1
|
Tan W, Zhu L, Mikoviny T, Nielsen CJ, Tang Y, Wisthaler A, Eichler P, Müller M, D'Anna B, Farren NJ, Hamilton JF, Pettersson JBC, Hallquist M, Antonsen S, Stenstrøm Y. Atmospheric Chemistry of 2-Amino-2-methyl-1-propanol: A Theoretical and Experimental Study of the OH-Initiated Degradation under Simulated Atmospheric Conditions. J Phys Chem A 2021; 125:7502-7519. [PMID: 34424704 PMCID: PMC8419843 DOI: 10.1021/acs.jpca.1c04898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The OH-initiated
degradation of 2-amino-2-methyl-1-propanol [CH3C(NH2)(CH3)CH2OH, AMP] was
investigated in a large atmospheric simulation chamber, employing
time-resolved online high-resolution proton-transfer reaction-time-of-flight
mass spectrometry (PTR-ToF-MS) and chemical analysis of aerosol online
PTR-ToF-MS (CHARON-PTR-ToF-MS) instrumentation, and by theoretical
calculations based on M06-2X/aug-cc-pVTZ quantum chemistry results
and master equation modeling of the pivotal reaction steps. The quantum
chemistry calculations reproduce the experimental rate coefficient
of the AMP + OH reaction, aligning k(T) = 5.2 × 10–12 × exp (505/T) cm3 molecule–1 s–1 to the experimental value kexp,300K =
2.8 × 10–11 cm3 molecule–1 s–1. The theoretical calculations predict that
the AMP + OH reaction proceeds via hydrogen abstraction from the −CH3 groups (5–10%), −CH2– group,
(>70%) and −NH2 group (5–20%), whereas
hydrogen
abstraction from the −OH group can be disregarded under atmospheric
conditions. A detailed mechanism for atmospheric AMP degradation was
obtained as part of the theoretical study. The photo-oxidation experiments
show 2-amino-2-methylpropanal [CH3C(NH2)(CH3)CHO] as the major gas-phase product and propan-2-imine [(CH3)2C=NH], 2-iminopropanol [(CH3)(CH2OH)C=NH], acetamide [CH3C(O)NH2], formaldehyde (CH2O), and nitramine 2-methyl-2-(nitroamino)-1-propanol
[AMPNO2, CH3C(CH3)(NHNO2)CH2OH] as minor primary products; there is no experimental
evidence of nitrosamine formation. The branching in the initial H
abstraction by OH radicals was derived in analyses of the temporal
gas-phase product profiles to be BCH3/BCH2/BNH2 = 6:70:24. Secondary photo-oxidation products
and products resulting from particle and surface processing of the
primary gas-phase products were also observed and quantified. All
the photo-oxidation experiments were accompanied by extensive particle
formation that was initiated by the reaction of AMP with nitric acid
and that mainly consisted of this salt. Minor amounts of the gas-phase
photo-oxidation products, including AMPNO2, were detected
in the particles by CHARON-PTR-ToF-MS and GC×GC-NCD. Volatility
measurements of laboratory-generated AMP nitrate nanoparticles gave
ΔvapH = 80 ± 16 kJ mol–1 and an estimated vapor pressure of (1.3 ± 0.3)
× 10–5 Pa at 298 K. The atmospheric chemistry
of AMP is evaluated and a validated chemistry model for implementation
in dispersion models is presented.
Collapse
Affiliation(s)
- Wen Tan
- Section for Environmental Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Liang Zhu
- Section for Environmental Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Tomáš Mikoviny
- Section for Environmental Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Claus J Nielsen
- Section for Environmental Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Yizhen Tang
- Section for Environmental Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Armin Wisthaler
- Section for Environmental Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway.,Institute for Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria
| | - Philipp Eichler
- Institute for Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria
| | - Markus Müller
- Institute for Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria
| | - Barbara D'Anna
- Aix Marseille Université, CNRS, LCE, UMR 7376, 13331 Marseille, France
| | - Naomi J Farren
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Jacqueline F Hamilton
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Jan B C Pettersson
- Atmospheric Science, Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Mattias Hallquist
- Atmospheric Science, Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Simen Antonsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Yngve Stenstrøm
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| |
Collapse
|
2
|
Chee S, Myllys N, Barsanti KC, Wong BM, Smith JN. An Experimental and Modeling Study of Nanoparticle Formation and Growth from Dimethylamine and Nitric Acid. J Phys Chem A 2019; 123:5640-5648. [DOI: 10.1021/acs.jpca.9b03326] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sabrina Chee
- Department of Chemistry, University of California, Irvine, California 92617, United States
| | - Nanna Myllys
- Department of Chemistry, University of California, Irvine, California 92617, United States
| | | | | | - James N. Smith
- Department of Chemistry, University of California, Irvine, California 92617, United States
| |
Collapse
|
3
|
Tan W, Zhu L, Mikoviny T, Nielsen CJ, Wisthaler A, Eichler P, Müller M, D'Anna B, Farren NJ, Hamilton JF, Pettersson JBC, Hallquist M, Antonsen S, Stenstrøm Y. Theoretical and Experimental Study on the Reaction of tert-Butylamine with OH Radicals in the Atmosphere. J Phys Chem A 2018; 122:4470-4480. [PMID: 29659281 DOI: 10.1021/acs.jpca.8b01862] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The OH-initiated atmospheric degradation of tert-butylamine (tBA), (CH3)3CNH2, was investigated in a detailed quantum chemistry study and in laboratory experiments at the European Photoreactor (EUPHORE) in Spain. The reaction was found to mainly proceed via hydrogen abstraction from the amino group, which in the presence of nitrogen oxides (NO x), generates tert-butylnitramine, (CH3)3CNHNO2, and acetone as the main reaction products. Acetone is formed via the reaction of tert-butylnitrosamine, (CH3)3CNHNO, and/or its isomer tert-butylhydroxydiazene, (CH3)3CN═NOH, with OH radicals, which yield nitrous oxide (N2O) and the (CH3)3Ċ radical. The latter is converted to acetone and formaldehyde. Minor predicted and observed reaction products include formaldehyde, 2-methylpropene, acetamide and propan-2-imine. The reaction in the EUPHORE chamber was accompanied by strong particle formation which was induced by an acid-base reaction between photochemically formed nitric acid and the reagent amine. The tert-butylaminium nitrate salt was found to be of low volatility, with a vapor pressure of 5.1 × 10-6 Pa at 298 K. The rate of reaction between tert-butylamine and OH radicals was measured to be 8.4 (±1.7) × 10-12 cm3 molecule-1 s-1 at 305 ± 2 K and 1015 ± 1 hPa.
Collapse
Affiliation(s)
- Wen Tan
- Department of Chemistry , University of Oslo , P.O. Box 1033, Blindern , 0315 Oslo , Norway
| | - Liang Zhu
- Department of Chemistry , University of Oslo , P.O. Box 1033, Blindern , 0315 Oslo , Norway
| | - Tomáš Mikoviny
- Department of Chemistry , University of Oslo , P.O. Box 1033, Blindern , 0315 Oslo , Norway
| | - Claus J Nielsen
- Department of Chemistry , University of Oslo , P.O. Box 1033, Blindern , 0315 Oslo , Norway.,Hylleraas Centre for Quantum Molecular Sciences , University of Oslo , P.O. Box 1033, Blindern , 0315 Oslo , Norway
| | - Armin Wisthaler
- Department of Chemistry , University of Oslo , P.O. Box 1033, Blindern , 0315 Oslo , Norway.,Institute for Ion Physics and Applied Physics , University of Innsbruck , 6020 Innsbruck , Austria
| | - Philipp Eichler
- Institute for Ion Physics and Applied Physics , University of Innsbruck , 6020 Innsbruck , Austria
| | - Markus Müller
- Institute for Ion Physics and Applied Physics , University of Innsbruck , 6020 Innsbruck , Austria
| | - Barbara D'Anna
- IRCELYON, CNRS, University of Lyon , 69626 Villeurbanne , France
| | - Naomi J Farren
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry , University of York , York YO10 5DD , United Kingdom
| | - Jacqueline F Hamilton
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry , University of York , York YO10 5DD , United Kingdom
| | - Jan B C Pettersson
- Department of Chemistry and Molecular Biology, Atmospheric Science , University of Gothenburg , 41296 Gothenburg , Sweden
| | - Mattias Hallquist
- Department of Chemistry and Molecular Biology, Atmospheric Science , University of Gothenburg , 41296 Gothenburg , Sweden
| | - Simen Antonsen
- Faculty of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences , P.O. Box 5003, 1432 Ås , Norway
| | - Yngve Stenstrøm
- Faculty of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences , P.O. Box 5003, 1432 Ås , Norway
| |
Collapse
|
4
|
Fan X, Dawson J, Chen M, Qiu C, Khalizov A. Thermal Stability of Particle-Phase Monoethanolamine Salts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2409-2417. [PMID: 29368508 DOI: 10.1021/acs.est.7b06367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The use of monoethanolamine (MEA, 2-hydroxyethanamine) for scrubbing of carbon dioxide from combustion flue gases may become the dominant technology for carbon capture in the near future. The widespread implementation of this technology will result in elevated emissions of MEA to the environment that may increase the loading and modify the properties of atmospheric aerosols. We have utilized experimental measurements together with aerosol microphysics calculations to derive thermodynamic properties of several MEA salts, potentially the dominant forms of MEA in atmospheric particles. The stability of the salts was found to depend strongly on the chemical nature of the acid counterpart. The saturation vapor pressures and vaporization enthalpies obtained in this study can be used to evaluate the role of MEA in the aerosol and haze formation, helping to assess impacts of the MEA-based carbon capture technology on air quality and climate change.
Collapse
Affiliation(s)
- Xiaolong Fan
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology , Nanjing, 210044, China
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology , Newark, New Jersey 07102, United States
| | - Joseph Dawson
- Department of Chemistry and Industrial Hygiene, University of North Alabama , Florence, Alabama 35632, United States
| | - Mindong Chen
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology , Nanjing, 210044, China
| | - Chong Qiu
- Department of Chemistry and Chemical Engineering, University of New Haven , New Haven, Connecticut 06516, United States
| | - Alexei Khalizov
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology , Newark, New Jersey 07102, United States
- Department of Chemical, Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology , Newark, New Jersey 07102, United States
| |
Collapse
|
5
|
Krishnamurthy A, Hunston DL, Forster AL, Natarajan B, Liotta AH, Wicks SS, Stutzman PE, Wardle BL, Liddle JA, Forster AM. Enhanced durability of carbon nanotube grafted hierarchical ceramic microfiber-reinforced epoxy composites. CARBON 2017; 125:63-75. [PMID: 29170562 PMCID: PMC5695714 DOI: 10.1016/j.carbon.2017.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As carbon nanotube (CNT) infused hybrid composites are increasingly identified as next-generation aerospace materials, it is vital to evaluate their long-term structural performance under aging environments. In this work, the durability of hierarchical, aligned CNT grafted aluminoborosilicate microfiber-epoxy composites (CNT composites) are compared against baseline aluminoborosilicate composites (baseline composites), before and after immersion in water at 25 °C (hydro) and 60 °C (hydrothermal), for extended durations (90 d and 180 d). The addition of CNTs is found to reduce water diffusivities by approximately 1.5 times. The mechanical properties (bending strength and modulus) and the damage sensing capabilities (DC conductivity) of CNT composites remain intact regardless of exposure conditions. The baseline composites show significant loss of strength (44 %) after only 15 d of hydrothermal aging. This loss of mechanical strength is attributed to fiber-polymer interfacial debonding caused by accumulation of water at high temperatures. In situ acoustic and DC electrical measurements of hydrothermally aged CNT composites identify extensive stress-relieving micro-cracking and crack deflections that are absent in the aged baseline composites. These observations are supported by SEM images of the failed composite cross-sections that highlight secondary matrix toughening mechanisms in the form of CNT pullouts and fractures which enhance the service life of composites and maintain their properties under accelerated aging environments.
Collapse
Affiliation(s)
- Ajay Krishnamurthy
- Theiss Research, La Jolla, CA 92037, USA
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Donald L. Hunston
- Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Amanda L. Forster
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Bharath Natarajan
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Andrew H. Liotta
- necstlab, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, MA 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, MA 02139, USA
| | - Sunny S. Wicks
- necstlab, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, MA 02139, USA
| | - Paul E. Stutzman
- Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Brian L. Wardle
- necstlab, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, MA 02139, USA
| | - J. Alexander Liddle
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Aaron M. Forster
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
6
|
Schwarz J, Makeš O, Ondráček J, Cusack M, Talbot N, Vodička P, Kubelová L, Ždímal V. Single Usage of a Kitchen Degreaser Can Alter Indoor Aerosol Composition for Days. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5907-5912. [PMID: 28447452 DOI: 10.1021/acs.est.6b06050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To the best of our knowledge, this study represents the first observation of multiday persistence of an indoor aerosol transformation linked to a kitchen degreaser containing monoethanol amine (MEA). MEA remaining on the cleaned surfaces and on a wiping paper towel in a trash can was able to transform ammonium sulfate and ammonium nitrate into (MEA)2SO4 and (MEA)NO3. This influence persisted for at least 60 h despite a high average ventilation rate. The influence was observed using both offline (filters, impactors, and ion chromatography analysis) and online (compact time-of-flight aerosol mass spectrometer) techniques. Substitution of ammonia in ammonium salts was observed not only in aerosol but also in particles deposited on a filter before the release of MEA. The similar influence of other amines is expected based on literature data. This influence represents a new pathway for MEA exposure of people in an indoor environment. The stabilizing effect on indoor nitrate also causes higher indoor exposure to fine nitrates.
Collapse
Affiliation(s)
- Jaroslav Schwarz
- Institute of Chemical Process Fundamentals of the CAS , Prague CZ-165 02, Czech Republic
| | - Otakar Makeš
- Institute of Chemical Process Fundamentals of the CAS , Prague CZ-165 02, Czech Republic
| | - Jakub Ondráček
- Institute of Chemical Process Fundamentals of the CAS , Prague CZ-165 02, Czech Republic
| | - Michael Cusack
- Institute of Chemical Process Fundamentals of the CAS , Prague CZ-165 02, Czech Republic
| | - Nicholas Talbot
- Institute of Chemical Process Fundamentals of the CAS , Prague CZ-165 02, Czech Republic
| | - Petr Vodička
- Institute of Chemical Process Fundamentals of the CAS , Prague CZ-165 02, Czech Republic
| | - Lucie Kubelová
- Institute of Chemical Process Fundamentals of the CAS , Prague CZ-165 02, Czech Republic
| | - Vladimír Ždímal
- Institute of Chemical Process Fundamentals of the CAS , Prague CZ-165 02, Czech Republic
| |
Collapse
|
7
|
Qu J, Ge Y, Zu B, Li Y, Dou X. Transition-Metal-Doped p-Type ZnO Nanoparticle-Based Sensory Array for Instant Discrimination of Explosive Vapors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1369-77. [PMID: 26763156 DOI: 10.1002/smll.201503131] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/28/2015] [Indexed: 05/26/2023]
Abstract
The development of portable, real-time, and cheap platforms to monitor ultratrace levels of explosives is of great urgence and importance due to the threat of terrorism attacks and the need for homeland security. However, most of the previous chemiresistor sensors for explosive detection are suffering from limited responses and long response time. Here, a transition-metal-doping method is presented to remarkably promote the quantity of the surface defect states and to significantly reduce the charge transfer distance by creating a local charge reservoir layer. Thus, the sensor response is greatly enhanced and the response time is remarkably shortened. The resulting sensory array can not only detect military explosives, such as, TNT, DNT, PNT, PA, and RDX with high response, but also can fully distinguish some of the improvised explosive vapors, such as AN and urea, due to the huge response reaching to 100%. Furthermore, this sensory array can discriminate ppb-level TNT and ppt-level RDX from structurally similar and high-concentration interfering aromatic gases in less than 12 s. Through comparison with the previously reported chemiresistor or Schottky sensors for explosive detection, the present transition-metal-doping method resulting ZnO sensor stands out and undoubtedly challenges the best.
Collapse
Affiliation(s)
- Jiang Qu
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry;, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuru Ge
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry;, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Baiyi Zu
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry;, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Yuxiang Li
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry;, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Xincun Dou
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry;, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
| |
Collapse
|
8
|
Zhang R, Wang G, Guo S, Zamora ML, Ying Q, Lin Y, Wang W, Hu M, Wang Y. Formation of urban fine particulate matter. Chem Rev 2015; 115:3803-55. [PMID: 25942499 DOI: 10.1021/acs.chemrev.5b00067] [Citation(s) in RCA: 493] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Renyi Zhang
- §State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
| | | | - Song Guo
- §State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
| | | | | | | | | | - Min Hu
- §State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Yuan Wang
- #Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
9
|
Lavi A, Segre E, Gomez-Hernandez M, Zhang R, Rudich Y. Volatility of Atmospherically Relevant Alkylaminium Carboxylate Salts. J Phys Chem A 2015; 119:4336-46. [DOI: 10.1021/jp507320v] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Avi Lavi
- Department of Earth and Planetary Science and ‡Physical Services, Weizmann Institute of Science, Rehovot, 76100 Israel
- Department of Atmospheric Sciences and ∥Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Enrico Segre
- Department of Earth and Planetary Science and ‡Physical Services, Weizmann Institute of Science, Rehovot, 76100 Israel
- Department of Atmospheric Sciences and ∥Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mario Gomez-Hernandez
- Department of Earth and Planetary Science and ‡Physical Services, Weizmann Institute of Science, Rehovot, 76100 Israel
- Department of Atmospheric Sciences and ∥Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Renyi Zhang
- Department of Earth and Planetary Science and ‡Physical Services, Weizmann Institute of Science, Rehovot, 76100 Israel
- Department of Atmospheric Sciences and ∥Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Yinon Rudich
- Department of Earth and Planetary Science and ‡Physical Services, Weizmann Institute of Science, Rehovot, 76100 Israel
- Department of Atmospheric Sciences and ∥Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
10
|
Abstract
Heterogeneous reactions of amines have been recently shown to play an important role in the formation and transformation of atmospheric aerosols. This perspective summarizes the latest laboratory progress in the multiphase chemistry of amines. Particular emphasis is given to the contributions of amines to new particle formation, growth of submicron particles, and alteration in the physiochemical properties of pre-existing particles, including hygroscopicity, thermostability, density, phase, and optical properties, from exposure to gaseous amines. The atmospheric implications of the multiphase reactions of amines, including the potential impact on direct and indirect climate forcing of aerosols, and future research directions are discussed.
Collapse
Affiliation(s)
- Chong Qiu
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
11
|
Mishra BK, Chakrabartty AK, Deka RC. Theoretical study on rate constants for the reactions of CF3CH2NH2 (TFEA) with the hydroxyl radical at 298 K and atmospheric pressure. J Mol Model 2013; 19:2189-95. [PMID: 23354476 DOI: 10.1007/s00894-013-1762-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/07/2013] [Indexed: 10/27/2022]
|
12
|
Qiu C, Zhang R. Physiochemical properties of alkylaminium sulfates: hygroscopicity, thermostability, and density. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:4474-4480. [PMID: 22417685 DOI: 10.1021/es3004377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Although heterogeneous interaction of amines has been recently shown to play an important role in the formation and growth of atmospheric aerosols, little information is available on the physicochemical properties of aminium sulfates. In this study, the hygroscopicity, thermostability, and density of alkylaminium sulfates (AASs) have been measured by an integrated aerosol analytical system including a tandem differential mobility analyzer and an aerosol particle mass analyzer. AAS aerosols exhibit monotonic size growth at increasing RH without a well-defined deliquescence point. Mixing of ammonium sulfate (AS) with AASs lowers the deliquescence point corresponding to AS. Particles with AASs show comparable or higher thermostability than that of AS. The density of AASs is determined to be 1.2-1.5 g cm(-3), and an empirical model is developed to predict the density of AASs on the basis of the mole ratio of alkyl carbons to total sulfate. Our results reveal that the heterogeneous uptake of amines on sulfate particles may considerably alter the aerosol properties. In particular, the displacement reaction of alkylamines with ammonium sulfate aerosols leads to a transition from the crystalline to an amorphorous phase and an improved water uptake, considerably enhancing their direct and indirect climate forcing.
Collapse
Affiliation(s)
- Chong Qiu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | | |
Collapse
|
13
|
Nielsen CJ, Herrmann H, Weller C. Atmospheric chemistry and environmental impact of the use of amines in carbon capture and storage (CCS). Chem Soc Rev 2012; 41:6684-704. [DOI: 10.1039/c2cs35059a] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|