1
|
Wang S, Huang W, Feng Z, Tian X, Wang D, Rao L, Tan M, Roongsawang N, Song H, Jiang W, Bai W. Laccase-mediated formation of hydrogels based on silk-elastin-like protein polymers with ultra-high molecular weight. Int J Biol Macromol 2023; 231:123239. [PMID: 36641025 DOI: 10.1016/j.ijbiomac.2023.123239] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
As artificial extracellular matrix-like materials, silk-elastin-like protein (SELP) hydrogels, with excellent mechanical properties, high tunability, favorable biocompatibility, and controlled degradability, have become an important candidate in biomedical materials. In this study, SELP is composed of silk-like (GAGAGS) and elastin-like (GXGVP) tandem repeats, in which X residues are set as tyrosine and lysine. Furthermore, SELP polymers are prepared via SpyTag/SpyCatcher. To explore a gentler and more efficient enzymatic crosslinking method, an innovative method was invented to apply laccase to catalyze the formation of SELP hydrogels. Gelation could be successfully achieved in 2-5 min . SELP hydrogels mediated by laccase had the characteristic of low swelling rate, which could maintain a relatively stable shape even when immersed in water, and hence had the potential to be further developed into injectable biomaterials. Additionally, SELP hydrogels cross-linked by laccase showed excellent biocompatibility verified by L929 and HEK 293 T cells with cell viability >93.8 %. SELP hydrogels also exhibit good properties in sustained drug release and cell encapsulation in vitro. This study demonstrates a novel method to construct SELP hydrogels with excellent biocompatibility and expands the possibility of SELP-based material applications in biomedical fields.
Collapse
Affiliation(s)
- Sijia Wang
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Wenxin Huang
- College of Biotechnology, Tianjin University of Science and Technology, 1038 Dagu Nanlu, Hexi District, Tianjin, China
| | - Zhaoxuan Feng
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Xiaoli Tian
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Dexin Wang
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Lang Rao
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Ming Tan
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Niran Roongsawang
- Microbial Cell Factory Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Hui Song
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China.
| | - Wenxia Jiang
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China.
| | - Wenqin Bai
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China.
| |
Collapse
|
2
|
Griswold E, Cappello J, Ghandehari H. Silk-elastinlike protein-based hydrogels for drug delivery and embolization. Adv Drug Deliv Rev 2022; 191:114579. [PMID: 36306893 DOI: 10.1016/j.addr.2022.114579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 01/24/2023]
Abstract
Silk-Elastinlike Protein-Based Polymers (SELPs) can form thermoresponsive hydrogels that allow for the generation of in-situ drug delivery matrices. They are produced by recombinant techniques, enabling exact control of monomer sequence and polymer length. In aqueous solutions SELP strands form physical crosslinks as a function of temperature increase without the addition of crosslinking agents. Gelation kinetics, modulus of elasticity, pore size, drug release, biorecognition, and biodegradation of SELP hydrogels can be controlled by placement of amino acid residues at strategic locations in the polymer backbone. SELP hydrogels have been investigated for delivery of a variety of bioactive agents including small molecular weight drugs and fluorescent probes, oligomers of glycosaminoglycans, polymeric macromolecules, proteins, plasmid DNA, and viral gene delivery systems. In this review we provide a background for use of SELPs in matrix-mediated delivery and summarize recent investigations of SELP hydrogels for controlled delivery of bioactive agents as well as their use as liquid embolics.
Collapse
Affiliation(s)
- Ethan Griswold
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Utah Center of Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Joseph Cappello
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Hamidreza Ghandehari
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Utah Center of Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
3
|
Gonzalez-Obeso C, Rodriguez-Cabello JC, Kaplan DL. Fast and reversible crosslinking of a silk elastin-like polymer. Acta Biomater 2022; 141:14-23. [PMID: 34971785 PMCID: PMC8898266 DOI: 10.1016/j.actbio.2021.12.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022]
Abstract
Elastin-like polymers (ELPs) and their chimeric subfamily the silk elastin-like polymers (SELPs) exhibit a lower critical solvation temperature (LCST) behavior in water which has been extensively studied from theoretical, computational and experimental perspectives. The inclusion of silk domains in the backbone of the ELPs effects the molecular dynamics of the elastin-like domains in response to increased temperature above its transition temperature and confers gelation ability. This response has been studied in terms of initial and long-term changes in structures, however, intermediate transition states have been less investigated. Moreover, little is known about the effects of reversible hydration on the elastin versus silk domains in the physical crosslinks. We used spectroscopic techniques to analyze initial, intermediate and long-term states of the crosslinks in SELPs. A combination of thermoanalytical and rheological measurements demonstrated that the fast reversible rehydration of the elastin motifs adjacent to the relatively small silk domains was capable of breaking the silk physical crosslinks. This feature can be exploited to tailor the dynamics of these types of crosslinks in SELPs. STATEMENT OF SIGNIFICANCE: The combination of silk and elastin in a single molecule results in synergy via their interactions to impact the protein polymer properties. The ability of the silk domains to crosslink affects the thermoresponsive properties of the elastin domains. These interactions have been studied at early and late states of the physical crosslinking, while the intermediate states were the focus of the present study to understand the reversible phase-transitions of the elastin domains over the silk physical crosslinking. The thermoresponsive properties of the elastin domains at the initial, intermediate and late states of silk crosslinking were characterized to demonstrate that reversible hydration of the elastin domains influenced the reversibility of the silk crosslinks.
Collapse
Affiliation(s)
- Constancio Gonzalez-Obeso
- Department of Biomedical Engineering Tufts University, 4, Colby St., Medford, MA, 02155, USA; BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid-CIBER-BBN, Paseo de Belén 19, 47011, Valladolid, Spain.
| | - J C Rodriguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid-CIBER-BBN, Paseo de Belén 19, 47011, Valladolid, Spain.
| | - David L Kaplan
- Department of Biomedical Engineering Tufts University, 4, Colby St., Medford, MA, 02155, USA.
| |
Collapse
|
4
|
Chambre L, Martín-Moldes Z, Parker RN, Kaplan DL. Bioengineered elastin- and silk-biomaterials for drug and gene delivery. Adv Drug Deliv Rev 2020; 160:186-198. [PMID: 33080258 PMCID: PMC7736173 DOI: 10.1016/j.addr.2020.10.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/30/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
Advances in medical science have led to diverse new therapeutic modalities, as well as enhanced understanding of the progression of various disease states. These findings facilitate the design and development of more customized and exquisite drug delivery systems that aim to improve therapeutic indices of drugs to treat a variety of conditions. Synthetic polymer-based drug carriers have often been the focus of such research. However, these structures suffer from challenges with heterogeneity of the starting material, limited chemical features, complex functionalization methods, and in some cases a lack of biocompatibility. Consequently, protein-based polymers have garnered much attention in recent years due to their monodisperse features, ease of production and functionalization, and biocompatibility. Genetic engineering techniques enable the advancement of protein-based drug delivery systems with finely tuned physicochemical properties, and thus an expanded level of customization unavailable with synthetic polymers. Of these genetically engineered proteins, elastin-like proteins (ELP), silk-like proteins (SLP), and silk-elastin-like proteins (SELP) provide a unique set of alternatives for designing drug delivery systems due to their inherent chemical and physical properties and ease of engineering afforded by recombinant DNA technologies. In this review we examine the advantages of genetically engineered drug delivery systems with emphasis on ELP and SLP constructions. Methods for fabrication and relevant biomedical applications will also be discussed.
Collapse
Affiliation(s)
- Laura Chambre
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| | - Zaira Martín-Moldes
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| | - Rachael N Parker
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| |
Collapse
|
5
|
Shin W, Ambrosini YM, Shin YC, Wu A, Min S, Koh D, Park S, Kim S, Koh H, Kim HJ. Robust Formation of an Epithelial Layer of Human Intestinal Organoids in a Polydimethylsiloxane-Based Gut-on-a-Chip Microdevice. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2. [PMID: 33532747 PMCID: PMC7849371 DOI: 10.3389/fmedt.2020.00002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Polydimethylsiloxane (PDMS) is a silicone polymer that has been predominantly used in a human organ-on-a-chip microphysiological system. The hydrophobic surface of a microfluidic channel made of PDMS often results in poor adhesion of the extracellular matrix (ECM) as well as cell attachment. The surface modification by plasma or UV/ozone treatment in a PDMS-based device produces a hydrophilic surface that allows robust ECM coating and the reproducible attachment of human intestinal immortalized cell lines. However, these surface-activating methods have not been successful in forming a monolayer of the biopsy-derived primary organoid epithelium. Several existing protocols to grow human intestinal organoid cells in a PDMS microchannel are not always reproducibly operative due to the limited information. Here, we report an optimized methodology that enables robust and reproducible attachment of the intestinal organoid epithelium in a PDMS-based gut-on-a-chip. Among several reported protocols, we optimized a method by performing polyethyleneimine-based surface functionalization followed by the glutaraldehyde cross linking to activate the PDMS surface. Moreover, we discovered that the post-functionalization step contributes to provide uniform ECM deposition that allows to produce a robust attachment of the dissociated intestinal organoid epithelium in a PDMS-based microdevice. We envision that our optimized protocol may disseminate an enabling methodology to advance the integration of human organotypic cultures in a human organ-on-a-chip for patient-specific disease modeling.
Collapse
Affiliation(s)
- Woojung Shin
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Yoko M Ambrosini
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Yong Cheol Shin
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Alexander Wu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Soyoun Min
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Domin Koh
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Sowon Park
- Severance Fecal Microbiota Transplantation Center, Severance Hospital, Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Kim
- Severance Fecal Microbiota Transplantation Center, Severance Hospital, Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Hong Koh
- Severance Fecal Microbiota Transplantation Center, Severance Hospital, Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyun Jung Kim
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States.,Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
6
|
Xiong R, Luan J, Kang S, Ye C, Singamaneni S, Tsukruk VV. Biopolymeric photonic structures: design, fabrication, and emerging applications. Chem Soc Rev 2020; 49:983-1031. [PMID: 31960001 DOI: 10.1039/c8cs01007b] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Biological photonic structures can precisely control light propagation, scattering, and emission via hierarchical structures and diverse chemistry, enabling biophotonic applications for transparency, camouflaging, protection, mimicking and signaling. Corresponding natural polymers are promising building blocks for constructing synthetic multifunctional photonic structures owing to their renewability, biocompatibility, mechanical robustness, ambient processing conditions, and diverse surface chemistry. In this review, we provide a summary of the light phenomena in biophotonic structures found in nature, the selection of corresponding biopolymers for synthetic photonic structures, the fabrication strategies for flexible photonics, and corresponding emerging photonic-related applications. We introduce various photonic structures, including multi-layered, opal, and chiral structures, as well as photonic networks in contrast to traditionally considered light absorption and structural photonics. Next, we summarize the bottom-up and top-down fabrication approaches and physical properties of organized biopolymers and highlight the advantages of biopolymers as building blocks for realizing unique bioenabled photonic structures. Furthermore, we consider the integration of synthetic optically active nanocomponents into organized hierarchical biopolymer frameworks for added optical functionalities, such as enhanced iridescence and chiral photoluminescence. Finally, we present an outlook on current trends in biophotonic materials design and fabrication, including current issues, critical needs, as well as promising emerging photonic applications.
Collapse
Affiliation(s)
- Rui Xiong
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Tadepalli S, Slocik JM, Gupta MK, Naik RR, Singamaneni S. Bio-Optics and Bio-Inspired Optical Materials. Chem Rev 2017; 117:12705-12763. [PMID: 28937748 DOI: 10.1021/acs.chemrev.7b00153] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Through the use of the limited materials palette, optimally designed micro- and nanostructures, and tightly regulated processes, nature demonstrates exquisite control of light-matter interactions at various length scales. In fact, control of light-matter interactions is an important element in the evolutionary arms race and has led to highly engineered optical materials and systems. In this review, we present a detailed summary of various optical effects found in nature with a particular emphasis on the materials and optical design aspects responsible for their optical functionality. Using several representative examples, we discuss various optical phenomena, including absorption and transparency, diffraction, interference, reflection and antireflection, scattering, light harvesting, wave guiding and lensing, camouflage, and bioluminescence, that are responsible for the unique optical properties of materials and structures found in nature and biology. Great strides in understanding the design principles adapted by nature have led to a tremendous progress in realizing biomimetic and bioinspired optical materials and photonic devices. We discuss the various micro- and nanofabrication techniques that have been employed for realizing advanced biomimetic optical structures.
Collapse
Affiliation(s)
- Sirimuvva Tadepalli
- Department of Mechanical Engineering and Materials Science and Institute of Materials Science and Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | | | | | | | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science and Institute of Materials Science and Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| |
Collapse
|
8
|
Herold HM, Scheibel T. Applicability of biotechnologically produced insect silks. ACTA ACUST UNITED AC 2017; 72:365-385. [DOI: 10.1515/znc-2017-0050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/30/2017] [Indexed: 11/15/2022]
Abstract
Abstract
Silks are structural proteins produced by arthropods. Besides the well-known cocoon silk, which is produced by larvae of the silk moth Bombyx mori to undergo metamorphosis inside their silken shelter (and which is also used for textile production by men since millennia), numerous further less known silk-producing animals exist. The ability to produce silk evolved multiple independent times during evolution, and the fact that silk was subject to convergent evolution gave rise to an abundant natural diversity of silk proteins. Silks are used in air, under water, or like honey bee silk in the hydrophobic, waxen environment of the bee hive. The good mechanical properties of insect silk fibres together with their non-toxic, biocompatible, and biodegradable nature renders these materials appealing for both technical and biomedical applications. Although nature provides a great diversity of material properties, the variation in quality inherent in materials from natural sources together with low availability (except from silkworm silk) impeded the development of applications of silks. To overcome these two drawbacks, in recent years, recombinant silks gained more and more interest, as the biotechnological production of silk proteins allows for a scalable production at constant quality. This review summarises recent developments in recombinant silk production as well as technical procedures to process recombinant silk proteins into fibres, films, and hydrogels.
Collapse
Affiliation(s)
- Heike M. Herold
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth , Universitätsstraße 30 , 95440 Bayreuth , Germany
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth , Universitätsstraße 30 , 95440 Bayreuth , Germany
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Universität Bayreuth , Universitätsstraße 30 , 95440 Bayreuth , Germany
- Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Universität Bayreuth , Universitätsstraße 30 , 95440 Bayreuth , Germany
- Institut für Bio-Makromoleküle (bio-mac), Universität Bayreuth , Universitätsstraße 30 , 95440 Bayreuth , Germany
- Bayreuther Materialzentrum (BayMAT), Universität Bayreuth , Universitätsstraße 30 , 95440 Bayreuth , Germany
| |
Collapse
|
9
|
Qiao X, Qian Z, Li J, Sun H, Han Y, Xia X, Zhou J, Wang C, Wang Y, Wang C. Synthetic Engineering of Spider Silk Fiber as Implantable Optical Waveguides for Low-Loss Light Guiding. ACS APPLIED MATERIALS & INTERFACES 2017; 9:14665-14676. [PMID: 28384406 DOI: 10.1021/acsami.7b01752] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A variety of devices used for biomedical engineering have been fabricated using protein polymer because of their excellent properties, such as strength, toughness, biocompatibility, and biodegradability. In this study, we fabricated an optical waveguide using genetically engineered spider silk protein. This method has two significant advantages: (1) recombinant spider silk optical waveguide exhibits excellent optical and biological properties and (2) biosynthesis of spider silk protein can overcome the limitation to the research on spider silk optical waveguide due to the low yield of natural spider silk. In detail, two kinds of protein-based optical waveguides made from recombinant spider silk protein and regenerative silkworm silk protein were successfully prepared. Results suggested that the recombinant spider silk optical waveguide showed a smoother surface and a higher refractive index when compared with regenerative silkworm silk protein. The optical loss of recombinant spider silk optical waveguide was 0.8 ± 0.1 dB/cm in air and 1.9 ± 0.3 dB/cm in mouse muscles, which were significantly lower than those of regenerative silkworm silk optical waveguide. Moreover, recombinant spider silk optical waveguide can meet the demand to guide and efficiently deliver light through biological tissue. In addition, recombinant spider silk optical waveguide showed low toxicity to cells in vitro and low-level inflammatory reaction with surrounding tissue in vivo. Therefore, recombinant spider silk optical waveguide is a promising implantable device to guide and deliver light with low loss.
Collapse
Affiliation(s)
- Xin Qiao
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences , 27 TaipingRoad, Beijing 100850, People's Republic of China
| | - Zhigang Qian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Junjie Li
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences , 27 TaipingRoad, Beijing 100850, People's Republic of China
| | - Hongji Sun
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences , 27 TaipingRoad, Beijing 100850, People's Republic of China
| | - Yao Han
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences , 27 TaipingRoad, Beijing 100850, People's Republic of China
| | - Xiaoxia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Jin Zhou
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences , 27 TaipingRoad, Beijing 100850, People's Republic of China
| | - Chunlan Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences , 27 TaipingRoad, Beijing 100850, People's Republic of China
| | - Yan Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences , 27 TaipingRoad, Beijing 100850, People's Republic of China
| | - Changyong Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences , 27 TaipingRoad, Beijing 100850, People's Republic of China
| |
Collapse
|
10
|
Zhuang Y, Zhang Q, Feng J, Wang N, Xu W, Yang H. The effect of native silk fibroin powder on the physical properties and biocompatibility of biomedical polyurethane membrane. Proc Inst Mech Eng H 2017; 231:337-346. [PMID: 28332447 DOI: 10.1177/0954411917697357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Naturally derived fibers such as silk fibroin can potentially enhance the biocompatibility of currently used biomaterials. This study investigated the physical properties of native silk fibroin powder and its effect on the biocompatibility of biomedical polyurethane. Native silk fibroin powder with an average diameter of 3 µm was prepared on a purpose-built machine. A simple method of phase inversion was used to produce biomedical polyurethane/native silk fibroin powder hybrid membranes at different blend ratios by immersing a biomedical polyurethane/native silk fibroin powder solution in deionized water at room temperature. The physical properties of the membranes including morphology, hydrophilicity, roughness, porosity, and compressive modulus were characterized, and in vitro biocompatibility was evaluated by seeding the human umbilical vein endothelial cells on the top surface. Native silk fibroin powder had a concentration-dependent effect on the number and morphology of human umbilical vein endothelial cells growing on the membranes; cell number increased as native silk fibroin powder content in the biomedical polyurethane/native silk fibroin powder hybrid membrane was increased from 0% to 50%, and cell morphology changed from spindle-shaped to cobblestone-like as the native silk fibroin powder content was increased from 0% to 70%. The latter change was related to the physical characteristics of the membrane, including hydrophilicity, roughness, and mechanical properties. The in vivo biocompatibility of the native silk fibroin powder-modified biomedical polyurethane membrane was evaluated in a rat model; the histological analysis revealed no systemic toxicity. These results indicate that the biomedical polyurethane/native silk fibroin powder hybrid membrane has superior in vitro and in vivo biocompatibility relative to 100% biomedical polyurethane membranes and thus has potential applications in the fabrication of small-diameter vascular grafts and in tissue engineering.
Collapse
Affiliation(s)
- Yan Zhuang
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan, China
| | - Qian Zhang
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan, China
| | - Jinqi Feng
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan, China
| | - Na Wang
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan, China
| | - Weilin Xu
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan, China
| | - Hongjun Yang
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan, China
| |
Collapse
|
11
|
Chen L, Zhou ML, Qian ZG, Kaplan DL, Xia XX. Fabrication of Protein Films from Genetically Engineered Silk-Elastin-Like Proteins by Controlled Cross-Linking. ACS Biomater Sci Eng 2017; 3:335-341. [DOI: 10.1021/acsbiomaterials.6b00794] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Liang Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Ming-Liang Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - David L. Kaplan
- Department
of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| |
Collapse
|
12
|
Pereira AM, Machado R, da Costa A, Ribeiro A, Collins T, Gomes AC, Leonor IB, Kaplan DL, Reis RL, Casal M. Silk-based biomaterials functionalized with fibronectin type II promotes cell adhesion. Acta Biomater 2017; 47:50-59. [PMID: 27713086 DOI: 10.1016/j.actbio.2016.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/20/2016] [Accepted: 10/02/2016] [Indexed: 12/13/2022]
Abstract
The objective of this work was to exploit the fibronectin type II (FNII) module from human matrix metalloproteinase-2 as a functional domain for the development of silk-based biopolymer blends that display enhanced cell adhesion properties. The DNA sequence of spider dragline silk protein (6mer) was genetically fused with the FNII coding sequence and expressed in Escherichia coli. The chimeric protein 6mer+FNII was purified by non-chromatographic methods. Films prepared from 6mer+FNII by solvent casting promoted only limited cell adhesion of human skin fibroblasts. However, the performance of the material in terms of cell adhesion was significantly improved when 6mer+FNII was combined with a silk-elastin-like protein in a concentration-dependent behavior. With this work we describe a novel class of biopolymer that promote cell adhesion and potentially useful as biomaterials for tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE This work reports the development of biocompatible silk-based composites with enhanced cell adhesion properties suitable for biomedical applications in regenerative medicine. The biocomposites were produced by combining a genetically engineered silk-elastin-like protein with a genetically engineered spider-silk-based polypeptide carrying the three domains of the fibronectin type II module from human metalloproteinase-2. These composites were processed into free-standing films by solvent casting and characterized for their biological behavior. To our knowledge this is the first report of the exploitation of all three FNII domains as a functional domain for the development of bioinspired materials with improved biological performance. The present study highlights the potential of using genetically engineered protein-based composites as a platform for the development of new bioinspired biomaterials.
Collapse
|
13
|
Abstract
Silk is a protein-based material which is predominantly produced by insects and spiders. Hundreds of millions of years of evolution have enabled these animals to utilize different, highly adapted silk types in a broad variety of applications. Silk occurs in several morphologies, such as sticky glue or in the shape of fibers and can, depending on the application by the respective animal, dissipate a high mechanical energy, resist heat and radiation, maintain functionality when submerged in water and withstand microbial settling. Hence, it's unsurprising that silk piqued human interest a long time ago, which catalyzed the domestication of silkworms for the production of silk to be used in textiles. Recently, scientific progress has enabled the development of analytic tools to gain profound insights into the characteristics of silk proteins. Based on these investigations, the biotechnological production of artificial and engineered silk has been accomplished, which allows the production of a sufficient amount of silk materials for several industrial applications. This chapter provides a review on the biotechnological production of various silk proteins from different species, as well as on the processing techniques to fabricate application-oriented material morphologies.
Collapse
Affiliation(s)
- Gregor Lang
- Research Group Biopolymer Processing, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - Heike Herold
- Department of Biomaterials, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - Thomas Scheibel
- Department of Biomaterials, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany.
| |
Collapse
|
14
|
Yeo GC, Aghaei-Ghareh-Bolagh B, Brackenreg EP, Hiob MA, Lee P, Weiss AS. Fabricated Elastin. Adv Healthc Mater 2015; 4:2530-2556. [PMID: 25771993 PMCID: PMC4568180 DOI: 10.1002/adhm.201400781] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 02/09/2015] [Indexed: 12/18/2022]
Abstract
The mechanical stability, elasticity, inherent bioactivity, and self-assembly properties of elastin make it a highly attractive candidate for the fabrication of versatile biomaterials. The ability to engineer specific peptide sequences derived from elastin allows the precise control of these physicochemical and organizational characteristics, and further broadens the diversity of elastin-based applications. Elastin and elastin-like peptides can also be modified or blended with other natural or synthetic moieties, including peptides, proteins, polysaccharides, and polymers, to augment existing capabilities or confer additional architectural and biofunctional features to compositionally pure materials. Elastin and elastin-based composites have been subjected to diverse fabrication processes, including heating, electrospinning, wet spinning, solvent casting, freeze-drying, and cross-linking, for the manufacture of particles, fibers, gels, tubes, sheets and films. The resulting materials can be tailored to possess specific strength, elasticity, morphology, topography, porosity, wettability, surface charge, and bioactivity. This extraordinary tunability of elastin-based constructs enables their use in a range of biomedical and tissue engineering applications such as targeted drug delivery, cell encapsulation, vascular repair, nerve regeneration, wound healing, and dermal, cartilage, bone, and dental replacement.
Collapse
Affiliation(s)
- Giselle C. Yeo
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Behnaz Aghaei-Ghareh-Bolagh
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Edwin P. Brackenreg
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Matti A. Hiob
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Pearl Lee
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Anthony S. Weiss
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
- Bosch Institute, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
15
|
Girotti A, Orbanic D, Ibáñez-Fonseca A, Gonzalez-Obeso C, Rodríguez-Cabello JC. Recombinant Technology in the Development of Materials and Systems for Soft-Tissue Repair. Adv Healthc Mater 2015; 4:2423-55. [PMID: 26172311 DOI: 10.1002/adhm.201500152] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/04/2015] [Indexed: 12/16/2022]
Abstract
The field of biomedicine is constantly investing significant research efforts in order to gain a more in-depth understanding of the mechanisms that govern the function of body compartments and to develop creative solutions for the repair and regeneration of damaged tissues. The main overall goal is to develop relatively simple systems that are able to mimic naturally occurring constructs and can therefore be used in regenerative medicine. Recombinant technology, which is widely used to obtain new tailored synthetic genes that express polymeric protein-based structures, now offers a broad range of advantages for that purpose by permitting the tuning of biological and mechanical properties depending on the intended application while simultaneously ensuring adequate biocompatibility and biodegradability of the scaffold formed by the polymers. This Progress Report is focused on recombinant protein-based materials that resemble naturally occurring proteins of interest for use in soft tissue repair. An overview of recombinant biomaterials derived from elastin, silk, collagen and resilin is given, along with a description of their characteristics and suggested applications. Current endeavors in this field are continuously providing more-improved materials in comparison with conventional ones. As such, a great effort is being made to put these materials through clinical trials in order to favor their future use.
Collapse
Affiliation(s)
- Alessandra Girotti
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| | - Doriana Orbanic
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| | - Arturo Ibáñez-Fonseca
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| | - Constancio Gonzalez-Obeso
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| | - José Carlos Rodríguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| |
Collapse
|
16
|
Machado R, da Costa A, Sencadas V, Pereira AM, Collins T, Rodríguez-Cabello JC, Lanceros-Méndez S, Casal M. Exploring the Properties of Genetically Engineered Silk-Elastin-Like Protein Films. Macromol Biosci 2015. [DOI: 10.1002/mabi.201500132] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Raul Machado
- CBMA (Centre of Molecular and Environmental Biology); Department of Biology, University of Minho; Campus de Gualtar 4710-057 Braga Portugal
| | - André da Costa
- CBMA (Centre of Molecular and Environmental Biology); Department of Biology, University of Minho; Campus de Gualtar 4710-057 Braga Portugal
| | - Vitor Sencadas
- Centro/Departamento de Física; University of Minho; Campus de Gualtar 4710-057 Braga Portugal
- School of Mechanical, Materials and Mechatronics Engineering; University of Wollongong; Wollongong NSW 2522 Australia
| | - Ana Margarida Pereira
- CBMA (Centre of Molecular and Environmental Biology); Department of Biology, University of Minho; Campus de Gualtar 4710-057 Braga Portugal
| | - Tony Collins
- CBMA (Centre of Molecular and Environmental Biology); Department of Biology, University of Minho; Campus de Gualtar 4710-057 Braga Portugal
| | - José Carlos Rodríguez-Cabello
- Bioforge (Group for Advanced Materials and Nanobiotechnology); Universidad de Valladolid; 47011 Valladolid Spain
- Networking Research Centre on Bioengineering; Biomaterials and Nanomedicine (CIBER-BBN); 47011 Valladolid Spain
| | | | - Margarida Casal
- CBMA (Centre of Molecular and Environmental Biology); Department of Biology, University of Minho; Campus de Gualtar 4710-057 Braga Portugal
| |
Collapse
|
17
|
Jung SH, Choi JW, Yun CO, Kim SH, Kwon IC, Ghandehari H. Direct Observation of Interactions of Silk-Elastinlike Protein Polymer with Adenoviruses and Elastase. Mol Pharm 2015; 12:1673-9. [DOI: 10.1021/acs.molpharmaceut.5b00075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Se-Hui Jung
- Center
for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu,
Seoul 136-791, Korea
| | - Joung-Woo Choi
- Department
of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Chae-Ok Yun
- Department
of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Sun Hwa Kim
- Center
for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu,
Seoul 136-791, Korea
| | - Ick Chan Kwon
- Center
for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu,
Seoul 136-791, Korea
| | - Hamidreza Ghandehari
- Center
for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu,
Seoul 136-791, Korea
| |
Collapse
|
18
|
Desai MS, Lee SW. Protein-based functional nanomaterial design for bioengineering applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 7:69-97. [DOI: 10.1002/wnan.1303] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/12/2014] [Accepted: 09/02/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Malav S. Desai
- Department of Bioengineering; University of California, Berkeley; Berkeley CA USA
- Physical Biosciences Division; Lawrence Berkeley National Laboratory; Berkeley CA USA
| | - Seung-Wuk Lee
- Department of Bioengineering; University of California, Berkeley; Berkeley CA USA
| |
Collapse
|
19
|
Ballav N, Choi H, Mishra S, Maity A. Synthesis, characterization of Fe3O4@glycine doped polypyrrole magnetic nanocomposites and their potential performance to remove toxic Cr(VI). J IND ENG CHEM 2014. [DOI: 10.1016/j.jiec.2014.01.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Han YL, Xu Q, Lu ZQ, Wang JY. Preparation of transparent zein films for cell culture applications. Colloids Surf B Biointerfaces 2014; 120:55-62. [DOI: 10.1016/j.colsurfb.2014.04.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 04/01/2014] [Accepted: 04/16/2014] [Indexed: 10/25/2022]
|
21
|
Collins T, Barroca M, Branca F, Padrão J, Machado R, Casal M. High Level Biosynthesis of a Silk-Elastin-like Protein in E. coli. Biomacromolecules 2014; 15:2701-8. [DOI: 10.1021/bm5005564] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tony Collins
- Centre
of Molecular and Environmental
Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Mário Barroca
- Centre
of Molecular and Environmental
Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Fernando Branca
- Centre
of Molecular and Environmental
Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jorge Padrão
- Centre
of Molecular and Environmental
Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Raul Machado
- Centre
of Molecular and Environmental
Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Margarida Casal
- Centre
of Molecular and Environmental
Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
22
|
Machado R, da Costa A, Sencadas V, Garcia-Arévalo C, Costa CM, Padrão J, Gomes A, Lanceros-Méndez S, Rodríguez-Cabello JC, Casal M. Electrospun silk-elastin-like fibre mats for tissue engineering applications. Biomed Mater 2013; 8:065009. [DOI: 10.1088/1748-6041/8/6/065009] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Merkle V, Zeng L, Teng W, Slepian M, Wu X. Gelatin shells strengthen polyvinyl alcohol core–shell nanofibers. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.08.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Grove TZ, Regan L, Cortajarena AL. Nanostructured functional films from engineered repeat proteins. J R Soc Interface 2013; 10:20130051. [PMID: 23594813 DOI: 10.1098/rsif.2013.0051] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Fundamental advances in biotechnology, medicine, environment, electronics and energy require methods for precise control of spatial organization at the nanoscale. Assemblies that rely on highly specific biomolecular interactions are an attractive approach to form materials that display novel and useful properties. Here, we report on assembly of films from the designed, rod-shaped, superhelical, consensus tetratricopeptide repeat protein (CTPR). We have designed three peptide-binding sites into the 18 repeat CTPR to allow for further specific and non-covalent functionalization of films through binding of fluorescein labelled peptides. The fluorescence signal from the peptide ligand bound to the protein in the solid film is anisotropic, demonstrating that CTPR films can impose order on otherwise isotropic moieties. Circular dichroism measurements show that the individual protein molecules retain their secondary structure in the film, and X-ray scattering, birefringence and atomic force microscopy experiments confirm macroscopic alignment of CTPR molecules within the film. This work opens the door to the generation of innovative biomaterials with tailored structure and function.
Collapse
Affiliation(s)
- Tijana Z Grove
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
25
|
Zha Z, Teng W, Markle V, Dai Z, Wu X. Fabrication of gelatin nanofibrous scaffolds using ethanol/phosphate buffer saline as a benign solvent. Biopolymers 2012; 97:1026-36. [PMID: 22987593 DOI: 10.1002/bip.22120] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Electrospinning of natural polymer nanofibers useful for biomedical applications often requires the use of cytotoxic organic solvents. In this study, gelatin nanofibers are electrospun from phosphate buffer saline/ethanol binary mixtures as a benign solvent at ambient temperature. The influences of ionic strength, ethanol concentration, and gelatin concentration on the electrospinnability of gelatin solutions and the fiber microarchitectures are analyzed. The electrospun scaffolds retain their morphologies during vapor-phase crosslinking with glutaraldehyde in ethanol and the subsequent removal of salts contained in the nanofibers via water rinsing. When fully hydrated, the mechanically preconditioned scaffolds display a Young's modulus of 25.5 ± 5.3 kPa, tensile strength of 55.5 ± 13.9 kPa, deformability of 160 ± 15%, and resilience of 89.9 ± 1.8%. When cultured on the gelatin scaffolds, 3T3 fibroblasts displayed spindle-like morphology, similar to the cell's normal morphology in a 3D extracellular matrix.
Collapse
Affiliation(s)
- Zhengbao Zha
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | |
Collapse
|
26
|
Gronau G, Krishnaji ST, Kinahan ME, Giesa T, Wong JY, Kaplan DL, Buehler MJ. A review of combined experimental and computational procedures for assessing biopolymer structure-process-property relationships. Biomaterials 2012; 33:8240-55. [PMID: 22938765 DOI: 10.1016/j.biomaterials.2012.06.054] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 06/22/2012] [Indexed: 02/08/2023]
Abstract
Tailored biomaterials with tunable functional properties are desirable for many applications ranging from drug delivery to regenerative medicine. To improve the predictability of biopolymer materials functionality, multiple design parameters need to be considered, along with appropriate models. In this article we review the state of the art of synthesis and processing related to the design of biopolymers, with an emphasis on the integration of bottom-up computational modeling in the design process. We consider three prominent examples of well-studied biopolymer materials - elastin, silk, and collagen - and assess their hierarchical structure, intriguing functional properties and categorize existing approaches to study these materials. We find that an integrated design approach in which both experiments and computational modeling are used has rarely been applied for these materials due to difficulties in relating insights gained on different length- and time-scales. In this context, multiscale engineering offers a powerful means to accelerate the biomaterials design process for the development of tailored materials that suit the needs posed by the various applications. The combined use of experimental and computational tools has a very broad applicability not only in the field of biopolymers, but can be exploited to tailor the properties of other polymers and composite materials in general.
Collapse
Affiliation(s)
- Greta Gronau
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Shi FC, Wang WD, Huang WX. Bifunctional TiO2 Catalysts for Efficient Cr(VI) Photoreduction Under Solar Light Irradiation Without Addition of Acids. CHINESE J CHEM PHYS 2012. [DOI: 10.1088/1674-0068/25/02/214-218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
28
|
Xia XX, Xu Q, Hu X, Qin G, Kaplan DL. Tunable self-assembly of genetically engineered silk--elastin-like protein polymers. Biomacromolecules 2011; 12:3844-50. [PMID: 21955178 DOI: 10.1021/bm201165h] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Silk--elastin-like protein polymers (SELPs), consisting of the repeating units of silk and elastin blocks, combine a set of outstanding physical and biological properties of silk and elastin. Because of the unique properties, SELPs have been widely fabricated into various materials for the applications in drug delivery and tissue engineering. However, little is known about the fundamental self-assembly characteristics of these remarkable polymers. Here we propose a two-step self-assembly process of SELPs in aqueous solution for the first time and report the importance of the ratio of silk-to-elastin blocks in a SELP's repeating unit on the assembly of the SELP. Through precise tuning of the ratio of silk to elastin, various structures including nanoparticles, hydrogels, and nanofibers could be generated either reversibly or irreversibly. This assembly process might provide opportunities to generate innovative smart materials for biosensors, tissue engineering, and drug delivery. Furthermore, the newly developed SELPs in this study may be potentially useful as biomaterials for controlled drug delivery and biomedical engineering.
Collapse
Affiliation(s)
- Xiao-Xia Xia
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | | | | | | | | |
Collapse
|
29
|
Teng W, Cappello J, Wu X. Physical crosslinking modulates sustained drug release from recombinant silk-elastinlike protein polymer for ophthalmic applications. J Control Release 2011; 156:186-94. [PMID: 21839125 DOI: 10.1016/j.jconrel.2011.07.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/09/2011] [Accepted: 07/26/2011] [Indexed: 10/17/2022]
Abstract
We evaluated the drug release capability of optically transparent recombinant silk-elastinlike protein polymer, SELP-47K, films to sustainably deliver the common ocular antibiotic, ciprofloxacin. The ciprofloxacin release kinetics from drug-loaded SELP-47K films treated with ethanol or methanol vapor to induce different densities of physical crosslinking was investigated. Additionally, the drug-loaded protein films were embedded in a protein polymer coating to further prolong the release of the drug. Drug-loaded SELP-47K films released ciprofloxacin for up to 132 h with near first-order release kinetics. Polymer coating of drug-loaded films prolonged drug release for up to 220 h. The antimicrobial activity of ciprofloxacin released from the drug delivery matrices was not impaired by the film casting process or the ethanol or methanol treatments. The mechanism of drug release was elucidated by analyzing the physical properties of the film specimens, including equilibrium swelling, soluble fraction, surface roughness and hydrophobicity. Additionally, the conformation of the SELP-47K and its physical crosslinks in the films was analyzed by FTIR and Raman spectroscopy. A three-parameter physics based model accurately described the release rates observed for the various film and coating treatments and attributed the effects to the degree of physical crosslinking of the films and to an increasing affinity of the drug with the polymer network. Together, these results indicate that optically transparent silk-elastinlike protein films may be attractive material candidates for novel ophthalmic drug delivery devices.
Collapse
Affiliation(s)
- Weibing Teng
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
30
|
Qiu W, Cappello J, Wu X. Autoclaving as a chemical-free process to stabilize recombinant silk-elastinlike protein polymer nanofibers. APPLIED PHYSICS LETTERS 2011; 98:263702-2637023. [PMID: 21918580 PMCID: PMC3144965 DOI: 10.1063/1.3604786] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 05/30/2011] [Indexed: 05/22/2023]
Abstract
We report here that autoclaving is a chemical-free, physical crosslinking strategy capable of stabilizing electrospun recombinant silk-elastinlike protein (SELP) polymer nanofibers. Fourier transform infrared spectroscopy showed that the autoclaving of SELP nanofibers induced a conformational conversion of β-turns and unordered structures to ordered β-sheets. Tensile stress-strain analysis of the autoclaved SELP nanofibrous scaffolds in phosphate buffered saline at 37 °C revealed a Young's modulus of 1.02 ± 0.28 MPa, an ultimate tensile strength of 0.34 ± 0.04 MPa, and a strain at failure of 29% ± 3%.
Collapse
|