1
|
Lu W, Wan Y, Li Y. Praesto Jetted A50 HipH, a mild pH elution protein A resin, exhibits improved aggregate separation capability and protein elution from it shows unique response to mobile phase additive sodium chloride. Protein Expr Purif 2025; 229:106677. [PMID: 39864607 DOI: 10.1016/j.pep.2025.106677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
Protein A affinity chromatography has been widely used for product capture in monoclonal antibody (mAb), bispecific antibody (bsAb) and Fc-fusion protein purification. However, the low pH (i.e., 3.0-3.5) required for elution may cause aggregation and/or truncation for pH-sensitive molecules. Praesto Jetted A50 HipH from Purolite is a newly launched Protein A resin whose ligand is engineered to enable antibody/Fc-fusion elution at a milder pH (i.e., 4.6 or above) and therefore is more suitable to pH-sensitive molecules. In the current study, we demonstrated that this new Protein A resin, besides allowing mild elution, also possesses improved aggregate separation capability in comparison to traditional Protein A resins. While traditional Protein A resins generally lack any aggregate separation capability, Jetted A50 HipH can remove up to 70% of the aggregates in the load while maintaining good monomer recovery. In addition, we discovered that protein elution from Jetted A50 HipH column responded to mobile phase additive sodium chloride differently from that from traditional Protein A columns (elution was promoted rather than suppressed). This property enables elution at further increased pH (i.e., 5) when proper amount of sodium chloride is included in the elution buffer. Thus, Jetted A50 HipH is a better choice than traditional Protein A resins for pH-sensitive and/or aggregation-prone mAbs, bsAbs and Fc-fusion proteins.
Collapse
Affiliation(s)
- Wenwen Lu
- Downstream Process Development (DSPD), WuXi Biologics, 31 Yiwei Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China
| | - Yan Wan
- Downstream Process Development (DSPD), WuXi Biologics, 31 Yiwei Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China.
| | - Yifeng Li
- Downstream Process Development (DSPD), WuXi Biologics, 31 Yiwei Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China.
| |
Collapse
|
2
|
Pawlędzio S, Ziemniak M, Wang X, Woźniak K, Malinska M. Understanding the selectivity of nonsteroidal anti-inflammatory drugs for cyclooxygenases using quantum crystallography and electrostatic interaction energy. IUCRJ 2025; 12:208-222. [PMID: 39882676 DOI: 10.1107/s2052252525000053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/03/2025] [Indexed: 01/31/2025]
Abstract
Quantum crystallography methods have been employed to investigate complex formation between nonsteroidal anti-inflammatory drugs (NSAIDs) and cyclooxygenase (COX) enzymes, with particular focus on the COX-1 and COX-2 isoforms. This study analyzed the electrostatic interaction energies of selected NSAIDs (flurbiprofen, ibuprofen, meloxicam and celecoxib) with the active sites of COX-1 and COX-2, revealing significant differences in binding profiles. Flurbiprofen exhibited the strongest interactions with both COX-1 and COX-2, indicating its potent binding affinity. Celecoxib and meloxicam showed a preference for COX-2, consistent with their known selectivity for this isoform, while ibuprofen showed comparable interaction energies with both isoforms, reflecting its nonselective inhibition pattern. Key amino-acid residues, including Arg120, Arg/His513 and Tyr355, were identified as critical determinants of NSAID selectivity and binding affinity. The findings highlight the complex interplay between interaction energy and selectivity, suggesting that while electrostatic interactions play a fundamental role, additional factors such as enzyme dynamics and the hydrophobic effect also contribute to the therapeutic efficacy and safety profiles of NSAIDs. These insights provide valuable guidance for the rational design of NSAIDs with enhanced therapeutic benefits and minimized adverse effects.
Collapse
Affiliation(s)
- S Pawlędzio
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - M Ziemniak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland
| | - X Wang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - K Woźniak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland
| | - M Malinska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland
| |
Collapse
|
3
|
Armstrong A, Hernandez JA, Roth F, Bracewell DG, Farid SS, P C Marques M, Goldrick S. Development of temperature-controlled batch and 3-column counter-current protein A system for improved therapeutic purification. J Chromatogr A 2024; 1730:465110. [PMID: 38941794 DOI: 10.1016/j.chroma.2024.465110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024]
Abstract
Maximizing product quality attributes by optimizing process parameters and performance attributes is a crucial aspect of bioprocess chromatography process design. Process parameters include but are not limited to bed height, eluate cut points, and elution pH. An under-characterized chromatography process parameter for protein A chromatography is process temperature. Here, we present a mechanistic understanding of the effects of temperature on the protein A purification of a monoclonal antibody (mAb) using a commercial chromatography resin for batch and continuous counter-current systems. A self-designed 3D-printed heating jacket controlled the 1 mL chromatography process temperature during the loading, wash, elution, and cleaning-in-place (CIP) steps. Batch loading experiments at 10, 20, and 30 °C demonstrated increased dynamic binding capacity (DBC) with temperature. The experimental data were fit to mechanistic and correlation-based models that predicted the optimal operating conditions over a range of temperatures. These model-based predictions optimized the development of a 3-column temperature-controlled periodic counter-current chromatography (TCPCC) and were validated experimentally. Operating a 3-column TCPCC at 30 °C led to a 47% increase in DBC relative to 20 °C batch chromatography. The DBC increase resulted in a two-fold increase in productivity relative to 20 °C batch. Increasing the number of columns to the TCPCC to optimize for increasing feed concentration resulted in further improvements to productivity. The feed-optimized TCPCC showed a respective two, three, and four-fold increase in productivity at feed concentrations of 1, 5, and 15 mg/mL mAb, respectively. The derived and experimentally validated temperature-dependent models offer a valuable tool for optimizing both batch and continuous chromatography systems under various operating conditions.
Collapse
Affiliation(s)
- Alexander Armstrong
- Advanced Centre for Biochemical Engineering, University College London, United Kingdom
| | | | - Felix Roth
- Cell Culture and Fermentation Science, Biopharmaceuticals Development, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Daniel G Bracewell
- Advanced Centre for Biochemical Engineering, University College London, United Kingdom
| | - Suzanne S Farid
- Advanced Centre for Biochemical Engineering, University College London, United Kingdom
| | - Marco P C Marques
- Advanced Centre for Biochemical Engineering, University College London, United Kingdom
| | - Stephen Goldrick
- Advanced Centre for Biochemical Engineering, University College London, United Kingdom.
| |
Collapse
|
4
|
Koehnlein W, Kastenmueller E, Meier T, Treu T, Falkenstein R. The beneficial impact of kosmotropic salts on the resolution and selectivity of Protein A chromatography. J Chromatogr A 2024; 1715:464585. [PMID: 38183781 DOI: 10.1016/j.chroma.2023.464585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/08/2024]
Abstract
During the manufacturing of therapeutic antibodies, effective Protein A chromatography as initial column step is crucial to simplify the remaining purification effort for subsequent polishing steps. This is particularly relevant for molecules with high impurity content so that desired product purity can be attained. The present study demonstrates beneficial effects on impurity removal when applying kosmotropic salts, e.g., sodium sulfate or sodium chloride, in the elution phase. Initially, a screen using negative linear pH gradient elution evaluated the impact of the kosmotropic salts in comparison to no additive and chaotropic urea using three mAbs and three common resins. Retaining acceptable yield, the kosmotropic salts improved resolution of monomer and impurities and reduced the contents of process-related host cell proteins and DNA as well as of product-related low and high molecular weight forms, despite some resin- and mAb-dependent variations. Moreover, a decrease in hydrolytic activity measured by a new assay for polysorbase activity was observed. In contrast, urea was hardly effective. The findings served to establish optimized step elution conditions with 0.25 M of sodium sulfate for a challenging mAb with complex format (bispecific 2 + 1 CrossMab) displaying high relative hydrophobicity and impurity levels. With yield and purity both in the range of 90 %, the contents of all impurity components were reduced, e.g., low molecular weight forms by two-fold and polysorbase activity by four-fold. The study indicates the potential of kosmotropic salts to establish efficient and comprehensive impurity separation by Protein A for facilitated downstream processing and economic manufacturing of complex antibodies.
Collapse
Affiliation(s)
| | | | - Tobias Meier
- Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Tabea Treu
- Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | | |
Collapse
|
5
|
Jukič M, Kralj S, Kolarič A, Bren U. Design of Tetra-Peptide Ligands of Antibody Fc Regions Using In Silico Combinatorial Library Screening. Pharmaceuticals (Basel) 2023; 16:1170. [PMID: 37631085 PMCID: PMC10459493 DOI: 10.3390/ph16081170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Peptides, or short chains of amino-acid residues, are becoming increasingly important as active ingredients of drugs and as crucial probes and/or tools in medical, biotechnological, and pharmaceutical research. Situated at the interface between small molecules and larger macromolecular systems, they pose a difficult challenge for computational methods. We report an in silico peptide library generation and prioritization workflow using CmDock for identifying tetrapeptide ligands that bind to Fc regions of antibodies that is analogous to known in vitro recombinant peptide libraries' display and expression systems. The results of our in silico study are in accordance with existing scientific literature on in vitro peptides that bind to antibody Fc regions. In addition, we postulate an evolving in silico library design workflow that will help circumvent the combinatorial problem of in vitro comprehensive peptide libraries by focusing on peptide subunits that exhibit favorable interaction profiles in initial in silico peptide generation and testing.
Collapse
Affiliation(s)
- Marko Jukič
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška ulica 8, SI-6000 Koper, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska ulica 7, SI-2000 Maribor, Slovenia
| | - Sebastjan Kralj
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - Anja Kolarič
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska ulica 7, SI-2000 Maribor, Slovenia
| | - Urban Bren
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška ulica 8, SI-6000 Koper, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska ulica 7, SI-2000 Maribor, Slovenia
| |
Collapse
|
6
|
Bhoyar S, Foster M, Oh YH, Xu X, Traylor SJ, Guo J, Ghose S, Lenhoff AM. Engineering protein A ligands to mitigate antibody loss during high-pH washes in protein A chromatography. J Chromatogr A 2023; 1696:463962. [PMID: 37043977 DOI: 10.1016/j.chroma.2023.463962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
Abstract
Protein A chromatography is a workhorse in monoclonal antibody (mAb) manufacture since it provides effective separation of mAbs from impurities such as host-cell proteins (HCPs) in a single capture step. HCP clearance can be aided by the inclusion of a wash step prior to low-pH elution. Although high-pH washes can be effective in removing additional HCPs from the loaded column, they may also contribute to a reduced mAb yield. In this work we show that this yield loss is reflected in a pH-dependent variation of the equilibrium binding capacity of the protein A resin, which is also observed for the capacity of the Fc fragments alone and therefore not a result of steric interactions involving the Fab fragments in the intact mAbs. We therefore hypothesized that the high-pH wash loss was due to protonation or deprotonation of ionizable residues on the protein A ligand. To evaluate this, we applied a rational protein engineering approach to the Z domain (the Fc-binding component of most commercial protein A ligands) and expressed engineered mutants in E. coli. Biolayer interferometry and affinity chromatography experiments showed that some of the Z domain mutants were able to mitigate wash loss at high pH while maintaining similar binding characteristics at neutral pH. These experiments enabled elucidation of the roles of specific interactions in the Z domain - Fc complex, but more importantly offer a route to ameliorating the disadvantages of high-pH washes in protein A chromatography.
Collapse
|
7
|
Nosrati M, Housaindokht MR. New insights into the effect of mutations on affibody-Fc interaction, a molecular dynamics simulation approach. J Struct Biol 2023; 215:107925. [PMID: 36470559 DOI: 10.1016/j.jsb.2022.107925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Staphylococcal protein A (SpA) domain B (the basis of affibody) has been widely used in affinity chromatography and found therapeutic applications against inflammatory diseases through targeting the Fc part of immunoglobulin G (IgG). We have performed extensive molecular dynamics simulation of 41 SpA mutants and compared their dynamics and conformations to wild type. The simulations revealed the molecular details of structural and dynamics changes that occurred due to introducing point mutations and helped to explain the SPR results. It was observed in some variants a point mutation caused extensive structural changes far from the mutation site, while an effect of some other mutations was limited to the site of the mutated residue. Also, the pattern of hydrogen bond networks and hydrophobic core arrangements were investigated. We figured out mutations that occurred at positions 128, 136, 150 and 153, affected two hydrophobic cores at the interface as well as mutations introduced at positions 129 and 154 interrupted two hydrogen bond networks of the interface, SPR data showed all of these mutations reduced binding affinity significantly. Overall, by scanning the SpA-Fc interface through the large numbers of introduced mutations, the new insights have been gained which would help to design high- affinity ligands of IgG.
Collapse
Affiliation(s)
- Masoumeh Nosrati
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden.
| | | |
Collapse
|
8
|
Liu X, Jiang L, Li L, Lu F, Liu F. Bionics design of affinity peptide inhibitors for SARS-CoV-2 RBD to block SARS-CoV-2 RBD-ACE2 interactions. Heliyon 2023; 9:e12890. [PMID: 36686609 PMCID: PMC9836997 DOI: 10.1016/j.heliyon.2023.e12890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
Coronavirus Disease 2019 (COVID-19), has already posed serious threats and impacts on the health of the population and the country's economy. Therefore, it is of great theoretical significance and practical application value to better understand the process of COVID-19 infection and develop effective therapeutic drugs. It is known that the receptor-binding structural domain (SARS-CoV-2 RBD) on the spike protein of the novel coronavirus directly mediates its interaction with the host receptor angiotensin-converting enzyme 2 (ACE2), and thus blocking SARS-CoV-2 RBD-ACE2 interaction is capable of inhibiting SARS-CoV-2 infection. Firstly, the interaction mechanism between SARS-CoV-2RBD-ACE2 was explored using molecular dynamics simulation (MD) coupled with molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) free energy calculation method. The results of energy analysis showed that the key residues R403, R408, K417, and Y505 of SARS-CoV-2 RBD and the key residues D30, E37, D38, and Y41 of ACE2 were identified. Therefore, according to the hotspot residues of ACE2 and their distribution, a short peptide library of high-affinity SARS-CoV-2 RBD was constructed. And by using molecular docking virtual screening, six short peptides including DDFEDY, DEFEDY, DEYEDY, DFVEDY, DFHEDY, and DSFEDY with high affinity for SARS-CoV-2 RBD were identified. The results of MD simulation further confirmed that DDFEDY, DEYEDY, and DFVEDY are expected to be effective inhibitors. Finally, the allergenicity, toxicity and solubility properties of the three peptide inhibitors were validated.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, PR China,College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Luying Jiang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, PR China,College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Li Li
- College of Marine and Environmental Science, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, PR China,College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, PR China,College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China,Corresponding author. Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, PR China.
| |
Collapse
|
9
|
Chu X, Yang X, Shi Q, Dong X, Sun Y. Kinetic and molecular insight into immunoglobulin G binding to immobilized recombinant protein A of different orientations. J Chromatogr A 2022; 1671:463040. [DOI: 10.1016/j.chroma.2022.463040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
|
10
|
Chao Y, Zhang L. Biomimetic design of inhibitors of immune checkpoint LILRB4. Biophys Chem 2021; 282:106746. [PMID: 34963077 DOI: 10.1016/j.bpc.2021.106746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 12/20/2022]
Abstract
Immune checkpoint inhibitors have become a hot spot in the treatment of acute myeloid leukemia (AML), the most common acute leukemia (blood cancer) in adults. In the present study, molecular insights into the molecular interactions between an immune checkpoint leukocyte immunoglobulin-like receptor b4 (LILRB4) and its mAb h128-3 was explored using molecular dynamics (MD) simulation for the biomimetic design of peptide inhibitor of LILRB4. Both hydrophobic interaction and electrostatic interaction were found favorable for the binding of the mAb h128-3 on LILRB4, and hydrophobic interaction was identified as the main driving force. The key amino acid residues for the binding of mAb h128-3 on LILRB4 were identified as Y93, D94, D106, Y34, S103, W107, Y61, N30, E27, Y33, Y59, W95, S92 through MM-PBSA (molecular mechanics-Poisson-Boltzmann surface area) method. Based on this, an inhibitor library with the sequence of SXDXYXSY (Where X is an arbitrary amino acid residue) were designed. Two peptide inhibitors, SADHYHSY and SVDWYHSY were obtained through screening using molecular docking and MD simulations, and then validated by successful blocking of LILRB4 through the covering of LILRB4 surface by these inhibitors. These results would be helpful for the research and development of therapies for AML.
Collapse
Affiliation(s)
- Yuanyuan Chao
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Lin Zhang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
11
|
Li J, Li Y, Zhong J, Wang Y, Liu X, Qin X. Effect of cellulose nanocrystals on the formation and stability of oil-in-water emulsion formed by octenyl succinic anhydride starch. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
|
13
|
Chu W, Prodromou R, Day KN, Schneible JD, Bacon KB, Bowen JD, Kilgore RE, Catella CM, Moore BD, Mabe MD, Alashoor K, Xu Y, Xiao Y, Menegatti S. Peptides and pseudopeptide ligands: a powerful toolbox for the affinity purification of current and next-generation biotherapeutics. J Chromatogr A 2020; 1635:461632. [PMID: 33333349 DOI: 10.1016/j.chroma.2020.461632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023]
Abstract
Following the consolidation of therapeutic proteins in the fight against cancer, autoimmune, and neurodegenerative diseases, recent advancements in biochemistry and biotechnology have introduced a host of next-generation biotherapeutics, such as CRISPR-Cas nucleases, stem and car-T cells, and viral vectors for gene therapy. With these drugs entering the clinical pipeline, a new challenge lies ahead: how to manufacture large quantities of high-purity biotherapeutics that meet the growing demand by clinics and biotech companies worldwide. The protein ligands employed by the industry are inadequate to confront this challenge: while featuring high binding affinity and selectivity, these ligands require laborious engineering and expensive manufacturing, are prone to biochemical degradation, and pose safety concerns related to their bacterial origin. Peptides and pseudopeptides make excellent candidates to form a new cohort of ligands for the purification of next-generation biotherapeutics. Peptide-based ligands feature excellent target biorecognition, low or no toxicity and immunogenicity, and can be manufactured affordably at large scale. This work presents a comprehensive and systematic review of the literature on peptide-based ligands and their use in the affinity purification of established and upcoming biological drugs. A comparative analysis is first presented on peptide engineering principles, the development of ligands targeting different biomolecular targets, and the promises and challenges connected to the industrial implementation of peptide ligands. The reviewed literature is organized in (i) conventional (α-)peptides targeting antibodies and other therapeutic proteins, gene therapy products, and therapeutic cells; (ii) cyclic peptides and pseudo-peptides for protein purification and capture of viral and bacterial pathogens; and (iii) the forefront of peptide mimetics, such as β-/γ-peptides, peptoids, foldamers, and stimuli-responsive peptides for advanced processing of biologics.
Collapse
Affiliation(s)
- Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Raphael Prodromou
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Kevin N Day
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - John D Schneible
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Kaitlyn B Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - John D Bowen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Ryan E Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Carly M Catella
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Brandyn D Moore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Matthew D Mabe
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Kawthar Alashoor
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642
| | - Yiman Xu
- College of Material Science and Engineering, Donghua University, 201620 Shanghai, People's Republic of China
| | - Yuanxin Xiao
- College of Textile, Donghua University, Songjiang District, Shanghai, 201620, People's Republic of China
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606.
| |
Collapse
|
14
|
Wang W, Hao D, Ge J, Zhao L, Huang Y, Zhu K, Wu X, Su Z, Yu R, Ma G. A minimalist peptide ligand for IgG by minimizing the binding domain of protein A. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Liu F, Ma Z, Sang J, Lu F. Edaravone inhibits the conformational transition of amyloid-β42: insights from molecular dynamics simulations. J Biomol Struct Dyn 2019; 38:2377-2388. [PMID: 31234720 DOI: 10.1080/07391102.2019.1632225] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Previous work has shown that edaravone inhibits fibrillogenesis of amyloid-β protein (Aβ). However, the detailed mechanism by which edaravone inhibits the conformational transition of the Aβ42 monomer is not known at the molecular level. Here, explicit-solvent molecular dynamics (MD) simulations were coupled with molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method to address the issue. MD simulations confirmed that edaravone inhibits the conformational transition of the Aβ42 monomer in a dose-dependent manner. It was found that the direct interactions between edaravone and Aβ42 are responsible for its inhibiting effects. The analysis of binding free energy using the MM-PBSA method demonstrated that the nonpolar interactions provide favourable contributions (about -71.7 kcal/mol). Conversely, the polar interactions are unfavourable for the binding process. A total of 14 residues were identified as greatly contributing to the binding free energy between edaravone and the Aβ42 monomer. In addition, the intra-peptide hydrophobic interactions were weakened and the salt bridge D23-K28 was interrupted by edaravone. Therefore, the conformational transition was inhibited. Our studies provide molecular-level insights into how edaravone molecules inhibit the conformational transition of the Aβ42 monomer, which may be useful for designing amyloid inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry of Education, Tianjin, PR China.,Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, PR China.,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| | - Zheng Ma
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| | - Jingcheng Sang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry of Education, Tianjin, PR China.,Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, PR China.,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| |
Collapse
|
16
|
Sifniotis V, Cruz E, Eroglu B, Kayser V. Current Advancements in Addressing Key Challenges of Therapeutic Antibody Design, Manufacture, and Formulation. Antibodies (Basel) 2019; 8:E36. [PMID: 31544842 PMCID: PMC6640721 DOI: 10.3390/antib8020036] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
Therapeutic antibody technology heavily dominates the biologics market and continues to present as a significant industrial interest in developing novel and improved antibody treatment strategies. Many noteworthy advancements in the last decades have propelled the success of antibody development; however, there are still opportunities for improvement. In considering such interest to develop antibody therapies, this review summarizes the array of challenges and considerations faced in the design, manufacture, and formulation of therapeutic antibodies, such as stability, bioavailability and immunological engagement. We discuss the advancement of technologies that address these challenges, highlighting key antibody engineered formats that have been adapted. Furthermore, we examine the implication of novel formulation technologies such as nanocarrier delivery systems for the potential to formulate for pulmonary delivery. Finally, we comprehensively discuss developments in computational approaches for the strategic design of antibodies with modulated functions.
Collapse
Affiliation(s)
- Vicki Sifniotis
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.
| | - Esteban Cruz
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.
| | - Barbaros Eroglu
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.
| | - Veysel Kayser
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.
| |
Collapse
|
17
|
Singh N, Herzer S. Downstream Processing Technologies/Capturing and Final Purification : Opportunities for Innovation, Change, and Improvement. A Review of Downstream Processing Developments in Protein Purification. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 165:115-178. [PMID: 28795201 DOI: 10.1007/10_2017_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increased pressure on upstream processes to maximize productivity has been crowned with great success, although at the cost of shifting the bottleneck to purification. As drivers were economical, focus is on now on debottlenecking downstream processes as the main drivers of high manufacturing cost. Devising a holistically efficient and economical process remains a key challenge. Traditional and emerging protein purification strategies with particular emphasis on methodologies implemented for the production of recombinant proteins of biopharmaceutical importance are reviewed. The breadth of innovation is addressed, as well as the challenges the industry faces today, with an eye to remaining impartial, fair, and balanced. In addition, the scope encompasses both chromatographic and non-chromatographic separations directed at the purification of proteins, with a strong emphasis on antibodies. Complete solutions such as integrated USP/DSP strategies (i.e., continuous processing) are discussed as well as gains in data quantity and quality arising from automation and high-throughput screening (HTS). Best practices and advantages through design of experiments (DOE) to access a complex design space such as multi-modal chromatography are reviewed with an outlook on potential future trends. A discussion of single-use technology, its impact and opportunities for further growth, and the exciting developments in modeling and simulation of DSP rounds out the overview. Lastly, emerging trends such as 3D printing and nanotechnology are covered. Graphical Abstract Workflow of high-throughput screening, design of experiments, and high-throughput analytics to understand design space and design space boundaries quickly. (Reproduced with permission from Gregory Barker, Process Development, Bristol-Myers Squibb).
Collapse
Affiliation(s)
- Nripen Singh
- Bristol-Myers Squibb, Global Manufacturing and Supply, Devens, MA, 01434, USA.
| | - Sibylle Herzer
- Bristol-Myers Squibb, Global Manufacturing and Supply, Hopewell, NJ, 01434, USA
| |
Collapse
|
18
|
Gan N, Sun Q, Tang P, Wu D, Xie T, Zhang Y, Li H. Determination of interactions between human serum albumin and niraparib through multi-spectroscopic and computational methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 206:126-134. [PMID: 30096696 DOI: 10.1016/j.saa.2018.07.100] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
The interactions between 2-{4-[(3S)-piperidin-3-yl] phenyl}-2H-indazole-7-carboxamide (niraparib) and human serum albumin (HSA) were investigated through fluorescence and computational studies. Fluorescence experiments showed that the static quenching mechanism and the binding constant of the HSA-niraparib system at a single binding site was approximately 4 × 104 L mol-1. Thermodynamic constants indicated that the binding of niraparib to HSA was mainly driven by electrostatic interactions. Competition experiments and molecular docking simulations revealed that niraparib bound to site III of HSA. Synchronous fluorescence and Fourier transform infrared spectroscopy (FT-IR) results suggested that interactions between niraparib and HSA could affect the conformation and microenvironment of HSA. Circular dichroism (CD) measurements revealed that the α-helix contents of HSA negligibly increased after binding with niraparib. Molecular dynamics simulations demonstrated the stability of the binary HSA-niraparib system and confirmed that electrostatic forces accounted for the dominant contribution to system energy between HSA and niraparib.
Collapse
Affiliation(s)
- Na Gan
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Qiaomei Sun
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Peixiao Tang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Di Wu
- Key Laboratory of Meat Processing of Sichuan, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Tonghui Xie
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Yongkui Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Hui Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
19
|
Yang XH, Huan LM, Chu XS, Sun Y, Shi QH. A comparative investigation of random and oriented immobilization of protein A ligands on the binding of immunoglobulin G. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
Yang J, Du Q, Gan N, Chen Y, Yang L, Liu Z, Zhao H, Sun Q, Li H. Exploring the binding pattern between pepsin and deferasirox using detailed experimental and computer simulation methods. RSC Adv 2018; 8:37208-37218. [PMID: 35557832 PMCID: PMC9088941 DOI: 10.1039/c8ra07993e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/30/2018] [Indexed: 01/19/2023] Open
Abstract
Steady-state fluorescence spectroscopy indicated that a ground state complex was formed between deferasirox (DFX) and pepsin. The binding parameters and thermodynamic parameters of pepsin-DFX complex formation suggested the presence of only one high affinity binding site in the binding process of DFX and pepsin and that the binding process was hydrogen bond dominated. According to the MD simulation optimal pepsin-DFX binding model analysis, the binding force between DFX and pepsin was mainly hydrogen bonding, and the hydrophobic interaction was supplemented. Synchronous fluorescence spectroscopy and 3D fluorescence spectroscopy indicated that the binding of DFX to pepsin had minor effect on the protein structure and function. Circular dichroism spectra showed that DFX had no significant effect on the main secondary structure of pepsin. MD analysis also showed that DFX did not affect the looseness of pepsin and the overall secondary structure, but it affected the amino acid residue sequence Leu48-Ala49-Cys50-Ser51-Asp52. Pepsin enzyme activity test showed that the addition of DFX had a slight enhancement effect on the activity of pepsin. Combined with the MD results, DFX bound to pepsin and was closer to the pepsin active site Asp-215, which may affect the electrical environment of Asp-215 residues and enhance the activity of pepsin.
Collapse
Affiliation(s)
- Ji Yang
- School of Chemical Engineering, Sichuan University Chengdu Sichuan 610065 China +86 028 85401207 +86 026 85405220
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd. Kunming 650231 China
| | - Qiaohong Du
- School of Chemical Engineering, Sichuan University Chengdu Sichuan 610065 China +86 028 85401207 +86 026 85405220
| | - Na Gan
- School of Chemical Engineering, Sichuan University Chengdu Sichuan 610065 China +86 028 85401207 +86 026 85405220
| | - Yongkuan Chen
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd. Kunming 650231 China
| | - Liu Yang
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd. Kunming 650231 China
| | - Zhihua Liu
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd. Kunming 650231 China
| | - Hui Zhao
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd. Kunming 650231 China
| | - Qiaomei Sun
- School of Chemical Engineering, Sichuan University Chengdu Sichuan 610065 China +86 028 85401207 +86 026 85405220
| | - Hui Li
- School of Chemical Engineering, Sichuan University Chengdu Sichuan 610065 China +86 028 85401207 +86 026 85405220
| |
Collapse
|
21
|
Fang YM, Lin DQ, Yao SJ. Review on biomimetic affinity chromatography with short peptide ligands and its application to protein purification. J Chromatogr A 2018; 1571:1-15. [DOI: 10.1016/j.chroma.2018.07.082] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/12/2018] [Accepted: 07/29/2018] [Indexed: 10/28/2022]
|
22
|
Arakawa T, Tokunaga M, Maruyama T, Shiraki K. Two Elution Mechanisms of MEP Chromatography. Curr Protein Pept Sci 2017; 20:28-33. [PMID: 29150920 DOI: 10.2174/1389203718666171117105132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/02/2017] [Accepted: 11/08/2017] [Indexed: 11/22/2022]
Abstract
MEP (mercapto-ethyl-pyridine) HyperCel is one of the hydrophobic charge induction chromatography (HCIC) resins. Under normal operation, proteins are bound to the MEP resin at neutral pH, at which MEP is not charged, mostly via hydrophobic interaction. MEP has a pyridine group, whose pK is 4.8, and hence is positively charged at acidic pH range. Based on the binding mechanism (i.e., hydrophobic interaction) and the induced positive charge at acidic pH, there may be two ways to elute the bound proteins. One way is to bring the pH down to protonate both MEP resin and the bound protein, leading to charge repulsion and thereby elution. Another way is to use hydrophobic interaction modifiers, which are often used in hydrophobic interaction chromatography, to reduce hydrophobic interaction. Here, we summarize such two possible elution approaches.
Collapse
Affiliation(s)
- Tsutomu Arakawa
- Alliance Protein Laboratories, A Division of KBI Biopharma, 6042 Cornerstone Court West, San Diego, CA 92121, United States
| | - Masao Tokunaga
- Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Takuya Maruyama
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305- 8573, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305- 8573, Japan
| |
Collapse
|
23
|
Tong HF, Cavallotti C, Yao SJ, Lin DQ. Molecular insight into protein binding orientations and interaction modes on hydrophobic charge-induction resin. J Chromatogr A 2017; 1512:34-42. [DOI: 10.1016/j.chroma.2017.06.071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/15/2017] [Accepted: 06/29/2017] [Indexed: 11/28/2022]
|
24
|
Trang HK, Marcus RK. Application of protein A-modified capillary-channeled polymer polypropylene fibers to the quantitation of IgG in complex matrices. J Pharm Biomed Anal 2017; 142:49-58. [PMID: 28494339 DOI: 10.1016/j.jpba.2017.04.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
Abstract
Polypropylene (PP) capillary-channeled polymer (C-CP) fibers loaded with recombinant Staphyloccocus aureus protein A (rSPA) were used as an affinity chromatography stationary phase for the quantitation of immunoglobulin G (IgG) in complex biological matrices. Optimization of the chromatographic method regarding mobile phase components and load/elution conditions was performed. The six-minute analysis, including a load step with 12mM phosphate at pH 7.4, an elution step with 0.025% phosphoric acid and a re-equilibration step, was employed for quantitation of IgG1 from 0.075 to 3.00mgmL-1 in an IgG-free CHO cell supernatant matrix. Quantification of IgG1 content in a different CHO cell line was accomplished using the external calibration curve as well as using a standard addition approach. The high level of agreement between the two approaches suggests that the protein A-modified C-CP fiber phase is immune from matrix effects due to concomitant species such as host cell proteins (HCPs), host cell DNA, media components and other leachables and extractables. The inter-day and intra-day precision of the method were 3.1 and 3.5%RSD respectively for a single column. Column-to-column variability was 1.31 and 6.62%RSD for elution time and peak area, respectively, across columns prepared in different batches. The method reported here is well-suited for IgG analysis in complex harvest cell culture media in both the development and production environments.
Collapse
Affiliation(s)
- Hung K Trang
- Clemson University, Department of Chemistry, Biosystems Research Complex, Clemson, SC 29634, USA
| | - R Kenneth Marcus
- Clemson University, Department of Chemistry, Biosystems Research Complex, Clemson, SC 29634, USA.
| |
Collapse
|
25
|
Osajima T, Hoshino T. Roles of the respective loops at complementarity determining region on the antigen-antibody recognition. Comput Biol Chem 2016; 64:368-383. [DOI: 10.1016/j.compbiolchem.2016.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 01/25/2023]
|
26
|
Conformational transition of Aβ 42 inhibited by a mimetic peptide. A molecular modeling study using QM/MM calculations and QTAIM analysis. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Xue A, Zhao WW, Liu X(M, Sun Y. Affinity chromatography of human IgG with octapeptide ligands identified from eleven peptide-ligand candidates. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.11.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Paloni M, Cavallotti C. Molecular modeling of the affinity chromatography of monoclonal antibodies. Methods Mol Biol 2015; 1286:321-335. [PMID: 25749965 DOI: 10.1007/978-1-4939-2447-9_25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Molecular modeling is a methodology that offers the possibility of studying complex systems such as protein-ligand complexes from an atomistic point of view, making available information that can be difficultly obtained from experimental studies. Here, a protocol for the construction of molecular models of the interaction between antibodies and ligands that can be used for an affinity chromatography process is presented. The outlined methodology focuses mostly on the description of a procedure that may be adopted to determine the structure and free energy of interaction between the antibody and the affinity ligand. A procedure to extend the proposed methodology to include the effect of the environment (buffer solution, spacer, support matrix) is also briefly outlined.
Collapse
Affiliation(s)
- Matteo Paloni
- Department of Chimica Materiali e Ingegneria Chimica, G. Natta, Politecnico di Milano, via Mancinelli 7, Milano, 20131, Italy
| | | |
Collapse
|
29
|
Wei Y, Xu J, Zhang L, Fu Y, Xu X. Development of novel small peptide ligands for antibody purification. RSC Adv 2015. [DOI: 10.1039/c5ra07829f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Small peptide ligands which were designed based on the interactions with human immunoglobulin G (IgG) using the molecular simulations, can offer a potential alternative for mAb purification with elution condition at pH 9 and pH 3.
Collapse
Affiliation(s)
- Yuping Wei
- State
- Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
| | - Jiandong Xu
- State
- Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
| | - Liang Zhang
- State
- Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
| | - Yankai Fu
- State
- Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
| | - Xia Xu
- State
- Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
30
|
Atomistic characterization of binding modes and affinity of peptide inhibitors to amyloid-β protein. Front Chem Sci Eng 2014. [DOI: 10.1007/s11705-014-1454-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Itakura S, Hama S, Ikeda H, Mitsuhashi N, Majima E, Kogure K. Effective capture of proteins inside living cells by antibodies indirectly linked to a novel cell-penetrating polymer-modified protein A derivative. FEBS J 2014; 282:142-52. [DOI: 10.1111/febs.13111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 09/30/2014] [Accepted: 10/14/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Shoko Itakura
- Department of Biophysical Chemistry; Kyoto Pharmaceutical University; Japan
| | - Susumu Hama
- Department of Biophysical Chemistry; Kyoto Pharmaceutical University; Japan
| | - Hisafumi Ikeda
- Department of Environmental Science and Education; Tokyo Kasei University; Japan
| | | | | | - Kentaro Kogure
- Department of Biophysical Chemistry; Kyoto Pharmaceutical University; Japan
| |
Collapse
|
32
|
Energetic changes caused by antigenic module insertion in a virus-like particle revealed by experiment and molecular dynamics simulations. PLoS One 2014; 9:e107313. [PMID: 25215874 PMCID: PMC4162605 DOI: 10.1371/journal.pone.0107313] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/08/2014] [Indexed: 12/23/2022] Open
Abstract
The success of recombinant virus-like particles (VLPs) for human papillomavirus and hepatitis B demonstrates the potential of VLPs as safe and efficacious vaccines. With new modular designs emerging, the effects of antigen module insertion on the self-assembly and structural integrity of VLPs should be clarified so as to better enabling improved design. Previous work has revealed insights into the molecular energetics of a VLP subunit, capsomere, comparing energetics within various solution conditions known to drive or inhibit self-assembly. In the present study, molecular dynamics (MD) simulations coupled with the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method were performed to examine the molecular interactions and energetics in a modular capsomere of a murine polyomavirus (MPV) VLP designed to protect against influenza. Insertion of an influenza antigenic module is found to lower the binding energy within the capsomere, and a more active state is observed in Assembly Buffer as compared with that in Stabilization Buffer, which has been experimentally validated through measurements using differential scanning calorimetry. Further in-depth analysis based on free-energy decomposition indicates that destabilized binding can be attributed to electrostatic interaction induced by the chosen antigen module. These results provide molecular insights into the conformational stability of capsomeres and their abilities to be exploited for antigen presentation, and are expected to be beneficial for the biomolecular engineering of VLP vaccines.
Collapse
|
33
|
Li Y, Liu X, Dong X, Zhang L, Sun Y. Biomimetic design of affinity peptide ligand for capsomere of virus-like particle. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:8500-8508. [PMID: 24976378 DOI: 10.1021/la5017438] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Virus-like particle (VLP) of murine polyomavirus (MPV) is a T = 7d icosahedral capsid that self-assembles from 72 capsomeres (Caps), each of which is a pentamer of major coat protein VP1. VLP has great potential in vaccinology, gene therapy, drug delivery, and materials science. However, its application is hindered by high cost downstream processes, leading to an urgent demand of a highly efficient affinity ligand for the separation and purification of Cap by affinity chromatography. Herein a biomimetic design strategy of an affinity peptide ligand of Cap has been developed on the basis of the binding structure of the C-terminus of minor coat protein (VP2-C) on the inner surface of Cap. The molecular interactions between VP2-C and Cap were first examined using all-atom molecular dynamics (MD) simulations coupled with the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) method, where V283, P285, D286, W287, L289, and Y296 of VP2-C were identified as the hot spots. An affinity peptide library (DWXLXLXY, X denotes arbitrary amino acids except cysteine) was then constructed for virtual screening sequently by docking with AUTODOCK VINA, binding structure comparison, and final docking with ROSETTA FlexPepDock. Ten peptide candidates were selected and further confirmed by MD simulations and MM/PBSA, where DWDLRLLY was found to have the highest affinity to Cap. In DWDLRLLY, six residues are favorable for the binding, including W2, L4, L6 and Y8 inheriting from VP2-C, and R5 and L7 selected in the virtual screening. This confirms the high efficiency and accuracy of the biomimetic design strategy. DWDLRLLY was then experimentally validated by a one-step purification of Cap from crude cell lysate using affinity chromatography with the octapeptide immobilized on Sepharose gel. The purified Caps were observed to self-assemble into VLP with consistent structure of authentic MPV.
Collapse
Affiliation(s)
- Yanying Li
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | | | | | | | | |
Collapse
|
34
|
Zhao WW, Liu FF, Shi QH, Dong XY, Sun Y. Biomimetic design of affinity peptide ligands for human IgG based on protein A-IgG complex. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.03.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Tsukamoto M, Watanabe H, Ooishi A, Honda S. Engineered protein A ligands, derived from a histidine-scanning library, facilitate the affinity purification of IgG under mild acidic conditions. J Biol Eng 2014; 8:15. [PMID: 25057290 PMCID: PMC4107488 DOI: 10.1186/1754-1611-8-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 06/21/2014] [Indexed: 11/18/2022] Open
Abstract
Background In antibody purification processes, the acidic buffer commonly used to elute the bound antibodies during conventional affinity chromatograph, can damage the antibody. Herein we describe the development of several types of affinity ligands which enable the purification of antibodies under much milder conditions. Results Staphylococcal protein A variants were engineered by using both structure-based design and combinatorial screening methods. The frequency of amino acid residue substitutions was statistically analyzed using the sequences isolated from a histidine-scanning library screening. The positions where the frequency of occurrence of a histidine residue was more than 70% were thought to be effective histidine-mutation sites. Consequently, we identified PAB variants with a D36H mutation whose binding of IgG was highly sensitive to pH change. Conclusion The affinity column elution chromatograms demonstrated that antibodies could be eluted at a higher pH (∆pH**≧2.0) than ever reported (∆pH = 1.4) when the Staphylococcal protein A variants developed in this study were used as affinity ligands. The interactions between Staphylococcal protein A and IgG-Fab were shown to be important for the behavior of IgG bound on a SpA affinity column, and alterations in the affinity of the ligands for IgG-Fab clearly affected the conditions for eluting the bound IgG. Thus, a histidine-scanning library combined with a structure-based design was shown to be effective in engineering novel pH-sensitive proteins.
Collapse
Affiliation(s)
- Masayuki Tsukamoto
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan ; Manufacturing Technology Association of Biologics, Chuo-ku, Kobe, Japan
| | - Hideki Watanabe
- Biomedical Research Institute National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Ayako Ooishi
- Biomedical Research Institute National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Shinya Honda
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan ; Biomedical Research Institute National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki 305-8566, Japan ; Manufacturing Technology Association of Biologics, Chuo-ku, Kobe, Japan
| |
Collapse
|
36
|
Tong HF, Lin DQ, Zhang QL, Wang RZ, Yao SJ. Molecular recognition of Fc-specific ligands binding onto the consensus binding site of IgG: insights from molecular simulation. J Mol Recognit 2014; 27:501-9. [DOI: 10.1002/jmr.2373] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 03/11/2014] [Accepted: 03/15/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Hong-Fei Tong
- State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| | - Dong-Qiang Lin
- State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| | - Qi-Lei Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| | - Rong-Zhu Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| | - Shan-Jing Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
37
|
Zhang L, Sun Y. Biomimetic design of platelet adhesion inhibitors to block integrin α2β1-collagen interactions: I. Construction of an affinity binding model. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:4725-4733. [PMID: 24697616 DOI: 10.1021/la404599s] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Platelet adhesion on a collagen surface through integrin α2β1 has been proven to be significant for the formation of arterial thrombus. However, the molecular determinants mediating the integrin-collagen complex remain unclear. In the present study, the dynamics of integrin-collagen binding and molecular interactions were investigated using molecular dynamics (MD) simulations and molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) analysis. Hydrophobic interaction is identified as the major driving force for the formation of the integrin-collagen complex. On the basis of the MD simulation and MM-PBSA results, an affinity binding model (ABM) of integrin for collagen is constructed; it is composed of five residues, including Y157, N154, S155, R288, and L220. The ABM has been proven to capture the major binding motif contributing 84.8% of the total binding free energy. On the basis of the ABM, we expect to establish a biomimetic design strategy of platelet adhesion inhibitors, which would be beneficial for the development of potent peptide-based drugs for thrombotic diseases.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | | |
Collapse
|
38
|
Barroso T, Branco RJF, Aguiar-Ricardo A, Roque ACA. Structural evaluation of an alternative Protein A biomimetic ligand for antibody purification. J Comput Aided Mol Des 2014; 28:25-34. [DOI: 10.1007/s10822-013-9703-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/23/2013] [Indexed: 11/29/2022]
|
39
|
An automated robotic platform for rapid profiling oligosaccharide analysis of monoclonal antibodies directly from cell culture. Anal Biochem 2013; 442:10-8. [DOI: 10.1016/j.ab.2013.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 06/26/2013] [Accepted: 07/01/2013] [Indexed: 12/25/2022]
|
40
|
QIN Z, CHEN T, LI R. Purification of immunoglobulin and serum albumin from serum via strong anion exchange chromatography coupled with molecular exclusion chromatography. Se Pu 2013; 30:851-5. [DOI: 10.3724/sp.j.1123.2012.04002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
41
|
Molecular basis for the dissociation dynamics of protein A-immunoglobulin G1 complex. PLoS One 2013; 8:e66935. [PMID: 23776704 PMCID: PMC3680412 DOI: 10.1371/journal.pone.0066935] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/13/2013] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus protein A (SpA) is the most popular affinity ligand for immunoglobulin G1 (IgG1). However, the molecular basis for the dissociation dynamics of SpA-IgG1 complex is unclear. Herein, coarse-grained (CG) molecular dynamics (MD) simulations with the Martini force field were used to study the dissociation dynamics of the complex. The CG-MD simulations were first verified by the agreement in the structural and interactional properties of SpA and human IgG1 (hIgG1) in the association process between the CG-MD and all-atom MD at different NaCl concentrations. Then, the CG-MD simulation studies focused on the molecular insight into the dissociation dynamics of SpA-hIgG1 complex at pH 3.0. It is found that there are four steps in the dissociation process of the complex. First, there is a slight conformational adjustment of helix II in SpA. This is followed by the phenomena that the electrostatic interactions provided by the three hot spots (Glu143, Arg146 and Lys154) of helix II of SpA break up, leading to the dissociation of helix II from the binding site of hIgG1. Subsequently, breakup of the hydrophobic interactions between helix I (Phe132, Tyr133 and His137) in SpA and hIgG1 occurs, resulting in the disengagement of helix I from its binding site of hIgG1. Finally, the non-specific interactions between SpA and hIgG1 decrease slowly till disappearance, leading to the complete dissociation of the SpA-hIgG1 complex. This work has revealed that CG-MD coupled with the Martini force field is an effective method for studying the dissociation dynamics of protein-protein complex.
Collapse
|
42
|
Zhang L, Tang R, Bai S, Connors NK, Lua LHL, Chuan YP, Middelberg APJ, Sun Y. Molecular Energetics in the Capsomere of Virus-Like Particle Revealed by Molecular Dynamics Simulations. J Phys Chem B 2013; 117:5411-21. [DOI: 10.1021/jp311170w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lin Zhang
- Department
of Biochemical Engineering
and Key Laboratory of Systems Bioengineering of the Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ronghong Tang
- Department
of Biochemical Engineering
and Key Laboratory of Systems Bioengineering of the Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shu Bai
- Department
of Biochemical Engineering
and Key Laboratory of Systems Bioengineering of the Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Natalie K. Connors
- Australian Institute for Bioengineering
and Nanotechnology, Centre for Biomolecular Engineering, The University of Queensland, St Lucia, QLD, 4072,
Australia
| | - Linda H. L. Lua
- Protein Expression
Facility, The University of Queensland,
St Lucia, QLD, 4072,
Australia
| | - Yap P. Chuan
- Australian Institute for Bioengineering
and Nanotechnology, Centre for Biomolecular Engineering, The University of Queensland, St Lucia, QLD, 4072,
Australia
| | - Anton P. J. Middelberg
- Australian Institute for Bioengineering
and Nanotechnology, Centre for Biomolecular Engineering, The University of Queensland, St Lucia, QLD, 4072,
Australia
| | - Yan Sun
- Department
of Biochemical Engineering
and Key Laboratory of Systems Bioengineering of the Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
43
|
Li Y, Huang Q. Influence of Protein Self-Association on Complex Coacervation with Polysaccharide: A Monte Carlo Study. J Phys Chem B 2013; 117:2615-24. [DOI: 10.1021/jp309135m] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yunqi Li
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
44
|
Lin DQ, Tong HF, Wang HY, Shao S, Yao SJ. Molecular mechanism of hydrophobic charge-induction chromatography: Interactions between the immobilized 4-mercaptoethyl-pyridine ligand and IgG. J Chromatogr A 2012; 1260:143-53. [DOI: 10.1016/j.chroma.2012.08.080] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/27/2012] [Accepted: 08/21/2012] [Indexed: 10/27/2022]
|
45
|
Liu FF, Liu Z, Bai S, Dong XY, Sun Y. Exploring the inter-molecular interactions in amyloid-β protofibril with molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area free energy calculations. J Chem Phys 2012; 136:145101. [PMID: 22502547 DOI: 10.1063/1.3702195] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aggregation of amyloid-β (Aβ) peptides correlates with the pathology of Alzheimer's disease. However, the inter-molecular interactions between Aβ protofibril remain elusive. Herein, molecular mechanics Poisson-Boltzmann surface area analysis based on all-atom molecular dynamics simulations was performed to study the inter-molecular interactions in Aβ(17-42) protofibril. It is found that the nonpolar interactions are the important forces to stabilize the Aβ(17-42) protofibril, while electrostatic interactions play a minor role. Through free energy decomposition, 18 residues of the Aβ(17-42) are identified to provide interaction energy lower than -2.5 kcal/mol. The nonpolar interactions are mainly provided by the main chain of the peptide and the side chains of nine hydrophobic residues (Leu17, Phe19, Phe20, Leu32, Leu34, Met35, Val36, Val40, and Ile41). However, the electrostatic interactions are mainly supplied by the main chains of six hydrophobic residues (Phe19, Phe20, Val24, Met35, Val36, and Val40) and the side chains of the charged residues (Glu22, Asp23, and Lys28). In the electrostatic interactions, the overwhelming majority of hydrogen bonds involve the main chains of Aβ as well as the guanidinium group of the charged side chain of Lys28. The work has thus elucidated the molecular mechanism of the inter-molecular interactions between Aβ monomers in Aβ(17-42) protofibril, and the findings are considered critical for exploring effective agents for the inhibition of Aβ aggregation.
Collapse
Affiliation(s)
- Fu-Feng Liu
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | | | | | | | | |
Collapse
|
46
|
Li J, Zhang L, Sun Y. Molecular basis of the initial platelet adhesion in arterial thrombosis: Molecular dynamics simulations. J Mol Graph Model 2012; 37:49-58. [DOI: 10.1016/j.jmgm.2012.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 03/17/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
|
47
|
Click chemistry: A route to designing and preparing pseudo-biospecific immunoadsorbent for IgG adsorption. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 899:96-102. [DOI: 10.1016/j.jchromb.2012.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 04/03/2012] [Accepted: 05/02/2012] [Indexed: 11/23/2022]
|
48
|
Branco RJF, Dias AMGC, Roque ACA. Understanding the molecular recognition between antibody fragments and protein A biomimetic ligand. J Chromatogr A 2012; 1244:106-15. [PMID: 22621885 DOI: 10.1016/j.chroma.2012.04.071] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/23/2012] [Accepted: 04/26/2012] [Indexed: 10/28/2022]
Abstract
Affinity chromatography with protein A from Staphylococcus aureus (SpA) is the most widespread and accepted methodology for antibody capture during the downstream process of antibody manufacturing. A triazine based ligand (ligand 22/8) was previously developed as an inexpensive and robust alternative to SpA chromatography (Li et al. and Teng et al.). Despite the experimental success, there is no structural information on the binding modes of ligand 22/8 to antibodies, namely to Immunoglobulin G (IgG) molecules and fragments. In this work, we addressed this issue by a molecular docking approach allied to molecular dynamics simulations. Theoretical results confirmed the preference of the synthetic ligand to bind IgG through the binding site found in the crystallographic structure of the natural complex between SpA and the Fc fragment of IgG. Our studies also suggested other unknown "hot-spots" for specific binding of the affinity ligand at the hinge between V(H) and C(H)1 domains of Fab fragment. The best docking poses were further analysed by molecular dynamics studies at three different protonation states (pH 3, 7 and 11). The main interactions between ligand 22/8 and the IgG fragments found at pH 7 were weaker at pH 3 and pH 11 and in these conditions the ligand start losing tight contact with the binding site, corroborating the experimental evidence for protein elution from the chromatographic adsorbents at these pH conditions.
Collapse
Affiliation(s)
- Ricardo J F Branco
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | |
Collapse
|
49
|
Gorbatiuk OB, Tsapenko MV, Pavlova MV, Okunev OV, Kordium VA. Bioaffinity sorbent based on immobilized protein A Staphylococcus aureus: development and application. ACTA ACUST UNITED AC 2012. [DOI: 10.7124/bc.000041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- O. B. Gorbatiuk
- "Institute of Biology", Taras Shevchenko National University of Kyiv
| | - M. V. Tsapenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - M. V. Pavlova
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
- Institute of Genetic and Regenerative Medicine, NAMS of Ukraine
| | - O. V. Okunev
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
- Institute of Genetic and Regenerative Medicine, NAMS of Ukraine
| | - V. A. Kordium
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
- Institute of Genetic and Regenerative Medicine, NAMS of Ukraine
| |
Collapse
|
50
|
Huang B, Liu FF, Dong XY, Sun Y. Molecular mechanism of the effects of salt and pH on the affinity between protein A and human immunoglobulin G1 revealed by molecular simulations. J Phys Chem B 2011; 116:424-33. [PMID: 22136061 DOI: 10.1021/jp205770p] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Protein A from the bacterium Staphylococcus aureus (SpA) has been widely used as an affinity ligand for purification of immunoglobulin G (IgG). The affinity between SpA and IgG is affected differently by salt and pH, but their molecular mechanisms still remain unclear. In this work, molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area analysis were performed to investigate the salt (NaCl) and pH effects on the affinity between SpA and human IgG1 (hIgG1). It is found that salt and pH affect the interactions of the hot spots of SpA by different mechanisms. In the salt solution, the compensations between helices I and II of SpA as well as between the nonpolar and electrostatic energies make the binding free energy independent of salt concentration. At pH 3.0, the unfavorable electrostatic interactions increase greatly and become the driving force for dissociation of the SpA-hIgG1 complex. They mainly come from the strong electrostatic repulsions between positively charged residues (H137, R146, and K154) of SpA and the positively charged residues of hIgG1. It is considered to be the molecular basis for hIgG1 elution from SpA-based affinity adsorbents at pH 3.0. The dissociation mechanism is then used to refine the binding model of SpA to hIgG1. The model is expected to help design high-affinity peptide ligands of IgG.
Collapse
Affiliation(s)
- Bo Huang
- Department of Biological Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | | | | | | |
Collapse
|