal Krause
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202-3489, USA
| | - H. Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202-3489, USA
| |
Collapse
|
44
|
Krause P, Sonk JA, Schlegel HB. Strong field ionization rates simulated with time-dependent configuration interaction and an absorbing potential. J Chem Phys 2014; 140:174113. [DOI: 10.1063/1.4874156] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
45
|
Bond-Selective Dissociation of Polyatomic Cations in Mid-Infrared Strong Fields. J Phys Chem A 2013; 117:11202-9. [DOI: 10.1021/jp4038649] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Luppi E, Head-Gordon M. The role of Rydberg and continuum levels in computing high harmonic generation spectra of the hydrogen atom using time-dependent configuration interaction. J Chem Phys 2013; 139:164121. [DOI: 10.1063/1.4824482] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
Sonk JA, Schlegel HB. TD-CI Simulation of the Strong-Field Ionization of Polyenes. J Phys Chem A 2012; 116:7161-8. [DOI: 10.1021/jp302389a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jason A. Sonk
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United
States
| | - H. Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United
States
| |
Collapse
|
48
|
Luppi E, Head-Gordon M. Computation of high-harmonic generation spectra of H2and N2in intense laser pulses using quantum chemistry methods and time-dependent density functional theory. Mol Phys 2012. [DOI: 10.1080/00268976.2012.675448] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
49
|
Sonk JA, Schlegel HB. TD-CI Simulation of the Electronic Optical Response of Molecules in Intense Fields II: Comparison of DFT Functionals and EOM-CCSD. J Phys Chem A 2011; 115:11832-40. [DOI: 10.1021/jp206437s] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jason A. Sonk
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - H. Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|