1
|
Vardar US, Konings G, Yang J, Sagis LMC, Bitter JH, Nikiforidis CV. Modifying the interfacial dynamics of oleosome (lipid droplet) membrane using curcumin. J Colloid Interface Sci 2025; 678:1077-1086. [PMID: 39341139 DOI: 10.1016/j.jcis.2024.09.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024]
Abstract
Cells store energy in lipid droplets, known as oleosomes, which have a neutral lipid core surrounded by a dilatable membrane of phospholipids and proteins. Oleosomes can be loaded with therapeutic lipophilic cargos through their permeable membrane and used as carriers. However, the cargo can also adsorb between the phospholipids and affect the membrane properties. In the present work, we investigated the effect of adsorbed curcumin on the mechanical properties of oleosome membranes using dilatational interfacial rheology (LAOD). The oleosome membrane had a weak-stretchable behavior, while the adsorption of curcumin led to stronger in-plane interactions, which were dependent on curcumin concentration and indicated a glassy-like structure. Our findings showed that adsorbed curcumin molecules can enhance the molecular interactions on the oleosome membrane. This behavior suggests that oleosomes membranes can be modulated by loaded cargo. Understanding cargo and membrane interactions can help to design oleosome-based formulations with tailored mechanical properties for applications.
Collapse
Affiliation(s)
- Umay Sevgi Vardar
- Laboratory of Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Gijs Konings
- Laboratory of Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Jack Yang
- Laboratory of Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands; Laboratory of Physics and Physical Chemistry of Foods, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Leonard M C Sagis
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Johannes H Bitter
- Laboratory of Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Constantinos V Nikiforidis
- Laboratory of Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| |
Collapse
|
2
|
Shimoyamada M, Masuda H, Matsuno M, Murakami K, Egusa S. Viscosity of evaporated soymilk prepared in the laboratory using normal and 11S-lacking soybean seeds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3822-3829. [PMID: 36273264 DOI: 10.1002/jsfa.12288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Soymilk is utilized not only as a beverage but also as an alternative to bovine milk, including products such as yoghurt and cream. Evaporated soymilk is expected to be utilized as condensed milk. Raw and heated soymilk samples prepared in our laboratory were evaporated and then subjected to viscosity measurement. The soymilk samples were made from two different varieties: Fukuyutaka, which contains 7S and 11S globulin proteins; and an 11S-lacking soybean (Nanahomare). RESULTS Raw Fukuyutaka soymilk had a lower viscosity and could be concentrated to a solids content of over 300 g kg-1 compared to heated soymilk (around 250 g kg-1 ), but the viscosity changes of Nanahomare soymilk showed an opposite trend. Only 7S globulin was denatured during evaporation at 75 °C and likely affected the interaction between proteins and oil bodies. This tendency was remarkable in the Nanahomare soymilk. The strange viscosity change behavior of evaporated Nanahomare soymilk, number of protein particles, intrinsic fluorescence and flow behavior suggest that thermally denatured 7S globulin accelerates the interactions between oil bodies, whereas 11S globulin, which is probably in its native state, suppresses the acceleration by denatured 7S globulin. CONCLUSION Raw soymilk containing native globulins shows a slower increase in viscosity during evaporation. However, denatured 7S globulin accelerates the increase in viscosity during evaporation through interactions between oil bodies. The effect of the denatured state of individual proteins on interactions is expected to be useful in understanding the interaction between proteins and in controlling their properties and functions. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Makoto Shimoyamada
- Laboratory of Food Engineering, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hayato Masuda
- Food Technology Section, Industrial Research Institute of Shizuoka Prefecture, Shizuoka, Japan
| | - Masayuki Matsuno
- Food Technology Section, Industrial Research Institute of Shizuoka Prefecture, Shizuoka, Japan
| | - Kazuya Murakami
- Laboratory of Food Engineering, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | | |
Collapse
|
3
|
Yang N, Zhang Y, Su C, Zhu C, Jia J, Nishinari K. The effect of sodium alginate on the nanomechanical properties and interaction between oil body droplets studied using atomic force microscopy. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
4
|
Decker EA, Villeneuve P. Impact of processing on the oxidative stability of oil bodies. Crit Rev Food Sci Nutr 2023; 64:6001-6015. [PMID: 36600584 DOI: 10.1080/10408398.2022.2160963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Plant lipids are stored as emulsified lipid droplets also called lipid bodies, spherosomes, oleosomes or oil bodies. Oil bodies are found in many seeds such as cereals, legumes, or in microorganisms such as microalgae, bacteria or yeast. Oil Bodies are unique subcellular organelles with sizes ranging from 0.2 to 2.5 μm and are made of a triacylglycerols hydrophobic core that is surrounded by a unique monolayer membrane made of phospholipids and anchored proteins. Due to their unique properties, in particular their resistance to coalescence and aggregation, oil bodies have an interest in food formulations as they can constitute natural emulsified systems that does not need the addition of external emulsifier. This manuscript focuses on how extraction processes and other factors impact the oxidative stability of isolated oil bodies. The potential role of oil bodies in the oxidative stability of intact foods is also discussed. In particular, we discuss how constitutive components of oil bodies membranes are associated in a strong network that may have an antioxidant effect either by physical phenomenon or by chemical reactivities. Moreover, the importance of the selected process to extract oil bodies is discussed in terms of oxidative stability of the recovered oil bodies.
Collapse
Affiliation(s)
- Eric A Decker
- Department of Food Science, University of Massachusetts, Chenoweth Laboratory, Amherst, Massachusetts, USA
| | - Pierre Villeneuve
- CIRAD, UMR Qualisud, Montpellier, France
- Qualisud, Univ. Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| |
Collapse
|
5
|
Tunable oleosome-based oleogels: Influence of polysaccharide type for polymer bridging-based structuring. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Şen A, Acevedo-Fani A, Dave A, Ye A, Husny J, Singh H. Plant oil bodies and their membrane components: new natural materials for food applications. Crit Rev Food Sci Nutr 2022; 64:256-279. [PMID: 35917117 DOI: 10.1080/10408398.2022.2105808] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Plants store triacylglycerols in the form of oil bodies (OBs) as an energy source for germination and subsequent seedling growth. The interfacial biomaterials from these OBs are called OB membrane materials (OBMMs) and have several applications in foods, e.g., as emulsifiers. OBMMs are preferred, compared with their synthetic counterparts, in food applications as emulsifiers because they are natural, i.e., suitable for clean label, and may stabilize bioactive components during storage. This review focuses mainly on the extraction technologies for plant OBMMs, the functionality of these materials, and the interaction of OB membranes with other food components. Different sources of OBs are evaluated and the challenges during the extraction and use of these OBMMs for food applications are addressed.
Collapse
Affiliation(s)
- Aylin Şen
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | | | - Anant Dave
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Aiqian Ye
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | | | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
7
|
Zaeim D, Liu W, Han J, Wilde PJ. Effect of non-starch polysaccharides on the in vitro gastric digestion of soy-based milk alternatives. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Yang J, Berton-Carabin CC, Nikiforidis CV, van der Linden E, Sagis LM. Competition of rapeseed proteins and oleosomes for the air-water interface and its effect on the foaming properties of protein-oleosome mixtures. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Air-water interfacial behaviour of whey protein and rapeseed oleosome mixtures. J Colloid Interface Sci 2021; 602:207-221. [PMID: 34119758 DOI: 10.1016/j.jcis.2021.05.172] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/13/2021] [Accepted: 05/28/2021] [Indexed: 11/23/2022]
Abstract
HYPOTHESIS Plant seeds store lipids in oleosomes, which are storage organelles with a triacylglycerol (TAG) core surrounded by a phospholipid monolayer and proteins. Due to their membrane components, oleosomes have an affinity for the air/oil-water interface. Therefore, it is expected that oleosomes can stabilise interfaces, and also compete with proteins for the air-water interface. EXPERIMENTS We mixed rapeseed oleosomes with whey protein isolate (WPI), and evaluated their air-water interfacial properties by interfacial rheology and microstructure imaging. To understand the contribution of the oleosome components to the interfacial properties, oleosome membrane components (phospholipids and membrane proteins) or rapeseed lecithin (phospholipids) were also mixed with WPI. FINDINGS Oleosomes were found to disrupt after adsorption, and formed TAG/phospholipid-rich regions with membrane fragments at the interface, forming a weak and mobile interfacial layer. Mixing oleosomes with WPI resulted in an interface with TAG/phospholipid-rich regions surrounded by whey protein clusters. Membrane components or lecithin mixed with proteins also resulted in an interface where WPI molecules aggregated into small WPI domains, surrounded by a continuous phase of membrane components or phospholipids. We also observed an increase in stiffness of the interfacial layer, due to the presence of oleosome membrane proteins at the interface.
Collapse
|
10
|
Kergomard J, Paboeuf G, Barouh N, Villeneuve P, Schafer O, Wooster TJ, Bourlieu C, Vié V. Stability to oxidation and interfacial behavior at the air/water interface of minimally-processed versus processed walnut oil-bodies. Food Chem 2021; 360:129880. [PMID: 33989883 DOI: 10.1016/j.foodchem.2021.129880] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 01/12/2023]
Abstract
Oil bodies (OB), the form of triacylglycerol storage in seeds, are interesting natural assemblies for nutritional applications. In walnuts, OB contain an important amount of polyunsaturated fatty acids that could be interesting food ingredients but may be prone to oxidation. The oxidative and interfacial behavior of walnut OB, either minimally-processed or after processing, were compared with processed complex walnut juice. The good oxidative stability of minimally-processed OB over 10 days (PV ≤ 8.4 meq O2/kg, TBARS = 1.4 mmol eq MDA/kg) and of processed walnut complex matrixes over 20 days (PV ≤ 4.8 meq O2/kg, TBARS = 1.4 mmol eq MDA/kg) was evidenced. In comparison, processing of OB promoted their oxidation. The interfacial studies led to the proposition of a new model of adsorption for minimally-processed OB that will be useful to design functional emulsion or foam in which OB act as emulsifiers.
Collapse
Affiliation(s)
- Jeanne Kergomard
- IPR Institute of Physics, UMR UR1 CNRS 5261, Rennes 1 University, France; IATE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France; QUALISUD, Univ Montpellier, CIRAD, Institut Agro, IRD, Univ Réunion, Montpellier, France
| | - Gilles Paboeuf
- IPR Institute of Physics, UMR UR1 CNRS 5261, Rennes 1 University, France; Univ Rennes 1, CNRS, ScanMAT - UMS 2001 F-35042 Rennes, France
| | - Nathalie Barouh
- QUALISUD, Univ Montpellier, CIRAD, Institut Agro, IRD, Univ Réunion, Montpellier, France
| | - Pierre Villeneuve
- QUALISUD, Univ Montpellier, CIRAD, Institut Agro, IRD, Univ Réunion, Montpellier, France
| | - Olivier Schafer
- Institute of Materials Science, Nestlé Research, Lausanne, Switzerland
| | - Tim J Wooster
- Institute of Materials Science, Nestlé Research, Lausanne, Switzerland
| | - Claire Bourlieu
- IATE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Véronique Vié
- IPR Institute of Physics, UMR UR1 CNRS 5261, Rennes 1 University, France; Univ Rennes 1, CNRS, ScanMAT - UMS 2001 F-35042 Rennes, France.
| |
Collapse
|
11
|
Foams and air-water interfaces stabilised by mildly purified rapeseed proteins after defatting. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106270] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Combinational effects of acid and salt addition on colloidal, interfacial, and emulsifying properties of purified soybean oil bodies. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Abdullah, Weiss J, Zhang H. Recent advances in the composition, extraction and food applications of plant-derived oleosomes. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Pham AC, Peng KY, Salim M, Ramirez G, Hawley A, Clulow AJ, Boyd BJ. Correlating Digestion-Driven Self-Assembly in Milk and Infant Formulas with Changes in Lipid Composition. ACS APPLIED BIO MATERIALS 2020; 3:3087-3098. [PMID: 32455340 PMCID: PMC7241073 DOI: 10.1021/acsabm.0c00131] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/16/2020] [Indexed: 11/29/2022]
Abstract
![]()
Lipids in mammalian
milks such as bovine milk and human breast
milk have been shown to self-assemble into various liquid crystalline
materials during digestion. In this study, the direct correlation
between the composition of the lipids from three types of mammalian
milk, three brands of infant formulas (IFs), and soy milk and the
liquid crystalline structures that form during their digestion was
investigated to link the material properties to the composition. The
self-assembly behavior was assessed using in vitro digestion coupled with in situ small-angle X-ray
scattering (SAXS). Lipid composition was determined during in vitro digestion using ex situ liquid
chromatography–mass spectrometry. All tested milks self-assembled
into ordered structures during digestion, with the majority of milks
displaying nonlamellar phases. Milks that released mostly long-chain
fatty acids (>95 mol % of the top 10 fatty acids released) with
more
than 47 mol % unsaturation predominantly formed a micellar cubic phase
during digestion. Other milks released relatively more medium-chain
fatty acids and medium-chain monoglycerides and produced a range of
ordered liquid crystalline structures including the micellar cubic
phase, the hexagonal phase, and the bicontinuous cubic phase. One
infant formula did not form liquid crystalline structures at all as
a consequence of differences in fatty acid distributions. The self-assembly
phenomenon provides a powerful discriminator between different classes
of nutrition and a roadmap for the design of human milklike systems
and is anticipated to have important implications for nutrient transport
and the delivery of bioactives.
Collapse
Affiliation(s)
- Anna C Pham
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | - Kang-Yu Peng
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | - Malinda Salim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | - Gisela Ramirez
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | - Adrian Hawley
- SAXS/WAXS Beamline, Australian Synchrotron, ANSTO, Clayton, VIC 3168, Australia
| | - Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| |
Collapse
|
15
|
Zhang Y, Yang N, Xu Y, Wang Q, Huang P, Nishinari K, Fang Y. Improving the Stability of Oil Body Emulsions from Diverse Plant Seeds Using Sodium Alginate. Molecules 2019; 24:E3856. [PMID: 31731553 PMCID: PMC6864775 DOI: 10.3390/molecules24213856] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 11/16/2022] Open
Abstract
In this study, peanut, sesame, and rapeseed oil bodies (OBs) were extracted by the aqueous medium method. The surface protein composition, microstructure, average particle size d 4 , 3 , ζ-potential of the extracted OBs in aqueous emulsion were characterized. The stability of the OB emulsions was investigated. It was found that different OB emulsions contained different types and contents of endogenous and exogenous proteins. Aggregation at low pHs (<6) and creaming at high pHs (7 and 8) both occurred for all of three OB emulsions. Sodium alginate (ALG) was used to solve the instability of OB emulsions under different conditions-low concentration of ALG improved the stability of OB emulsions below and near the isoelectric point of the OBs, through electrostatic interaction. While a high concentration of ALG improved the OB emulsion stability through the viscosity effect at pH 7. The OB emulsions stabilized by ALG were salt-tolerant and freeze-thaw resistant.
Collapse
Affiliation(s)
- Yuemei Zhang
- Glyn O. Phillips Hydrocolloid Research Centre, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China; (Y.Z.); (Y.X.); (Q.W.); (P.H.); (K.N.); (Y.F.)
| | - Nan Yang
- Glyn O. Phillips Hydrocolloid Research Centre, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China; (Y.Z.); (Y.X.); (Q.W.); (P.H.); (K.N.); (Y.F.)
- Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Yao Xu
- Glyn O. Phillips Hydrocolloid Research Centre, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China; (Y.Z.); (Y.X.); (Q.W.); (P.H.); (K.N.); (Y.F.)
| | - Qian Wang
- Glyn O. Phillips Hydrocolloid Research Centre, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China; (Y.Z.); (Y.X.); (Q.W.); (P.H.); (K.N.); (Y.F.)
| | - Ping Huang
- Glyn O. Phillips Hydrocolloid Research Centre, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China; (Y.Z.); (Y.X.); (Q.W.); (P.H.); (K.N.); (Y.F.)
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China; (Y.Z.); (Y.X.); (Q.W.); (P.H.); (K.N.); (Y.F.)
- Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Yapeng Fang
- Glyn O. Phillips Hydrocolloid Research Centre, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China; (Y.Z.); (Y.X.); (Q.W.); (P.H.); (K.N.); (Y.F.)
- Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
16
|
|
17
|
Karefyllakis D, Jan van der Goot A, Nikiforidis CV. The behaviour of sunflower oleosomes at the interfaces. SOFT MATTER 2019; 15:4639-4646. [PMID: 31144697 DOI: 10.1039/c9sm00352e] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Oleosomes are particles equipped with a sophisticated membrane, comprising a continuous monolayer of phospholipids and hydrophobic proteins, which covers the triglyceride core and grants them extreme physical and chemical stability. The noteworthy qualities of oleosomes have attracted strong interest for their incorporation in emulsion formulations; however, little is known about their emulsifying properties and their behaviour on interfaces. For these reasons, oleosomes were isolated from sunflower seeds (96.2 wt% oil, 3.1 wt% protein) and used as an emulsifier for the stabilization of O/W and W/O interfaces. In both cases, oleosomes showed high interfacial and emulsifying activity. Individual oleosome particles had a broad size distribution from 0.4 to 10.0 μm and it was observed that the membrane of the larger oleosomes (>1-5 μm) was disrupted and its fractions participated in the newly formed interface. Oleosomes with a smaller diameter (<1 μm) seemed to have survived the applied mild emulsification step as a great number of them could be observed both in the bulk of the emulsions and on the interface of the emulsion droplets. This phenomenon was more pronounced for the W/O interface where oleosomes were absorbed intact in a manner similar to a Pickering mechanism. However, when the triglycerides were removed from the core of oleosomes in order to focus more on the effect of the membrane, the remaining material formed sub-micron spherical particles, which clearly acted as Pickering stabilisers. These findings showcase the intriguing behaviour of oleosomes upon emulsification, especially the crucial role of their membrane. The study demonstrates relevance for applications where immiscible liquid phases are present.
Collapse
|
18
|
Zielbauer BI, Jackson AJ, Maurer S, Waschatko G, Ghebremedhin M, Rogers SE, Heenan RK, Porcar L, Vilgis TA. Soybean oleosomes studied by small angle neutron scattering (SANS). J Colloid Interface Sci 2018; 529:197-204. [PMID: 29894938 DOI: 10.1016/j.jcis.2018.05.080] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 11/29/2022]
Abstract
HYPOTHESIS Oleosomes are stabilized by a complex outer phospholipid-protein-layer. To improve understanding of its structure and stabilization mechanism, this shell has to be studied in extracellular native conditions. This should be possible by SANS using contrast variation. Oleosomes are expected to be highly temperature stable, with molecular changes occurring first in the protein shell. Direct measurements of changes in the shell structure are also important for processing methods, e.g. encapsulation. EXPERIMENTS Extracted soybean oleosomes were studied directly and after encapsulation with pectin by SANS using contrast variation. In order to determine structure and size, a shell model of oleosomes was developed. The method was tested against a simple phospholipid-stabilized emulsion. The oleosomes' temperature stability was investigated by performing SANS at elevated temperatures. FINDINGS Size (Rg = 1380 Å) and shell thickness of native and encapsulated oleosomes have been determined. This is the first report measuring the shell thickness of oleosomes directly. For native oleosomes, a shell of 9 nm thickness surrounds the oil core, corresponding to a layer of phospholipids and proteins. Up to 90 °C, no structural change was observed, confirming the oleosomes' high temperature stability. Successful coavervation of oleosomes was shown by an increase in shell thickness of 10 nm after electrostatic deposition of pectin.
Collapse
Affiliation(s)
- Birgitta I Zielbauer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Andrew J Jackson
- European Spallation Source, Box 176, Lund 221 00, Sweden; Physical Chemistry, Lund University, Box 124, Lund 221 00, Sweden.
| | - Sania Maurer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Gustav Waschatko
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Marta Ghebremedhin
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Sarah E Rogers
- ISIS Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom.
| | - Richard K Heenan
- ISIS Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom.
| | | | - Thomas A Vilgis
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
19
|
Idogawa S, Abe N, Abe K, Fujii T. Effect of Oleosins on the Stability of Oil Bodies in Soymilk. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Shiori Idogawa
- Taishi Food Inc
- Graduate School of Agricultural Science, Tohoku University
| | - Naoki Abe
- Graduate School of Agricultural Science, Tohoku University
| | - Keietsu Abe
- Graduate School of Agricultural Science, Tohoku University
| | - Tomoyuki Fujii
- Graduate School of Agricultural Science, Tohoku University
| |
Collapse
|
20
|
Liu L, Yu X, Zhao Z, Xu L, Zhang R. Efficient salt-aided aqueous extraction of bitter almond oil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:3814-3821. [PMID: 28150418 DOI: 10.1002/jsfa.8245] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/03/2017] [Accepted: 01/30/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND Salt-aided aqueous extraction (SAAE) is an inexpensive and environmentally friendly method of oil extraction that is influenced by many factors. In the present study, we investigated the effect of SAAE on bitter almond oil yield. RESULTS This study used sodium bicarbonate solution as extraction solvent and the optimal extraction parameters predicted by Box-Behnken design (i.e., concentration of sodium bicarbonate, 0.4 mol L-1 ; solvent-to-sample ratio, 5:1; extraction temperature, 84 °C; extraction time, 60 min), for oil recovery of 90.9%. The physiochemical characteristics of the extracted oil suggest that the quality was similar to that of the aqueous enzymatic extracted oil. Moreover, the content of hydrocyanic acid (HCN) in bitter almond oil was found to be less than 5 mg kg-1 , which was lower compared to that obtained by other reported methods. Results of microanalysis indicated that SAAE led to significant improvement in oil yield by allowing the release of oil and decreasing the emulsion fraction. Therefore, extraction of bitter almond oil by SAAE is feasible. CONCLUSION These results demonstrate that extraction of bitter almond oil by SAAE based on the salt effect is feasible on a laboratory scale. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lei Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiuzhu Yu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhong Zhao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Lirong Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Rui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
21
|
Ishii T, Matsumiya K, Nambu Y, Samoto M, Yanagisawa M, Matsumura Y. Interfacial and emulsifying properties of crude and purified soybean oil bodies. FOOD STRUCTURE-NETHERLANDS 2017. [DOI: 10.1016/j.foostr.2016.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Matsumura Y, Sirison J, Ishi T, Matsumiya K. Soybean lipophilic proteins — Origin and functional properties as affected by interaction with storage proteins. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
Masuda R. Control of the Colloidal Behavior of Soymilk and Production of New Soymilk Materials. J JPN SOC FOOD SCI 2017. [DOI: 10.3136/nskkk.64.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ryoichi Masuda
- Institute of Crop Science, National Agriculture and Food Research Organization
| |
Collapse
|
24
|
Waschatko G, Billecke N, Schwendy S, Jaurich H, Bonn M, Vilgis TA, Parekh SH. Label-free in situ imaging of oil body dynamics and chemistry in germination. J R Soc Interface 2016; 13:20160677. [PMID: 27798279 PMCID: PMC5095225 DOI: 10.1098/rsif.2016.0677] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/28/2016] [Indexed: 02/06/2023] Open
Abstract
Plant oleosomes are uniquely emulsified lipid reservoirs that serve as the primary energy source during seed germination. These oil bodies undergo significant changes regarding their size, composition and structure during normal seedling development; however, a detailed characterization of these oil body dynamics, which critically affect oil body extractability and nutritional value, has remained challenging because of a limited ability to monitor oil body location and composition during germination in situ Here, we demonstrate via in situ, label-free imaging that oil bodies are highly dynamic intracellular organelles that are morphologically and biochemically remodelled extensively during germination. Label-free, coherent Raman microscopy (CRM) combined with bulk biochemical measurements revealed the temporal and spatial regulation of oil bodies in native soya bean cotyledons during the first eight days of germination. Oil bodies undergo a cycle of growth and shrinkage that is paralleled by lipid and protein compositional changes. Specifically, the total protein concentration associated with oil bodies increases in the first phase of germination and subsequently decreases. Lipids contained within the oil bodies change in saturation and chain length during germination. Our results show that CRM is a well-suited platform to monitor in situ lipid dynamics and local chemistry and that oil bodies are actively remodelled during germination. This underscores the dynamic role of lipid reservoirs in plant development.
Collapse
Affiliation(s)
- Gustav Waschatko
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz, Germany
| | - Nils Billecke
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz, Germany
| | - Sascha Schwendy
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz, Germany
| | - Henriette Jaurich
- Department of Polymer Theory, Max Planck Institute for Polymer Research, Mainz, Germany
| | - Mischa Bonn
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz, Germany
| | - Thomas A Vilgis
- Department of Polymer Theory, Max Planck Institute for Polymer Research, Mainz, Germany
| | - Sapun H Parekh
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz, Germany
| |
Collapse
|
25
|
Vilgis TA. Soft matter food physics--the physics of food and cooking. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:124602. [PMID: 26534781 DOI: 10.1088/0034-4885/78/12/124602] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This review discusses the (soft matter) physics of food. Although food is generally not considered as a typical model system for fundamental (soft matter) physics, a number of basic principles can be found in the interplay between the basic components of foods, water, oil/fat, proteins and carbohydrates. The review starts with the introduction and behavior of food-relevant molecules and discusses food-relevant properties and applications from their fundamental (multiscale) behavior. Typical food aspects from 'hard matter systems', such as chocolates or crystalline fats, to 'soft matter' in emulsions, dough, pasta and meat are covered and can be explained on a molecular basis. An important conclusion is the point that the macroscopic properties and the perception are defined by the molecular interplay on all length and time scales.
Collapse
Affiliation(s)
- Thomas A Vilgis
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55129 Mainz, Germany
| |
Collapse
|
26
|
Abe N, Wu CY, Kim YK, Fujii T, Abe K. Development of an efficient soymilk cream production method by papain digestion, heat treatment, and low-speed centrifugation. Biosci Biotechnol Biochem 2015; 79:1890-2. [DOI: 10.1080/09168451.2015.1050990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
We developed the simple method of soymilk cream production from the high-fat soymilk, which was prepared by papain digestion and heat treatment. As a result of the treatment, high-fat soymilk was aggregated and it became possible to separate soymilk cream as the surface fraction by low-speed centrifugation (6000 × g, 10 min).
Collapse
Affiliation(s)
- Naoki Abe
- Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Chang-Yu Wu
- Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yoon-Kyung Kim
- Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tomoyuki Fujii
- Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Keietsu Abe
- Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
27
|
Development of a novel strategy to isolate lipophilic allergens (oleosins) from peanuts. PLoS One 2015; 10:e0123419. [PMID: 25860789 PMCID: PMC4393030 DOI: 10.1371/journal.pone.0123419] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/23/2015] [Indexed: 11/24/2022] Open
Abstract
Background Peanut allergy is one of the most severe class I food allergies with increasing prevalence. Especially lipophilic allergens, such as oleosins, were found to be associated with severe symptoms, but are usually underrepresented in diagnostic extracts. Therefore, this study focused on isolation, molecular characterization and assessment of the allergenicity of peanut oleosins. Methods and Results A comprehensive method adapted for the isolation of peanut oil bodies of high purity was developed comprising a stepwise removal of seed storage proteins from oil bodies. Further separation of the oil body constituents, including the allergens Ara h 10, Ara h 11, the presumed allergen oleosin 3 and additional oleosin variants was achieved by a single run on a preparative electrophoresis cell. Protein identification realized by N-terminal sequencing, peptide mass fingerprinting and homology search revealed the presence of oleosins, steroleosins and a caleosin. Immunoblot analysis with sera of peanut-allergic individuals illustrated the IgE-binding capacity of peanut-derived oleosins. Conclusion Our method is a novel way to isolate all known immunologically distinct peanut oleosins simultaneously. Moreover, we were able to provide evidence for the allergenicity of oleosins and thus identified peanut oleosins as probable candidates for component-resolved allergy diagnosis.
Collapse
|
28
|
Bettini S, Santino A, Giancane G, Valli L. Reconstituted oil bodies characterization at the air/water and at the air/oil/water interfaces. Colloids Surf B Biointerfaces 2014; 122:12-18. [DOI: 10.1016/j.colsurfb.2014.06.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 06/19/2014] [Accepted: 06/22/2014] [Indexed: 11/16/2022]
|
29
|
Chen Y, Cao Y, Zhao L, Kong X, Hua Y. Macronutrients and Micronutrients of Soybean Oil Bodies Extracted at Different pH. J Food Sci 2014; 79:C1285-91. [DOI: 10.1111/1750-3841.12516] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 03/19/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Yeming Chen
- State Key Laboratory of Food Science and Technology; Synergetic Innovation Center of Food Safety and Nutrition; School of Food Science and Technology, Jiangnan Univ; 1800 Lihu Avenue Wuxi Jiangsu Province 214122 PR China
| | - Yanyun Cao
- State Key Laboratory of Food Science and Technology; Synergetic Innovation Center of Food Safety and Nutrition; School of Food Science and Technology, Jiangnan Univ; 1800 Lihu Avenue Wuxi Jiangsu Province 214122 PR China
| | - Luping Zhao
- State Key Laboratory of Food Science and Technology; Synergetic Innovation Center of Food Safety and Nutrition; School of Food Science and Technology, Jiangnan Univ; 1800 Lihu Avenue Wuxi Jiangsu Province 214122 PR China
| | - Xiangzhen Kong
- State Key Laboratory of Food Science and Technology; Synergetic Innovation Center of Food Safety and Nutrition; School of Food Science and Technology, Jiangnan Univ; 1800 Lihu Avenue Wuxi Jiangsu Province 214122 PR China
| | - Yufei Hua
- State Key Laboratory of Food Science and Technology; Synergetic Innovation Center of Food Safety and Nutrition; School of Food Science and Technology, Jiangnan Univ; 1800 Lihu Avenue Wuxi Jiangsu Province 214122 PR China
| |
Collapse
|
30
|
Chen Y, Zhao L, Kong X, Zhang C, Hua Y. The properties and the related protein behaviors of oil bodies in soymilk preparation. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2239-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Maurer S, Waschatko G, Schach D, Zielbauer BI, Dahl J, Weidner T, Bonn M, Vilgis TA. The role of intact oleosin for stabilization and function of oleosomes. J Phys Chem B 2013; 117:13872-83. [PMID: 24088014 DOI: 10.1021/jp403893n] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lipid storage in plants is achieved among all plant species by formation of oleosomes, enclosing oil (triacylglycerides) in small subcellular droplets. Seeds are rich in this pre-emulsified oil to provide a sufficient energy reservoir for growing. The triacylglyceride core of the oleosomes is surrounded by a phospholipid monolayer containing densely packed proteins called oleosins. They are anchored in the triacylglycerides core with a hydrophobic domain, while the hydrophilic termini remain on the surface. These specialized proteins are expressed during seed development and maturation. Particularly, they play a major role in the stabilization and function of oleosomes. To better understand the importance of oleosins for oleosome stabilization, enzymatic digestion of oleosins was performed. This made it possible to compare and correlate changes in the molecular structure of oleosins and changing macroscopic properties of oleosomes. Tryptic digestion cleaves the hydrophilic part of the oleosins, which is accompanied by a loss of secondary structures as evidenced by Fourier-transform infrared and sum frequency generation spectra. After digestion, the ability of oleosins to stabilize oil-water or air-water interfaces was lost. The surface charge and the associated aggregation behavior of oleosomes are governed by interactions typical of proteins before digestion and by interactions typical of phospholipids after digestion.
Collapse
Affiliation(s)
- Sania Maurer
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhao L, Chen Y, Cao Y, Kong X, Hua Y. The integral and extrinsic bioactive proteins in the aqueous extracted soybean oil bodies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:9727-33. [PMID: 24028278 DOI: 10.1021/jf403327e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Soybean oil bodies (OBs), naturally pre-emulsified soybean oil, have been examined by many researchers owing to their great potential utilizations in food, cosmetics, pharmaceutical, and other applications requiring stable oil-in-water emulsions. This study was the first time to confirm that lectin, Gly m Bd 28K (Bd 28K, one soybean allergenic protein), Kunitz trypsin inhibitor (KTI), and Bowman-Birk inhibitor (BBI) were not contained in the extracted soybean OBs even by neutral pH aqueous extraction. It was clarified that the well-known Gly m Bd 30K (Bd 30K), another soybean allergenic protein, was strongly bound to soybean OBs through a disulfide bond with 24 kDa oleosin. One steroleosin isoform (41 kDa) and two caleosin isoforms (27 kDa, 29 kDa), the integral bioactive proteins, were confirmed for the first time in soybean OBs, and a considerable amount of calcium, necessary for the biological activities of caleosin, was strongly bound to OBs. Unexpectedly, it was found that 24 kDa and 18 kDa oleosins could be hydrolyzed by an unknown soybean endoprotease in the extracted soybean OBs, which might give some hints for improving the enzyme-assisted aqueous extraction processing of soybean free oil.
Collapse
Affiliation(s)
- Luping Zhao
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University , 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People's Republic of China
| | | | | | | | | |
Collapse
|