1
|
Borišek J, Aupič J, Magistrato A. Third Metal Ion Dictates the Catalytic Activity of the Two-Metal-Ion Pre-Ribosomal RNA-Processing Machinery. Angew Chem Int Ed Engl 2024; 63:e202405819. [PMID: 38994644 DOI: 10.1002/anie.202405819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/13/2024]
Abstract
Nucleic acid processing enzymes use a two-Mg2+-ion motif to promote the formation and cleavage of phosphodiester bonds. Yet, recent evidence demonstrates the presence of spatially conserved second-shell cations surrounding the catalytic architecture of proteinaceous and RNA-dependent enzymes. The RNase mitochondrial RNA processing (MRP) complex, which cleaves the ribosomal RNA (rRNA) precursor at the A3 cleavage site to yield mature 5'-end of 5.8S rRNA, hosts in the catalytic core one atypically-located Mg2+ ion, in addition to the ions forming the canonical catalytic motif. Here, we employ biased quantum classical molecular dynamics simulations of RNase MRP to discover that the third Mg2+ ion inhibits the catalytic process. Instead, its displacement in favour of a second-shell monovalent K+ ion propels phosphodiester bond cleavage by enabling the formation of a specific hydrogen bonding network that mediates the essential proton transfer step. This study points to a direct involvement of a transient K+ ion in the catalytic cleavage of the phosphodiester bond and implicates cation trafficking as a general mechanism in nucleic acid processing enzymes and ribozymes.
Collapse
Affiliation(s)
- Jure Borišek
- Theory department, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| | - Jana Aupič
- Computational biology and medicine, CNR-Istituto Officina dei Materiali (IOM) c/o International School for Advanced Studies (SISSA), Via Bonomea, 265, 34136, Trieste, Italy
| | - Alessandra Magistrato
- Computational biology and medicine, CNR-Istituto Officina dei Materiali (IOM) c/o International School for Advanced Studies (SISSA), Via Bonomea, 265, 34136, Trieste, Italy
| |
Collapse
|
2
|
Rinaldi S, Moroni E, Rozza R, Magistrato A. Frontiers and Challenges of Computing ncRNAs Biogenesis, Function and Modulation. J Chem Theory Comput 2024; 20:993-1018. [PMID: 38287883 DOI: 10.1021/acs.jctc.3c01239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Non-coding RNAs (ncRNAs), generated from nonprotein coding DNA sequences, constitute 98-99% of the human genome. Non-coding RNAs encompass diverse functional classes, including microRNAs, small interfering RNAs, PIWI-interacting RNAs, small nuclear RNAs, small nucleolar RNAs, and long non-coding RNAs. With critical involvement in gene expression and regulation across various biological and physiopathological contexts, such as neuronal disorders, immune responses, cardiovascular diseases, and cancer, non-coding RNAs are emerging as disease biomarkers and therapeutic targets. In this review, after providing an overview of non-coding RNAs' role in cell homeostasis, we illustrate the potential and the challenges of state-of-the-art computational methods exploited to study non-coding RNAs biogenesis, function, and modulation. This can be done by directly targeting them with small molecules or by altering their expression by targeting the cellular engines underlying their biosynthesis. Drawing from applications, also taken from our work, we showcase the significance and role of computer simulations in uncovering fundamental facets of ncRNA mechanisms and modulation. This information may set the basis to advance gene modulation tools and therapeutic strategies to address unmet medical needs.
Collapse
Affiliation(s)
- Silvia Rinaldi
- National Research Council of Italy (CNR) - Institute of Chemistry of OrganoMetallic Compounds (ICCOM), c/o Area di Ricerca CNR di Firenze Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Elisabetta Moroni
- National Research Council of Italy (CNR) - Institute of Chemical Sciences and Technologies (SCITEC), via Mario Bianco 9, 20131 Milano, Italy
| | - Riccardo Rozza
- National Research Council of Italy (CNR) - Institute of Material Foundry (IOM) c/o International School for Advanced Studies (SISSA), Via Bonomea, 265, 34136 Trieste, Italy
| | - Alessandra Magistrato
- National Research Council of Italy (CNR) - Institute of Material Foundry (IOM) c/o International School for Advanced Studies (SISSA), Via Bonomea, 265, 34136 Trieste, Italy
| |
Collapse
|
3
|
Parise A, Ciardullo G, Prejanò M, Lande ADL, Marino T. On the Recognition of Natural Substrate CTP and Endogenous Inhibitor ddhCTP of SARS-CoV-2 RNA-Dependent RNA Polymerase: A Molecular Dynamics Study. J Chem Inf Model 2022; 62:4916-4927. [PMID: 36219674 DOI: 10.1021/acs.jcim.2c01002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The novel coronavirus SARS-CoV-2 is the causative agent of the COVID-19 outbreak that is affecting the entire planet. As the pandemic is still spreading worldwide, with multiple mutations of the virus, it is of interest and of help to employ computational methods for identifying potential inhibitors of the enzymes responsible for viral replication. Attractive antiviral nucleotide analogue RNA-dependent RNA polymerase (RdRp) chain terminator inhibitors are investigated with this purpose. This study, based on molecular dynamics (MD) simulations, addresses the important aspects of the incorporation of an endogenously synthesized nucleoside triphosphate, ddhCTP, in comparison with the natural nucleobase cytidine triphosphate (CTP) in RdRp. The ddhCTP species is the product of the viperin antiviral protein as part of the innate immune response. The absence of the ribose 3'-OH in ddhCTP could have important implications in its inhibitory mechanism of RdRp. We built an in silico model of the RNA strand embedded in RdRp using experimental methods, starting from the cryo-electron microscopy structure and exploiting the information obtained by spectrometry on the RNA sequence. We determined that the model was stable during the MD simulation time. The obtained results provide deeper insights into the incorporation of nucleoside triphosphates, whose molecular mechanism by the RdRp active site still remains elusive.
Collapse
Affiliation(s)
- Angela Parise
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, CS, Italy.,Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay 91405, France
| | - Giada Ciardullo
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, CS, Italy
| | - Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, CS, Italy
| | - Aurélien de la Lande
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay 91405, France
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, CS, Italy
| |
Collapse
|
4
|
Luo X, Wang X, Yao Y, Gao X, Zhang L. Unveiling the "Template-Dependent" Inhibition on the Viral Transcription of SARS-CoV-2. J Phys Chem Lett 2022; 13:7197-7205. [PMID: 35912566 PMCID: PMC9363016 DOI: 10.1021/acs.jpclett.2c01314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Remdesivir is one nucleotide analogue prodrug capable to terminate RNA synthesis in SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) by two distinct mechanisms. Although the "delayed chain termination" mechanism has been extensively investigated, the "template-dependent" inhibitory mechanism remains elusive. In this study, we have demonstrated that remdesivir embedded in the template strand seldom directly disrupted the complementary NTP incorporation at the active site. Instead, the translocation of remdesivir from the +2 to the +1 site was hindered due to the steric clash with V557. Moreover, we have elucidated the molecular mechanism characterizing the drug resistance upon V557L mutation. Overall, our studies have provided valuable insight into the "template-dependent" inhibitory mechanism exerted by remdesivir on SARS-CoV-2 RdRp and paved venues for an alternative antiviral strategy for the COVID-19 pandemic. As the "template-dependent" inhibition occurs across diverse viral RdRps, our findings may also shed light on a common acting mechanism of inhibitors.
Collapse
Affiliation(s)
- Xueying Luo
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, 350002 Fuzhou, Fujian, China
- University
of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiaowei Wang
- Department
of Chemical and Biological Engineering, Department of Mathematics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Yuan Yao
- Department
of Mathematics, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Xin Gao
- Computer
Science Program, Computer, Electrical and Mathematical Sciences and
Engineering (CEMSE) Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST
Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Lu Zhang
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, 350002 Fuzhou, Fujian, China
- University
of Chinese Academy of Sciences, 100049 Beijing, China
- Fujian Provincial
Key Laboratory of Theoretical and Computational Chemistry, 361005 Fujian, China
| |
Collapse
|
5
|
Arba M, Paradis N, Wahyudi ST, Brunt DJ, Hausman KR, Lakernick PM, Singh M, Wu C. Unraveling the binding mechanism of the active form of Remdesivir to RdRp of SARS-CoV-2 and designing new potential analogues: Insights from molecular dynamics simulations. Chem Phys Lett 2022; 799:139638. [PMID: 35475235 PMCID: PMC9020840 DOI: 10.1016/j.cplett.2022.139638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 01/18/2023]
Abstract
The binding of the active form of Remdesivir (RTP) to RNA-dependent RNA Polymerase (RdRp) of SARS-CoV-2 was studied using molecular dynamics simulation. The RTP maintained the interactions observed in the experimental cryo-EM structure. Next, we designed new analogues of RTP, which not only binds to the RNA primer strand in a similar pose as that of RTP, but also binds more strongly than RTP does as predicted by MM-PBSA binding energy. This suggest that these analogues might be able to covalently link to the primer strand as RTP, but their 3' modification would terminate the primer strand growth.
Collapse
Affiliation(s)
- Muhammad Arba
- Faculty of Pharmacy, Universitas Halu Oleo, Kendari 93232, Indonesia
| | - Nicholas Paradis
- Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, United States
| | - Setyanto T Wahyudi
- Department of Physics, Faculty of Mathematic and Natural Sciences, IPB University, Bogor 16680, Indonesia
| | - Dylan J Brunt
- Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, United States
| | - Katherine R Hausman
- Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, United States
| | - Phillip M Lakernick
- Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, United States
| | - Mursalin Singh
- Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, United States
| | - Chun Wu
- Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, United States
| |
Collapse
|
6
|
MgO recycling in l-lactic acid fermentation and effects of the reusable alkaline neutralizer on Lactobacillus rhamnosus: From process integration to transcriptome analysis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Wang Y, Yuan C, Xu X, Chong TH, Zhang L, Cheung PPH, Huang X. The mechanism of action of T-705 as a unique delayed chain terminator on influenza viral polymerase transcription. Biophys Chem 2021; 277:106652. [PMID: 34237555 DOI: 10.1016/j.bpc.2021.106652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 01/18/2023]
Abstract
Favipiravir (T-705) has been developed as a potent anti-influenza drug and exhibited a strong inhibition effect against a broad spectrum of RNA viruses. Its active form, ribofuranosyl-triphosphate (T-705-RTP), functions as a competitive substrate for the RNA-dependent RNA polymerase (RdRp) of the influenza A virus (IAV). However, the exact inhibitory mechanisms of T-705 remain elusive and subject to a long-standing debate. Although T-705 has been proposed to inhibit transcription by acting as a chain terminator, it is also paradoxically suggested to be a mutagen towards IAV RdRp by inducing mutations due to its ambiguous base pairing of C and U. Here, we combined biochemical assay with molecular dynamics (MD) simulations to elucidate the molecular mechanism underlying the inhibitory functions exerted by T-705 in IAV RdRp. Our in vitro transcription assay illustrated that IAV RdRp could recognize T-705 as a purine analogue and incorporate it into the nascent RNA strand. Incorporating a single T-705 is incapable of inhibiting transcription as extra natural nucleotides can be progressively added. However, when two consecutive T-705 are incorporated, viral transcription is completely terminated. MD simulations reveal that the sequential appearance of two T-705 in the nascent strand destabilizes the active site and disrupts the base stacking of the nascent RNA. Altogether, our results provide a plausible explanation for the inhibitory roles of T-705 targeting IAV RdRp by integrating the computational and experimental methods. Our study also offers a comprehensive platform to investigate the inhibition effect of antivirals and a novel explanation for the designing of anti-flu drugs.
Collapse
Affiliation(s)
- Yuqing Wang
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China; Bioengineering Graduate Program, Department of Biological and Chemical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Congmin Yuan
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China; Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Xinzhou Xu
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China; Bioengineering Graduate Program, Department of Biological and Chemical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Tin Hang Chong
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China; Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Lu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peter Pak-Hang Cheung
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China; Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong; Li Ka Shing Institute of Health Sciences, Li Ka Shing Medical Sciences Building, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Xuhui Huang
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China; Bioengineering Graduate Program, Department of Biological and Chemical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong; Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong.
| |
Collapse
|
8
|
Yuan C, Goonetilleke EC, Unarta IC, Huang X. Incorporation efficiency and inhibition mechanism of 2'-substituted nucleotide analogs against SARS-CoV-2 RNA-dependent RNA polymerase. Phys Chem Chem Phys 2021; 23:20117-20128. [PMID: 34514487 DOI: 10.1039/d1cp03049c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ongoing pandemic caused by SARS-CoV-2 emphasizes the need for effective therapeutics. Inhibition of SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) by nucleotide analogs provides a promising antiviral strategy. One common group of RdRp inhibitors, 2'-modified nucleotides, are reported to exhibit different behaviors in the SARS-CoV-2 RdRp transcription assay. Three of these analogs, 2'-O-methyl UTP, Sofosbuvir, and 2'-methyl CTP, act as effective inhibitors in previous biochemical experiments, while Gemcitabine and ara-UTP show no inhibitory activity. To understand the impact of the 2'-modification on their inhibitory effects, we conducted extensive molecular dynamics simulations and relative binding free energy calculations using the free energy perturbation method on SARS-CoV-2 replication-transcription complex (RTC) with these five nucleotide analogs. Our results reveal that the five nucleotide analogs display comparable binding affinities to SARS-CoV-2 RdRp and they can all be added to the nascent RNA chain. Moreover, we examine how the incorporation of these nucleotide triphosphate (NTP) analogs will impact the addition of the next nucleotide. Our results indicate that 2'-O-methyl UTP can weaken the binding of the subsequent NTP and consequently lead to partial chain termination. Additionally, Sofosbuvir and 2'-methyl CTP can cause immediate termination due to the strong steric hindrance introduced by their bulky 2'-methyl groups. In contrast, nucleotide analogs with smaller substitutions, such as the fluorine atoms and the ara-hydroxyl group in Gemcitabine and ara-UTP, have a marginal impact on the polymerization process. Our findings are consistent with experimental observations, and more importantly, shed light on the detailed molecular mechanism of SARS-CoV-2 RdRp inhibition by 2'-substituted nucleotide analogs, and may facilitate the rational design of antiviral agents to inhibit SARS-CoV-2 RdRp.
Collapse
Affiliation(s)
- Congmin Yuan
- Department of Chemistry, Centre of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong. .,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong
| | - Eshani C Goonetilleke
- Department of Chemistry, Centre of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong. .,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong
| | - Ilona Christy Unarta
- Department of Chemistry, Centre of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong. .,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong
| | - Xuhui Huang
- Department of Chemistry, Centre of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong. .,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong
| |
Collapse
|
9
|
Spinello A, Borišek J, Pavlin M, Janoš P, Magistrato A. Computing Metal-Binding Proteins for Therapeutic Benefit. ChemMedChem 2021; 16:2034-2049. [PMID: 33740297 DOI: 10.1002/cmdc.202100109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 01/18/2023]
Abstract
Over one third of biomolecules rely on metal ions to exert their cellular functions. Metal ions can play a structural role by stabilizing the structure of biomolecules, a functional role by promoting a wide variety of biochemical reactions, and a regulatory role by acting as messengers upon binding to proteins regulating cellular metal-homeostasis. These diverse roles in biology ascribe critical implications to metal-binding proteins in the onset of many diseases. Hence, it is of utmost importance to exhaustively unlock the different mechanistic facets of metal-binding proteins and to harness this knowledge to rationally devise novel therapeutic strategies to prevent or cure pathological states associated with metal-dependent cellular dysfunctions. In this compendium, we illustrate how the use of a computational arsenal based on docking, classical, and quantum-classical molecular dynamics simulations can contribute to extricate the minutiae of the catalytic, transport, and inhibition mechanisms of metal-binding proteins at the atomic level. This knowledge represents a fertile ground and an essential prerequisite for selectively targeting metal-binding proteins with small-molecule inhibitors aiming to (i) abrogate deregulated metal-dependent (mis)functions or (ii) leverage metal-dyshomeostasis to selectively trigger harmful cells death.
Collapse
Affiliation(s)
- Angelo Spinello
- National Research Council of Italy (CNR)-, Institute of Materials (IOM) c/o International School for Advanced Studies (SISSA), via Bonomea 265, 34136, Trieste, Italy
| | - Jure Borišek
- National Institute of Chemistry Institution Hajdrihova ulica 19, 1000, Ljubljana, Slovenia
| | - Matic Pavlin
- Laboratory of Microsensor Structures and Electronics Faculty of Electrical Engineering, University of Ljubljana Tržaška cesta 25, 1000, Ljubljana, Slovenia
| | - Pavel Janoš
- National Research Council of Italy (CNR)-, Institute of Materials (IOM) c/o International School for Advanced Studies (SISSA), via Bonomea 265, 34136, Trieste, Italy
| | - Alessandra Magistrato
- National Research Council of Italy (CNR)-, Institute of Materials (IOM) c/o International School for Advanced Studies (SISSA), via Bonomea 265, 34136, Trieste, Italy
| |
Collapse
|
10
|
Borišek J, Magistrato A. An Expanded Two-Zn2+-Ion Motif Orchestrates Pre-mRNA Maturation in the 3′-End Processing Endonuclease Machinery. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jure Borišek
- National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Alessandra Magistrato
- CNR-IOM-Democritos National Simulation Center c/o SISSA, Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
11
|
Zhang L, Zhang D, Wang X, Yuan C, Li Y, Jia X, Gao X, Yen HL, Cheung PPH, Huang X. 1'-Ribose cyano substitution allows Remdesivir to effectively inhibit nucleotide addition and proofreading during SARS-CoV-2 viral RNA replication. Phys Chem Chem Phys 2021; 23:5852-5863. [PMID: 33688867 DOI: 10.1039/d0cp05948j] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
COVID-19 has recently caused a global health crisis and an effective interventional therapy is urgently needed. Remdesivir is one effective inhibitor for SARS-CoV-2 viral RNA replication. It supersedes other NTP analogues because it not only terminates the polymerization activity of RNA-dependent RNA polymerase (RdRp), but also inhibits the proofreading activity of intrinsic exoribonuclease (ExoN). Even though the static structure of Remdesivir binding to RdRp has been solved and biochemical experiments have suggested it to be a "delayed chain terminator", the underlying molecular mechanisms is not fully understood. Here, we performed all-atom molecular dynamics (MD) simulations with an accumulated simulation time of 24 microseconds to elucidate the inhibitory mechanism of Remdesivir on nucleotide addition and proofreading. We found that when Remdesivir locates at an upstream site in RdRp, the 1'-cyano group experiences electrostatic interactions with a salt bridge (Asp865-Lys593), which subsequently halts translocation. Our findings can supplement the current understanding of the delayed chain termination exerted by Remdesivir and provide an alternative molecular explanation about Remdesivir's inhibitory mechanism. Such inhibition also reduces the likelihood of Remdesivir to be cleaved by ExoN acting on 3'-terminal nucleotides. Furthermore, our study also suggests that Remdesivir's 1'-cyano group can disrupt the cleavage site of ExoN via steric interactions, leading to a further reduction in the cleavage efficiency. Our work provides plausible and novel mechanisms at the molecular level of how Remdesivir inhibits viral RNA replication, and our findings may guide rational design for new treatments of COVID-19 targeting viral replication.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Byléhn F, Menéndez CA, Perez-Lemus GR, Alvarado W, de Pablo JJ. Modeling the Binding Mechanism of Remdesivir, Favilavir, and Ribavirin to SARS-CoV-2 RNA-Dependent RNA Polymerase. ACS CENTRAL SCIENCE 2021; 7:164-174. [PMID: 33527086 PMCID: PMC7805600 DOI: 10.1021/acscentsci.0c01242] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Indexed: 05/05/2023]
Abstract
Recent efforts to repurpose drugs to combat COVID-19 have identified Remdesivir as a candidate. It acts on the RNA-dependent, RNA polymerase (RdRp) of the SARS-CoV-2 virus, a protein complex responsible for mediating replication of the virus's genome. However, its exact action mechanism, and that of other nucleotide analogue inhibitors, is not known. In this study, we examine at the molecular level the interaction of this drug and that of similar nucleotide analogue inhibitors, ribavirin and favilavir, by relying on atomistic molecular simulations and advanced sampling. By analyzing the binding free energies of these different drugs, it is found that all of them bind strongly at the active site. Surprisingly, however, ribavirin and favilavir do not bind the nucleotide on the complementary strand as effectively and seem to act by a different mechanism than remdesivir. Remdesivir exhibits similar binding interactions to the natural base adenine. Moreover, by analyzing remdesivir at downstream positions of the RNA, we also find that, consistent with a "delayed" termination mechanism, additional nucleotides can be incorporated after remdesivir is added, and its highly polar 1'-cyano group induces a set of conformational changes that can affect the normal RdRp complex function. By analyzing the fluctuations of residues that are altered by remdesivir binding, and comparing them to those induced by lethal point mutations, we find a possible secondary mechanism in which remdesivir destabilizes the protein complex and its interactions with the RNA strands.
Collapse
Affiliation(s)
- Fabian Byléhn
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United
States
| | - Cintia A. Menéndez
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United
States
| | - Gustavo R. Perez-Lemus
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United
States
| | - Walter Alvarado
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United
States
- Biophysical
Sciences, University of Chicago, 929 East 54th Street, Chicago, Illinois 60637, United States
| | - Juan J. de Pablo
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United
States
| |
Collapse
|
13
|
Borišek J, Casalino L, Saltalamacchia A, Mays SG, Malcovati L, Magistrato A. Atomic-Level Mechanism of Pre-mRNA Splicing in Health and Disease. Acc Chem Res 2021; 54:144-154. [PMID: 33317262 DOI: 10.1021/acs.accounts.0c00578] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Intron removal from premature-mRNA (pre-mRNA splicing) is an essential part of gene expression and regulation that is required for the production of mature, protein-coding mRNA. The spliceosome (SPL), a majestic machine composed of five small nuclear RNAs and hundreds of proteins, behaves as an eminent transcriptome tailor, efficiently performing splicing as a protein-directed metallo-ribozyme. To select and excise long and diverse intronic sequences with single-nucleotide precision, the SPL undergoes a continuous compositional and conformational remodeling, forming eight distinct complexes throughout each splicing cycle. Splicing fidelity is of paramount importance to preserve the integrity of the proteome. Mutations in splicing factors can severely compromise the accuracy of this machinery, leading to aberrant splicing and altered gene expression. Decades of biochemical and genetic studies have provided insights into the SPL's composition and function, but its complexity and plasticity have prevented an in-depth mechanistic understanding. Single-particle cryogenic electron microscopy techniques have ushered in a new era for comprehending eukaryotic gene regulation, providing several near-atomic resolution structures of the SPL from yeast and humans. Nevertheless, these structures represent isolated snapshots of the splicing process and are insufficient to exhaustively assess the function of each SPL component and to unravel particular facets of the splicing mechanism in a dynamic environment.In this Account, building upon our contributions in this field, we discuss the role of biomolecular simulations in uncovering the mechanistic intricacies of eukaryotic splicing in health and disease. Specifically, we showcase previous applications to illustrate the role of atomic-level simulations in elucidating the function of specific proteins involved in the architectural reorganization of the SPL along the splicing cycle. Moreover, molecular dynamics applications have uniquely contributed to decrypting the channels of communication required for critical functional transitions of the SPL assemblies. They have also shed light on the role of carcinogenic mutations in the faithful selection of key intronic regions and the molecular mechanism of splicing modulators. Additionally, we emphasize the role of quantum-classical molecular dynamics in unraveling the chemical details of pre-mRNA cleavage in the SPL and in its evolutionary ancestors, group II intron ribozymes. We discuss methodological pitfalls of multiscale calculations currently used to dissect the splicing mechanism, presenting future challenges in this field. The results highlight how atomic-level simulations can enrich the interpretation of experimental results. We envision that the synergy between computational and experimental approaches will aid in developing innovative therapeutic strategies and revolutionary gene modulation tools to fight the over 200 human diseases associated with splicing misregulation, including cancer and neurodegeneration.
Collapse
Affiliation(s)
- Jure Borišek
- Theory Department, National Institute of Chemistry, Ljubljana 1001, Slovenia
| | - Lorenzo Casalino
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | | | | | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy
- Department of Hematology, IRCCS S. Matteo Hospital Foundation, Pavia 27100, Italy
| | | |
Collapse
|
14
|
Palermo G, Spinello A, Saha A, Magistrato A. Frontiers of metal-coordinating drug design. Expert Opin Drug Discov 2020; 16:497-511. [PMID: 33874825 DOI: 10.1080/17460441.2021.1851188] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: The occurrence of metal ions in biomolecules is required to exert vital cellular functions. Metal-containing biomolecules can be modulated by small-molecule inhibitors targeting their metal-moiety. As well, the discovery of cisplatin ushered the rational discovery of metal-containing-drugs. The use of both drug types exploiting metal-ligand interactions is well established to treat distinct pathologies. Therefore, characterizing and leveraging metal-coordinating drugs is a pivotal, yet challenging, part of medicinal chemistry.Area covered: Atomic-level simulations are increasingly employed to overcome the challenges met by traditional drug-discovery approaches and to complement wet-lab experiments in elucidating the mechanisms of drugs' action. Multiscale simulations, allow deciphering the mechanism of metal-binding inhibitors and metallo-containing-drugs, enabling a reliable description of metal-complexes in their biological environment. In this compendium, the authors review selected applications exploiting the metal-ligand interactions by focusing on understanding the mechanism and design of (i) inhibitors targeting iron and zinc-enzymes, and (ii) ruthenium and gold-based anticancer agents targeting the nucleosome and aquaporin protein, respectively.Expert opinion: The showcased applications exemplify the current role and the potential of atomic-level simulations and reveal how their synergic use with experiments can contribute to uncover fundamental mechanistic facets and exploit metal-ligand interactions in medicinal chemistry.
Collapse
Affiliation(s)
- Giulia Palermo
- Department of Bioengineering and Department of Chemistry, University of California Riverside, Riverside, United States
| | - Angelo Spinello
- National Research Council (CNR) of Italy, Institute of Material (IOM) @ International School for Advanced Studies (SISSA), Trieste, Italy
| | - Aakash Saha
- Department of Bioengineering, University of California Riverside, Riverside, United States
| | - Alessandra Magistrato
- National Research Council (CNR) of Italy, Institute of Material (IOM) @ International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
15
|
Zhang L, Zhou R. Structural Basis of the Potential Binding Mechanism of Remdesivir to SARS-CoV-2 RNA-Dependent RNA Polymerase. J Phys Chem B 2020; 124:6955-6962. [PMID: 32521159 DOI: 10.20944/preprints202003.0267.v1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Starting from late 2019, the coronavirus disease 2019 (COVID-19) has emerged as a once-in-a-century pandemic with deadly consequences, which urgently calls for new treatments, cures, and supporting apparatuses. Recently, because of its positive results in clinical trials, remdesivir was approved by the Food and Drug Administration to treat COVID-19 through Emergency Use Authorization. Here, we used molecular dynamics simulations and free energy perturbation methods to study the inhibition mechanism of remdesivir to its target SARS-CoV-2 virus RNA-dependent RNA polymerase (RdRp). We first constructed the homology model of this polymerase based on a previously available structure of SARS-CoV NSP12 RdRp (with a sequence identity of 95.8%). We then built a putative preinsertion binding structure by aligning the remdesivir + RdRp complex to the ATP bound poliovirus RdRp without the RNA template. The putative binding structure was further optimized with molecular dynamics simulations. The resulting stable preinsertion state of remdesivir appeared to form hydrogen bonds with the RNA template when aligned with the newly solved cryo-EM structure of SARS-CoV-2 RdRp. The relative binding free energy between remdesivir and ATP was calculated to be -2.80 ± 0.84 kcal/mol, where remdesivir bound much stronger to SARS-CoV-2 RdRp than the natural substrate ATP. The ∼100-fold improvement in the Kd from remdesivir over ATP indicates an effective replacement of ATP in blocking of the RdRp preinsertion site. Key residues D618, S549, and R555 are found to be the contributors to the binding affinity of remdesivir. These findings suggest that remdesivir can potentially act as a SARS-CoV-2 RNA-chain terminator, effectively stopping its RNA replication, with key residues also identified for future lead optimization and/or drug resistance studies.
Collapse
Affiliation(s)
- Leili Zhang
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Ruhong Zhou
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
- Institute of Quantitative Biology, Zhejiang University, Hangzhou, 310027, China
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
16
|
Zhang L, Zhou R. Structural Basis of the Potential Binding Mechanism of Remdesivir to SARS-CoV-2 RNA-Dependent RNA Polymerase. J Phys Chem B 2020; 124:6955-6962. [PMID: 32521159 PMCID: PMC7309898 DOI: 10.1021/acs.jpcb.0c04198] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/05/2020] [Indexed: 01/18/2023]
Abstract
Starting from late 2019, the coronavirus disease 2019 (COVID-19) has emerged as a once-in-a-century pandemic with deadly consequences, which urgently calls for new treatments, cures, and supporting apparatuses. Recently, because of its positive results in clinical trials, remdesivir was approved by the Food and Drug Administration to treat COVID-19 through Emergency Use Authorization. Here, we used molecular dynamics simulations and free energy perturbation methods to study the inhibition mechanism of remdesivir to its target SARS-CoV-2 virus RNA-dependent RNA polymerase (RdRp). We first constructed the homology model of this polymerase based on a previously available structure of SARS-CoV NSP12 RdRp (with a sequence identity of 95.8%). We then built a putative preinsertion binding structure by aligning the remdesivir + RdRp complex to the ATP bound poliovirus RdRp without the RNA template. The putative binding structure was further optimized with molecular dynamics simulations. The resulting stable preinsertion state of remdesivir appeared to form hydrogen bonds with the RNA template when aligned with the newly solved cryo-EM structure of SARS-CoV-2 RdRp. The relative binding free energy between remdesivir and ATP was calculated to be -2.80 ± 0.84 kcal/mol, where remdesivir bound much stronger to SARS-CoV-2 RdRp than the natural substrate ATP. The ∼100-fold improvement in the Kd from remdesivir over ATP indicates an effective replacement of ATP in blocking of the RdRp preinsertion site. Key residues D618, S549, and R555 are found to be the contributors to the binding affinity of remdesivir. These findings suggest that remdesivir can potentially act as a SARS-CoV-2 RNA-chain terminator, effectively stopping its RNA replication, with key residues also identified for future lead optimization and/or drug resistance studies.
Collapse
Affiliation(s)
- Leili Zhang
- Computational Biology Center, IBM Thomas
J. Watson Research Center, Yorktown Heights, New York 10598,
United States
| | - Ruhong Zhou
- Computational Biology Center, IBM Thomas
J. Watson Research Center, Yorktown Heights, New York 10598,
United States
- Institute of Quantitative Biology,
Zhejiang University, Hangzhou, 310027,
China
- Department of Chemistry, Columbia
University, New York, New York 10027, United
States
| |
Collapse
|
17
|
Borišek J, Magistrato A. All-Atom Simulations Decrypt the Molecular Terms of RNA Catalysis in the Exon-Ligation Step of the Spliceosome. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00390] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jure Borišek
- National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Alessandra Magistrato
- CNR-IOM-Democritos national Simulation Center c/o SISSA, Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
18
|
Motsch S, Tremmel P, Richert C. Regioselective formation of RNA strands in the absence of magnesium ions. Nucleic Acids Res 2020; 48:1097-1107. [PMID: 31819977 PMCID: PMC7026634 DOI: 10.1093/nar/gkz1125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/08/2019] [Accepted: 11/18/2019] [Indexed: 11/28/2022] Open
Abstract
The oligomerization of ribonucleotides can produce short RNA strands in the absence of enzymes. This reaction gives one of two regioisomeric phosphodiester linkages, a 2',5'- or a 3',5'-diester. The former, non-natural linkage is detrimental for duplex stability, and is known to form preferentially in oligomerizations occurring in homogeneous solution with preactivated nucleotides in the presence of magnesium cations. We have studied ribonucleotide oligomerization with in situ activation, using NMR as monitoring technique. Unexpectedly, the known preference for 2',5'-linkages in the oligomerization of AMP was reversed in the absence of magnesium ions at slightly basic pH. Further, oligomerization was surprisingly efficient in the absence of Mg2+ salts, producing oligomers long enough for duplex formation. A quantitative systems chemistry analysis then revealed that the absence of magnesium ions favors the activation of nucleotides, and that the high concentration of active species can compensate for slower coupling. Further, organocatalytic intermediates can help to overcome the unfavorable regioselectivity of the magnesium-catalyzed reactions. Our findings allay concerns that RNA may have been difficult to form in the absence of enzymes. They also show that there is an efficient path to genetic material that does not require mineral surfaces or cations known to catalyze RNA hydrolysis.
Collapse
Affiliation(s)
- Sebastian Motsch
- Institute of Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Peter Tremmel
- Institute of Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Clemens Richert
- Institute of Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
19
|
Zou A, Lee S, Li J, Zhou R. Retained Stability of the RNA Structure in DNA Packaging Motor with a Single Mg2+ Ion Bound at the Double Mg-Clamp Structure. J Phys Chem B 2020; 124:701-707. [DOI: 10.1021/acs.jpcb.9b06428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Aodong Zou
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
- Institute of Quantitative Biology and Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Sangyun Lee
- Computational Biological Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Jingyuan Li
- Institute of Quantitative Biology and Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Ruhong Zhou
- Institute of Quantitative Biology and Department of Physics, Zhejiang University, Hangzhou 310027, China
- Computational Biological Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
20
|
Effects of Salt Stress on Growth, Photosynthesis, and Mineral Nutrients of 18 Pomegranate (Punica granatum) Cultivars. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy10010027] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pomegranate (Punica granatum L.) is widely grown in arid and semiarid regions, where the salinization may have developed through irrigation. A greenhouse experiment was conducted to investigate NaCl stress on growth, photosynthesis, and nutrients of 18 pomegranate cultivars. One group was irrigated twice a week with a nutrient solution. The other group was watered twice a week with the same nutrient solution and 200 mM NaCl for five weeks. Dry weight, shoot length, new shoot number, root length and number, leaf area, leaf relative water content, and net photosynthesis of salt-treated plants were negatively impacted by salt stress, and there was a significant difference among cultivars. Few foliar damages were observed. Na content of plants significantly increased in all cultivars, while P, S, K, Ca, Mg, Si, Al, Zn content of plants decreased under salt stress. Fe, Mn, and Cu content increased in most cultivars. Pomegranate accumulated supraoptimal Na mostly in roots and transported more K and Ca to shoots, which was attributed to maintaining a higher ratio of K/Na and Ca/Na in the aerial part of plants. Ten of the 18 cultivars were considered salt-tolerant, which would offer a reference for pomegranate cultivation on saline lands.
Collapse
|
21
|
Borišek J, Saltalamacchia A, Gallì A, Palermo G, Molteni E, Malcovati L, Magistrato A. Disclosing the Impact of Carcinogenic SF3b Mutations on Pre-mRNA Recognition Via All-Atom Simulations. Biomolecules 2019; 9:E633. [PMID: 31640290 PMCID: PMC6843770 DOI: 10.3390/biom9100633] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023] Open
Abstract
The spliceosome accurately promotes precursor messenger-RNA splicing by recognizing specific noncoding intronic tracts including the branch point sequence (BPS) and the 3'-splice-site (3'SS). Mutations of Hsh155 (yeast)/SF3B1 (human), which is a protein of the SF3b factor involved in BPS recognition and induces altered BPS binding and 3'SS selection, lead to mis-spliced mRNA transcripts. Although these mutations recur in hematologic malignancies, the mechanism by which they change gene expression remains unclear. In this study, multi-microsecond-long molecular-dynamics simulations of eighth distinct ∼700,000 atom models of the spliceosome Bact complex, and gene sequencing of SF3B1, disclose that these carcinogenic isoforms destabilize intron binding and/or affect the functional dynamics of Hsh155/SF3B1 only when binding non-consensus BPSs, as opposed to the non-pathogenic variants newly annotated here. This pinpoints a cross-talk between the distal Hsh155 mutation and BPS recognition sites. Our outcomes unprecedentedly contribute to elucidating the principles of pre-mRNA recognition, which provides critical insights on the mechanism underlying constitutive/alternative/aberrant splicing.
Collapse
Affiliation(s)
- Jure Borišek
- CNR-IOM-Democritos National Simulation Center c/o SISSA, 34136 Trieste, Italy.
- National Institute of Chemistry, 1000 Ljubljana, Slovenia.
| | | | - Anna Gallì
- Department of Hematology, IRCCS S. Matteo Hospital Foundation, 27100 Pavia, Italy.
| | - Giulia Palermo
- Department of Bioengineering, University of California Riverside, Riverside CA 92521, USA.
| | - Elisabetta Molteni
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
| | - Luca Malcovati
- Department of Hematology, IRCCS S. Matteo Hospital Foundation, 27100 Pavia, Italy.
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
| | | |
Collapse
|
22
|
Qasem Z, Pavlin M, Ritacco I, Gevorkyan-Airapetov L, Magistrato A, Ruthstein S. The pivotal role of MBD4–ATP7B in the human Cu(i) excretion path as revealed by EPR experiments and all-atom simulations. Metallomics 2019; 11:1288-1297. [DOI: 10.1039/c9mt00067d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Atox1–MBD4 interaction mediates the in-cell Cu(i) concentration.
Collapse
Affiliation(s)
- Zena Qasem
- Chemistry Department
- Faculty of Exact Sciences
- Bar-Ilan University
- Israel
| | | | | | | | | | - Sharon Ruthstein
- Chemistry Department
- Faculty of Exact Sciences
- Bar-Ilan University
- Israel
| |
Collapse
|
23
|
Kesherwani M, N H V K, Velmurugan D. Conformational Dynamics of thiM Riboswitch To Understand the Gene Regulation Mechanism Using Markov State Modeling and the Residual Fluctuation Network Approach. J Chem Inf Model 2018; 58:1638-1651. [PMID: 29939019 DOI: 10.1021/acs.jcim.8b00155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thiamine pyrophosphate (TPP) riboswitch is a cis-regulatory element in the noncoding region of mRNA. The aptamer domain of TPP riboswitch detects the high abundance of coenzyme thiamine pyrophosphate (TPP) and modulates the gene expression for thiamine synthetic gene. The mechanistic understanding in recognition of TPP in aptamer domain and ligand-induced compactness for folding of expression platform are most important to designing novel modulators. To understand the dynamic behavior of TPP riboswitch upon TPP binding, molecular dynamics simulations were performed for 400 ns in both apo and TPP bound forms of thiM riboswitch from E. coli and analyzed in terms of eRMSD-based Markov state modeling and residual fluctuation network. Markov state models show good correlations in transition probability among metastable states from simulated trajectory and generated models. Structural compactness in TPP bound form is observed which is correlated with SAXS experiment. The importance of junction of P4 and P5 is evident during dynamics, which correlates with FRET analysis. The dynamic nature of two sensor forearms is due to the flexible P1 helix, which is its intrinsic property. The transient state in TPP-bound form was observed in the Markov state model, along with stable states. We believe that this transient state is responsible to assist the influx and outflux of ligand molecule by creating a solvent channel around the junction region of P4 and P5 and such a structure was anticipated in FRET analysis. The dynamic nature of riboswitch is dependent on the interaction between residues on distal loops L3 and L5/P3 and junction P4 and P5, J3/2 which stabilize the J2/4. It helps in the transfer of allosteric information between J2/4 and P3/L5 tertiary docking region through the active site residues. Understanding such information flow will benefit in highlighting crucial residues in highly dynamic and kinetic systems. Here, we report the residues and segments in riboswitch that play vital roles in providing stability and this can be exploited in designing inhibitors to regulate the functioning of riboswitches.
Collapse
Affiliation(s)
- Manish Kesherwani
- Centre for Advanced Study in Crystallography and Biophysics , University of Madras, Guindy Campus , Chennai - 600025 India
| | - Kutumbarao N H V
- Centre for Advanced Study in Crystallography and Biophysics , University of Madras, Guindy Campus , Chennai - 600025 India
| | - Devadasan Velmurugan
- Centre for Advanced Study in Crystallography and Biophysics , University of Madras, Guindy Campus , Chennai - 600025 India
| |
Collapse
|
24
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
25
|
Casalino L, Palermo G, Abdurakhmonova N, Rothlisberger U, Magistrato A. Development of Site-Specific Mg(2+)-RNA Force Field Parameters: A Dream or Reality? Guidelines from Combined Molecular Dynamics and Quantum Mechanics Simulations. J Chem Theory Comput 2016; 13:340-352. [PMID: 28001405 DOI: 10.1021/acs.jctc.6b00905] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The vital contribution of Mg2+ ions to RNA biology is challenging to dissect at the experimental level. This calls for the integrative support of atomistic simulations, which at the classical level are plagued by limited accuracy. Indeed, force fields intrinsically neglect nontrivial electronic effects that Mg2+ exerts on its surrounding ligands in varying RNA coordination environments. Here, we present a combined computational study based on classical molecular dynamics (MD) and Density Functional Theory (DFT) calculations, aimed at characterizing (i) the performance of five Mg2+ force field (FF) models in RNA systems and (ii) how charge transfer and polarization affect the binding of Mg2+ ions in different coordination motifs. As a result, a total of ∼2.5 μs MD simulations (100/200 ns for each run) for two prototypical Mg2+-dependent ribozymes showed remarkable differences in terms of populations of inner-sphere coordination site types. Most importantly, complementary DFT calculations unveiled that differences in charge transfer and polarization among recurrent Mg2+-RNA coordination motifs are surprisingly small. In particular, the charge of the Mg2+ ions substantially remains constant through different coordination sites, suggesting that the common philosophy of developing site-specific Mg2+ ion parameters is not in line with the physical origin of the Mg2+-RNA MD simulations inaccuracies. Overall, this study constitutes a guideline for an adept use of current Mg2+ models and provides novel insights for the rational development of next-generation Mg2+ FFs to be employed for atomistic simulations of RNA.
Collapse
Affiliation(s)
- Lorenzo Casalino
- International School for Advanced Studies (SISSA) , Trieste, Italy
| | - Giulia Palermo
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | - Nodira Abdurakhmonova
- International School for Advanced Studies (SISSA) , Trieste, Italy.,Università degli Studi di Trieste , Trieste, Italy
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | - Alessandra Magistrato
- CNR-IOM-Democritos National Simulation Center c/o SISSA , via Bonomea 265, Trieste, Italy
| |
Collapse
|
26
|
Casalino L, Magistrato A. Structural, dynamical and catalytic interplay between Mg2+ ions and RNA. Vices and virtues of atomistic simulations. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Casalino L, Palermo G, Rothlisberger U, Magistrato A. Who Activates the Nucleophile in Ribozyme Catalysis? An Answer from the Splicing Mechanism of Group II Introns. J Am Chem Soc 2016; 138:10374-7. [DOI: 10.1021/jacs.6b01363] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Lorenzo Casalino
- International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste, Italy
| | - Giulia Palermo
- Laboratory
of Computational Chemistry and Biochemistry, Institute of Chemical
Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Ursula Rothlisberger
- Laboratory
of Computational Chemistry and Biochemistry, Institute of Chemical
Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Alessandra Magistrato
- CNR-IOM-Democritos
National Simulation Center c/o SISSA, via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
28
|
Sgrignani J, Magistrato A. QM/MM MD Simulations on the Enzymatic Pathway of the Human Flap Endonuclease (hFEN1) Elucidating Common Cleavage Pathways to RNase H Enzymes. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00178] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jacopo Sgrignani
- Institute of Research in Biomedicine (IRB), Via Vincenzo Vela, 6500 Bellinzona, Switzerland
| | - Alessandra Magistrato
- CNR-IOM-Democritos
National Simulation Center c/o International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
29
|
Estarellas C, Otyepka M, Koča J, Banáš P, Krepl M, Šponer J. Molecular dynamic simulations of protein/RNA complexes: CRISPR/Csy4 endoribonuclease. Biochim Biophys Acta Gen Subj 2014; 1850:1072-1090. [PMID: 25450173 DOI: 10.1016/j.bbagen.2014.10.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Many prokaryotic genomes comprise Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) offering defense against foreign nucleic acids. These immune systems are conditioned by the production of small CRISPR-derived RNAs matured from long RNA precursors. This often requires a Csy4 endoribonuclease cleaving the RNA 3'-end. METHODS We report extended explicit solvent molecular dynamic (MD) simulations of Csy4/RNA complex in precursor and product states, based on X-ray structures of product and inactivated precursor (55 simulations; ~3.7μs in total). RESULTS The simulations identify double-protonated His29 and deprotonated terminal phosphate as the likely dominant protonation states consistent with the product structure. We revealed potential substates consistent with Ser148 and His29 acting as the general base and acid, respectively. The Ser148 could be straightforwardly deprotonated through solvent and could without further structural rearrangements deprotonate the nucleophile, contrasting similar studies investigating the general base role of nucleobases in ribozymes. We could not locate geometries consistent with His29 acting as general base. However, we caution that the X-ray structures do not always capture the catalytically active geometries and then the reactive structures may be unreachable by the simulation technique. CONCLUSIONS We identified potential catalytic arrangement of the Csy4/RNA complex but we also report limitations of the simulation technique. Even for the dominant protonation state we could not achieve full agreement between the simulations and the structural data. GENERAL SIGNIFICANCE Potential catalytic arrangement of the Csy4/RNA complex is found. Further, we provide unique insights into limitations of simulations of protein/RNA complexes, namely, the influence of the starting experimental structures and force field limitations. This article is part of a Special Issue entitled Recent developments of molecular dynamics.
Collapse
Affiliation(s)
- Carolina Estarellas
- CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Jaroslav Koča
- CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Jiří Šponer
- CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic; Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic.
| |
Collapse
|
30
|
Vidossich P, Magistrato A. QM/MM molecular dynamics studies of metal binding proteins. Biomolecules 2014; 4:616-45. [PMID: 25006697 PMCID: PMC4192665 DOI: 10.3390/biom4030616] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 11/16/2022] Open
Abstract
Mixed quantum-classical (quantum mechanical/molecular mechanical (QM/MM)) simulations have strongly contributed to providing insights into the understanding of several structural and mechanistic aspects of biological molecules. They played a particularly important role in metal binding proteins, where the electronic effects of transition metals have to be explicitly taken into account for the correct representation of the underlying biochemical process. In this review, after a brief description of the basic concepts of the QM/MM method, we provide an overview of its capabilities using selected examples taken from our work. Specifically, we will focus on heme peroxidases, metallo-β-lactamases, α-synuclein and ligase ribozymes to show how this approach is capable of describing the catalytic and/or structural role played by transition (Fe, Zn or Cu) and main group (Mg) metals. Applications will reveal how metal ions influence the formation and reduction of high redox intermediates in catalytic cycles and enhance drug metabolism, amyloidogenic aggregate formation and nucleic acid synthesis. In turn, it will become manifest that the protein frame directs and modulates the properties and reactivity of the metal ions.
Collapse
Affiliation(s)
- Pietro Vidossich
- Department of Chemistry, Autonomous University of Barcelona, 08193 Cerdanyola del Vallés, Spain.
| | - Alessandra Magistrato
- CNR-IOM-Democritos National Simulation Center c/o, International School for Advanced Studies (SISSA/ISAS), via Bonomea 265, 34165 Trieste, Italy.
| |
Collapse
|
31
|
Xiao S, Klein ML, LeBard DN, Levine BG, Liang H, MacDermaid CM, Alfonso-Prieto M. Magnesium-Dependent RNA Binding to the PA Endonuclease Domain of the Avian Influenza Polymerase. J Phys Chem B 2014; 118:873-89. [DOI: 10.1021/jp408383g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shiyan Xiao
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Michael L. Klein
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - David N. LeBard
- Department of Chemistry, Yeshiva University, New York, New York 10033, United States
| | - Benjamin G. Levine
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Haojun Liang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Christopher M. MacDermaid
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Mercedes Alfonso-Prieto
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
32
|
Nakano M, Tateishi-Karimata H, Tanaka S, Sugimoto N. Choline ion interactions with DNA atoms explain unique stabilization of A-T base pairs in DNA duplexes: a microscopic view. J Phys Chem B 2013; 118:379-89. [PMID: 24171395 DOI: 10.1021/jp406647b] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Under physiological conditions, G-C base pairs are more stable than A-T base pairs. In a previous study, we showed that in the hydrated ionic liquid of choline dihydrogen phosphate, the stabilities of these base pairs are reversed. In the present study, we elucidated the unique binding interactions of choline ions with DNA atoms from a microscopic viewpoint using molecular dynamics simulations. Three times more choline ions bind to the DNA duplex than sodium ions. Sodium ions bind closely but not stably; in contrast, the choline ions bind through multiple hydrogen bonding networks with DNA atoms stably. The affinity of choline ion for the minor groove of A-T base pairs is more than 2 times that for other groove areas. In the narrow A-T minor groove, choline ion has high affinity for the ribose atoms of thymine. Choline ions also destabilize the formation of hydrogen bonds between G-C base pairs by binding to base atoms preferentially for both of duplex and single-strand DNA, which are associated with the bonds between G-C base pairs. Our new finding will not only lead to better control of DNA stability for use in DNA nanodevices, but also provide new insight into the stability of DNA duplexes under crowding conditions found in living cells.
Collapse
Affiliation(s)
- Miki Nakano
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University , 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | | | | | | |
Collapse
|
33
|
Bergonzo C, Galindo-Murillo R, Cheatham TE. Molecular modeling of nucleic acid structure: energy and sampling. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2013; 54:7.8.1-7.8.21. [PMID: 24510800 DOI: 10.1002/0471142700.nc0708s54] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An overview of computer simulation techniques as applied to nucleic acid systems is presented. This unit discusses methods used to treat energy and to sample representative configurations. Emphasis is placed on molecular mechanics and empirical force fields.
Collapse
Affiliation(s)
- Christina Bergonzo
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah
| | - Rodrigo Galindo-Murillo
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah
| | - Thomas E Cheatham
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah
| |
Collapse
|
34
|
Maláč K, Barvík I. Complex between Human RNase HI and the phosphonate-DNA/RNA duplex: Molecular dynamics study. J Mol Graph Model 2013; 44:81-90. [DOI: 10.1016/j.jmgm.2013.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 04/30/2013] [Accepted: 05/05/2013] [Indexed: 10/26/2022]
|
35
|
Maláč K, Barvík I. Substrate recognition by norovirus polymerase: microsecond molecular dynamics study. J Comput Aided Mol Des 2013; 27:373-88. [PMID: 23619980 DOI: 10.1007/s10822-013-9652-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 04/18/2013] [Indexed: 01/02/2023]
Abstract
Molecular dynamics simulations of complexes between Norwalk virus RNA dependent RNA polymerase and its natural CTP and 2dCTP (both containing the O5'-C5'-C4'-O4' sequence of atoms bridging the triphosphate and sugar moiety) or modified coCTP (C5'-O5'-C4'-O4'), cocCTP (C5'-O5'-C4'-C4'') substrates were produced by means of CUDA programmable graphical processing units and the ACEMD software package. It enabled us to gain microsecond MD trajectories clearly showing that similar nucleoside triphosphates can bind surprisingly differently into the active site of the Norwalk virus RNA dependent RNA polymerase. It corresponds to their different modes of action (CTP-substrate, 2dCTP-poor substrate, coCTP-chain terminator, cocCTP-inhibitor). Moreover, extremely rare events-as repetitive pervasion of Arg182 into a potentially reaction promoting arrangement-were captured.
Collapse
Affiliation(s)
- Kamil Maláč
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Ke Karlovu 5, Prague 2, 121 16, Czech Republic
| | | |
Collapse
|
36
|
Lu SY, Huang ZM, Huang WK, Liu XY, Chen YY, Shi T, Zhang J. How calcium inhibits the magnesium-dependent kinase gsk3β: a molecular simulation study. Proteins 2013. [PMID: 23184735 DOI: 10.1002/prot.24221] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glycogen synthase kinase 3β (GSK3β) is a ubiquitous serine/threonine kinase that plays a pivotal role in many biological processes. GSK3β catalyzes the transfer of γ-phosphate of ATP to the unique substrate Ser/Thr residues with the assistance of two natural activating cofactors Mg(2+). Interestingly, the biological observation reveals that a non-native Ca(2+) ion can inhibit the GSK3β catalytic activity. Here, the inhibitory mechanism of GSK3β by the displacement of native Mg(2+) at site 1 by Ca(2+) was investigated by means of 80 ns comparative molecular dynamics (MD) simulations of the GSK3β···Mg(2+)-2/ATP/Mg(2+) -1 and GSK3β···Mg(2+)-2/ATP/Ca(2+)-1 systems. MD simulation results revealed that using the AMBER point charge model force field for Mg(2+) was more appropriate in the reproduction of the active site architectural characteristics of GSK3β than using the magnesium-cationic dummy atom model force field. Compared with the native Mg(2+) bound system, the misalignment of the critical triphosphate moiety of ATP, the erroneous coordination environments around the Mg(2+) ion at site 2, and the rupture of the key hydrogen bond between the invariant Lys85 and the ATP O(β2) atom in the Ca(2+) substituted system were observed in the MD simulation due to the Ca(2+) ion in active site in order to achieve its preferred sevenfold coordination geometry, which adequately abolish the enzymatic activity. The obtained results are valuable in understanding the possible mechanism by why Ca(2+) inhibits the GSK3β activity and also provide insights into the mechanism of Ca(2+) inhibition in other structurally related protein kinases.
Collapse
Affiliation(s)
- Shao-Yong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Beššeová I, Banáš P, Kührová P, Košinová P, Otyepka M, Šponer J. Simulations of A-RNA Duplexes. The Effect of Sequence, Solute Force Field, Water Model, and Salt Concentration. J Phys Chem B 2012; 116:9899-916. [DOI: 10.1021/jp3014817] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ivana Beššeová
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
| | - Pavel Banáš
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
- Regional Centre of Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacky University, tr. 17
listopadu 12, 771 46, Olomouc, Czech Republic
| | - Petra Kührová
- Regional Centre of Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacky University, tr. 17
listopadu 12, 771 46, Olomouc, Czech Republic
| | - Pavlína Košinová
- Regional Centre of Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacky University, tr. 17
listopadu 12, 771 46, Olomouc, Czech Republic
| | - Michal Otyepka
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
- Regional Centre of Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacky University, tr. 17
listopadu 12, 771 46, Olomouc, Czech Republic
| | - Jiří Šponer
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Campus Bohunice, Kamenice
5, 625 00 Brno, Czech Republic
| |
Collapse
|
38
|
Giambaşu GM, Lee TS, Scott WG, York DM. Mapping L1 ligase ribozyme conformational switch. J Mol Biol 2012; 423:106-22. [PMID: 22771572 DOI: 10.1016/j.jmb.2012.06.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/21/2012] [Accepted: 06/25/2012] [Indexed: 01/10/2023]
Abstract
L1 ligase (L1L) molecular switch is an in vitro optimized synthetic allosteric ribozyme that catalyzes the regioselective formation of a 5'-to-3' phosphodiester bond, a reaction for which there is no known naturally occurring RNA catalyst. L1L serves as a proof of principle that RNA can catalyze a critical reaction for prebiotic RNA self-replication according to the RNA world hypothesis. L1L crystal structure captures two distinct conformations that differ by a reorientation of one of the stems by around 80Å and are presumed to correspond to the active and inactive state, respectively. It is of great interest to understand the nature of these two states in solution and the pathway for their interconversion. In this study, we use explicit solvent molecular simulation together with a novel enhanced sampling method that utilizes concepts from network theory to map out the conformational transition between active and inactive states of L1L. We find that the overall switching mechanism can be described as a three-state/two-step process. The first step involves a large-amplitude swing that reorients stem C. The second step involves the allosteric activation of the catalytic site through distant contacts with stem C. Using a conformational space network representation of the L1L switch transition, it is shown that the connection between the three states follows different topographical patterns: the stem C swing step passes through a narrow region of the conformational space network, whereas the allosteric activation step covers a much wider region and a more diverse set of pathways through the network.
Collapse
Affiliation(s)
- George M Giambaşu
- BioMaPS Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
39
|
Sgrignani J, Magistrato A. Influence of the Membrane Lipophilic Environment on the Structure and on the Substrate Access/Egress Routes of the Human Aromatase Enzyme. A Computational Study. J Chem Inf Model 2012; 52:1595-606. [DOI: 10.1021/ci300151h] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jacopo Sgrignani
- CNR-IOM-Democritos National Simulation Center c/o International Studies for Advanced Studies (SISSA/ISAS), via Bonomea 265, 34165 Trieste
(TS), Italy
| | - Alessandra Magistrato
- CNR-IOM-Democritos National Simulation Center c/o International Studies for Advanced Studies (SISSA/ISAS), via Bonomea 265, 34165 Trieste
(TS), Italy
| |
Collapse
|
40
|
Bowman JC, Lenz TK, Hud NV, Williams LD. Cations in charge: magnesium ions in RNA folding and catalysis. Curr Opin Struct Biol 2012; 22:262-72. [PMID: 22595008 DOI: 10.1016/j.sbi.2012.04.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 04/24/2012] [Accepted: 04/24/2012] [Indexed: 12/22/2022]
Affiliation(s)
- Jessica C Bowman
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Center for Ribosomal Origins and Evolution, Georgia Institute of Technology, Atlanta, GA 30332-0400, United States
| | | | | | | |
Collapse
|
41
|
Sgrignani J, Magistrato A, Dal Peraro M, Vila AJ, Carloni P, Pierattelli R. On the active site of mononuclear B1 metallo β-lactamases: a computational study. J Comput Aided Mol Des 2012; 26:425-35. [PMID: 22532071 DOI: 10.1007/s10822-012-9571-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/09/2012] [Indexed: 11/28/2022]
Abstract
Metallo-β-lactamases (MβLs) are Zn(II)-based bacterial enzymes that hydrolyze β-lactam antibiotics, hampering their beneficial effects. In the most relevant subclass (B1), X-ray crystallography studies on the enzyme from Bacillus Cereus point to either two zinc ions in two metal sites (the so-called '3H' and 'DCH' sites) or a single Zn(II) ion in the 3H site, where the ion is coordinated by Asp120, Cys221 and His263 residues. However, spectroscopic studies on the B1 enzyme from B. Cereus in the mono-zinc form suggested the presence of the Zn(II) ion also in the DCH site, where it is bound to an aspartate, a cysteine, a histidine and a water molecule. A structural model of this enzyme in its DCH mononuclear form, so far lacking, is therefore required for inhibitor design and mechanistic studies. By using force field based and mixed quantum-classical (QM/MM) molecular dynamics (MD) simulations of the protein in aqueous solution we constructed such structural model. The geometry and the H-bond network at the catalytic site of this model, in the free form and in complex with two common β-lactam drugs, is compared with experimental and theoretical findings of CphA and the recently solved crystal structure of new B2 MβL from Serratia fonticola (Sfh-I). These are MβLs from the B2 subclass, which features an experimentally well established mono-zinc form, in which the Zn(II) is located in the DCH site. From our simulations the εεδ and δεδ protomers emerge as possible DCH mono-zinc reactive species, giving a novel contribution to the discussion on the MβL reactivity and to the drug design process.
Collapse
Affiliation(s)
- Jacopo Sgrignani
- CERM and Department of Chemistry Ugo Schiff, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | | | | | | | | | | |
Collapse
|