1
|
Mariani A, Malucelli G. Polymer Hydrogels and Frontal Polymerization: A Winning Coupling. Polymers (Basel) 2023; 15:4242. [PMID: 37959922 PMCID: PMC10647350 DOI: 10.3390/polym15214242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Polymer hydrogels are 3D networks consisting of hydrophilic crosslinked macromolecular chains, allowing them to swell and retain water. Since their invention in the 1960s, they have become an outstanding pillar in the design, development, and application of engineered polymer systems suitable for biomedical and pharmaceutical applications (such as drug or cell delivery, the regeneration of hard and soft tissues, wound healing, and bleeding prevention, among others). Despite several well-established synthetic routes for developing polymer hydrogels based on batch polymerization techniques, about fifteen years ago, researchers started to look for alternative methods involving simpler reaction paths, shorter reaction times, and lower energy consumption. In this context, frontal polymerization (FP) has undoubtedly become an alternative and efficient reaction model that allows for the conversion of monomers into polymers via a localized and propagating reaction-by means of exploiting the formation and propagation of a "hot" polymerization front-able to self-sustain and propagate throughout the monomeric mixture. Therefore, the present work aims to summarize the main research outcomes achieved during the last few years concerning the design, preparation, and application of FP-derived polymeric hydrogels, demonstrating the feasibility of this technique for the obtainment of functional 3D networks and providing the reader with some perspectives for the forthcoming years.
Collapse
Affiliation(s)
- Alberto Mariani
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
- Consorzio Interuniversitario per la Scienza e Tecnologia dei Materiali, INSTM, Via Giusti 9, 50121 Firenze, Italy
| | - Giulio Malucelli
- Consorzio Interuniversitario per la Scienza e Tecnologia dei Materiali, INSTM, Via Giusti 9, 50121 Firenze, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Viale Teresa Michel 5, 15121 Alessandria, Italy
| |
Collapse
|
2
|
Groce B, Lane EE, Gary DP, Ngo DT, Ngo DT, Shaon F, Belgodere JA, Pojman JA. Kinetic and Chemical Effects of Clays and Other Fillers in the Preparation of Epoxy-Vinyl Ether Composites Using Radical-Induced Cationic Frontal Polymerization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19403-19413. [PMID: 37027250 PMCID: PMC10119861 DOI: 10.1021/acsami.3c00187] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Addition of fillers to formulations can generate composites with improved mechanical properties and lower the overall cost through a reduction of chemicals needed. In this study, fillers were added to resin systems consisting of epoxies and vinyl ethers that frontally polymerized through a radical-induced cationic frontal polymerization (RICFP) mechanism. Different clays, along with inert fumed silica, were added to increase the viscosity and reduce the convection, results of which did not follow many trends present in free-radical frontal polymerization. The clays were found to reduce the front velocity of RICFP systems overall compared to systems with only fumed silica. It is hypothesized that chemical effects and water content produce this reduction when clays are added to the cationic system. Mechanical and thermal properties of composites were studied, along with filler dispersion in the cured material. Drying the clays in an oven increased the front velocity. Comparing thermally insulating wood flour to thermally conducting carbon fibers, we observed that the carbon fibers resulted in an increase in front velocity, while the wood flour reduced the front velocity. Finally, it was shown that acid-treated montmorillonite K10 polymerizes RICFP systems containing vinyl ether even in the absence of an initiator, resulting in a short pot life.
Collapse
Affiliation(s)
- Brecklyn
R. Groce
- Department
of Chemistry and the Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Emma E. Lane
- Department
of Chemistry and the Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Daniel P. Gary
- Department
of Chemistry and the Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Douglas T. Ngo
- Department
of Chemistry and the Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Dylan T. Ngo
- Department
of Chemistry and the Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Fahima Shaon
- Department
of Chemistry and the Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Jorge A. Belgodere
- Department
of Biological and Agricultural Engineering, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
| | - John A. Pojman
- Department
of Chemistry and the Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
3
|
Suslick BA, Hemmer J, Groce BR, Stawiasz KJ, Geubelle PH, Malucelli G, Mariani A, Moore JS, Pojman JA, Sottos NR. Frontal Polymerizations: From Chemical Perspectives to Macroscopic Properties and Applications. Chem Rev 2023; 123:3237-3298. [PMID: 36827528 PMCID: PMC10037337 DOI: 10.1021/acs.chemrev.2c00686] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
The synthesis and processing of most thermoplastics and thermoset polymeric materials rely on energy-inefficient and environmentally burdensome manufacturing methods. Frontal polymerization is an attractive, scalable alternative due to its exploitation of polymerization heat that is generally wasted and unutilized. The only external energy needed for frontal polymerization is an initial thermal (or photo) stimulus that locally ignites the reaction. The subsequent reaction exothermicity provides local heating; the transport of this thermal energy to neighboring monomers in either a liquid or gel-like state results in a self-perpetuating reaction zone that provides fully cured thermosets and thermoplastics. Propagation of this polymerization front continues through the unreacted monomer media until either all reactants are consumed or sufficient heat loss stalls further reaction. Several different polymerization mechanisms support frontal processes, including free-radical, cat- or anionic, amine-cure epoxides, and ring-opening metathesis polymerization. The choice of monomer, initiator/catalyst, and additives dictates how fast the polymer front traverses the reactant medium, as well as the maximum temperature achievable. Numerous applications of frontally generated materials exist, ranging from porous substrate reinforcement to fabrication of patterned composites. In this review, we examine in detail the physical and chemical phenomena that govern frontal polymerization, as well as outline the existing applications.
Collapse
Affiliation(s)
- Benjamin A Suslick
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Julie Hemmer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Brecklyn R Groce
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 United States
| | - Katherine J Stawiasz
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Philippe H Geubelle
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Giulio Malucelli
- Department of Applied Science and Technology, Politecnico di Torino, 15121 Alessandria, Italy
| | - Alberto Mariani
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
- National Interuniversity Consortium of Materials Science and Technology, 50121 Firenze, Italy
| | - Jeffrey S Moore
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - John A Pojman
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 United States
| | - Nancy R Sottos
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Li Q, Shen HX, Liu C, Wang CF, Zhu L, Chen S. Advances in Frontal Polymerization Strategy: from Fundamentals to Applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101514] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Fazende KF, Phachansitthi M, Mota-Morales JD, Pojman JA. Frontal Polymerization of Deep Eutectic Solvents Composed of Acrylic and Methacrylic Acids. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28873] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kylee F. Fazende
- Department of Chemistry; 232 Choppin Hall, Louisiana State University; Baton Rouge Louisiana 70803
| | - Manysa Phachansitthi
- Department of Chemistry; 232 Choppin Hall, Louisiana State University; Baton Rouge Louisiana 70803
| | - Josué D. Mota-Morales
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla No. 3001; Querétaro QRO 76230 México
| | - John A. Pojman
- Department of Chemistry; 232 Choppin Hall, Louisiana State University; Baton Rouge Louisiana 70803
| |
Collapse
|
6
|
Carranza A, Gewin M, Pojman JA. Europium-doped aluminum oxide phosphors as indicators for frontal polymerization dynamics. CHAOS (WOODBURY, N.Y.) 2014; 24:023118. [PMID: 24985432 DOI: 10.1063/1.4876438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this study, we present an inexpensive and practical method that allows the monitoring and visualization of front polymerization, propagation, and dynamics. Commercially available europium-doped aluminum oxide powders were combined with video imaging to visualize free-radical propagating polymer fronts. In order to demonstrate the applicability of this method, frontal copolymerization reactions of propoxylated glycerin triacrylate (EB53), pentaerythritol triacrylate (PETA), and pentaerythritol tetra-acrylate (PETEA) with 1,1-Bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane (Luperox 231®) as an initiator were studied and compared to the results obtained by IR imaging. Systems exhibiting higher filler loading, higher EB53 content, and less acrylated monomers showed a marked decrease in front velocity, while those with more acrylated monomers and higher crosslinking density showed a marked increase in front velocity. Finally, in order to show the potential of the imaging technique, we studied fronts propagating in planar and spherical geometries.
Collapse
Affiliation(s)
- Arturo Carranza
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, USA
| | - Mariah Gewin
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, USA
| | - John A Pojman
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, USA
| |
Collapse
|
7
|
Mogal V, Papper V, Chaurasia A, Feng G, Marks R, Steele T. Novel on-demand bioadhesion to soft tissue in wet environments. Macromol Biosci 2013; 14:478-84. [PMID: 24293270 DOI: 10.1002/mabi.201300380] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 10/21/2013] [Indexed: 02/06/2023]
Abstract
Current methods of tissue fixation rely on mechanical-related technologies developed from the clothing and carpentry industries. Herein, a novel bioadhesive method that allows tuneable adhesion and is also applicable to biodegradable polyester substrates is described. Diazirine is the key functional group that allows strong soft tissue crosslinking and on-demand adhesion based on a free radical mechanism. Plasma post-irradiation grafting makes it possible to graft diazirine onto PLGA substrates. When the diazirine-PLGA films, placed on wetted ex vivo swine aortas, are activated with low intensity UV light, lap shear strength of up to 450 ± 50 mN cm(-2) is observed, which is one order of magnitude higher than hydrogel bioadhesives placed on similar soft tissues. The diazirine-modified PLGA thin films could be added on top of previously developed technologies for minimally invasive surgeries. The present work is focused on the chemistry, grafting, and lap shear strength of the alkyl diazirine-modified PLGA bioadhesive films.
Collapse
Affiliation(s)
- Vishal Mogal
- Materials and Science Engineering, Division of Materials Technology, Nanyang Technological University, Singapore, 639798
| | | | | | | | | | | |
Collapse
|
8
|
Mota-Morales JD, Gutiérrez MC, Ferrer ML, Sanchez IC, Elizalde-Peña EA, Pojman JA, Monte FD, Luna-Bárcenas G. Deep eutectic solvents as both active fillers and monomers for frontal polymerization. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26555] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|