1
|
Stirk AJ, Holmes ST, Souza FES, Hung I, Gan Z, Britten JF, Rey AW, Schurko RW. An unusual ionic cocrystal of ponatinib hydrochloride: characterization by single-crystal X-ray diffraction and ultra-high field NMR spectroscopy. CrystEngComm 2024; 26:1219-1233. [PMID: 38419975 PMCID: PMC10897533 DOI: 10.1039/d3ce01062g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
This study describes the discovery of a unique ionic cocrystal of the active pharmaceutical ingredient (API) ponatinib hydrochloride (pon·HCl), and characterization using single-crystal X-ray diffraction (SCXRD) and solid-state NMR (SSNMR) spectroscopy. Pon·HCl is a multicomponent crystal that features an unusual stoichiometry, with an asymmetric unit containing both monocations and dications of the ponatinib molecule, three water molecules, and three chloride ions. Structural features include (i) a charged imidazopyridazine moiety that forms a hydrogen bond between the ponatinib monocations and dications and (ii) a chloride ion that does not feature hydrogen bonds involving any organic moiety, instead being situated in a "square" arrangement with three water molecules. Multinuclear SSNMR, featuring high and ultra-high fields up to 35.2 T, provides the groundwork for structural interpretation of complex multicomponent crystals in the absence of diffraction data. A 13C CP/MAS spectrum confirms the presence of two crystallographically distinct ponatinib molecules, whereas 1D 1H and 2D 1H-1H DQ-SQ spectra identify and assign the unusually deshielded imidazopyridazine proton. 1D 35Cl spectra obtained at multiple fields confirm the presence of three distinct chloride ions, with density functional theory calculations providing key relationships between the SSNMR spectra and H⋯Cl- hydrogen bonding arrangements. A 2D 35Cl → 1H D-RINEPT spectrum confirms the spatial proximities between the chloride ions, water molecules, and amine moieties. This all suggests future application of multinuclear SSNMR at high and ultra-high fields to the study of complex API solid forms for which SCXRD data are unavailable, with potential application to heterogeneous mixtures or amorphous solid dispersions.
Collapse
Affiliation(s)
| | - Sean T Holmes
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | | | - Ivan Hung
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Zhehong Gan
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - James F Britten
- MAX Diffraction Facility, McMaster University Hamilton ON L8S 4M1 Canada
| | - Allan W Rey
- Apotex Pharmachem Inc. Brantford ON N3T 6B8 Canada
| | - Robert W Schurko
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| |
Collapse
|
2
|
Holmes ST, Vojvodin CS, Veinberg N, Iacobelli EM, Hirsh DA, Schurko RW. Hydrates of active pharmaceutical ingredients: A 35Cl and 2H solid-state NMR and DFT study. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 122:101837. [PMID: 36434925 DOI: 10.1016/j.ssnmr.2022.101837] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/19/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
This study uses 35Cl and 2H solid-state NMR (SSNMR) spectroscopy and dispersion-corrected plane-wave density functional theory (DFT) calculations to characterize the molecular-level structures and dynamics of hydrates of active pharmaceutical ingredients (APIs). We use 35Cl SSNMR to measure the EFG tensors of the chloride ions to characterize hydrated forms of hydrochloride salts of APIs, along with two corresponding anhydrous forms. DFT calculations are used to refine the crystal structures of the APIs and determine relationships between the 35Cl EFG tensors and the spatial arrangements of proximate hydrogen bonds, which are particularly influenced by interactions with water molecules. We find that the relationship between 35Cl EFG tensors and local hydrogen bonding geometries is complex, but meaningful structure/property relationships can be garnered through use of DFT calculations. Specifically, for every case in which such a comparison could be made, we find that the hydrate has a smaller magnitude of CQ than the corresponding anhydrous form, indicating a chloride ion environment with a ground-state electron density of higher spherical symmetry in the former. Finally, variable-temperature 35Cl and 2H SSNMR experiments on a deuterium-exchanged sample of the API cimetidine hydrochloride monohydrate are used to monitor temperature-dependent influences on the spectra that may arise from motional influences on the 35Cl and 2H EFG tensors. From the 2H SSNMR spectra, we determine that the motions of water molecules are characterized by jump-like motions about their C2 rotational axes that occur on timescales that are unlikely to influence the 35Cl central-transition (+1/2 ↔︎ -1/2) powder patterns (this is confirmed by 35Cl SSNMR). Together, these methods show great promise for the future study of APIs in their bulk and dosage forms, especially variable hydrates in which crystallographic water content varies with external conditions such as humidity.
Collapse
Affiliation(s)
- Sean T Holmes
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, 32306, USA; National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
| | - Cameron S Vojvodin
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, 32306, USA; National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
| | - Natan Veinberg
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, USA
| | - Emilia M Iacobelli
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, USA
| | - David A Hirsh
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, USA
| | - Robert W Schurko
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, 32306, USA; National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA.
| |
Collapse
|
3
|
Du Y, Su Y. 19F Solid-state NMR characterization of pharmaceutical solids. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 120:101796. [PMID: 35688018 DOI: 10.1016/j.ssnmr.2022.101796] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Solid-state NMR has been increasingly recognized as a high-resolution and versatile spectroscopic tool to characterize drug substances and products. However, the analysis of pharmaceutical materials is often carried out at natural isotopic abundance and a relatively low drug loading in multi-component systems and therefore suffers from challenges of low sensitivity. The fact that fluorinated therapeutics are well represented in pipeline drugs and commercial products offers an excellent opportunity to utilize fluorine as a molecular probe for pharmaceutical analysis. We aim to review recent advancements of 19F magic angle spinning NMR methods in modern drug research and development. Applications to polymorph screening at the micromolar level, structural elucidation, and investigation of molecular interactions at the Ångström to submicron resolution in drug delivery, stability, and quality will be discussed.
Collapse
Affiliation(s)
- Yong Du
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, United States; Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, IN, 47907, United States; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, United States; Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT, 06269, United States.
| |
Collapse
|
4
|
Dey KK, Deshmukh MM, Ghosh M. A Description of the Local Structure and Dynamics of Ketoconazole Molecule by Solid‐State NMR Measurements and DFT Calculations: Proposition for NMR Crystallography. ChemistrySelect 2021. [DOI: 10.1002/slct.202102622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Krishna Kishor Dey
- Department of Physics Dr. Harisingh Gour Central University Sagar 470003, Madhya-Pradesh India
| | - Milind M. Deshmukh
- Department of Chemistry Dr. Harisingh Gour Central University Sagar 470003, Madhya-Pradesh India
| | - Manasi Ghosh
- Physics Section MMV Banaras Hindu University Varanasi 221005, Uttar-Pradesh India
| |
Collapse
|
5
|
Quinn CM, Zadorozhnyi R, Struppe J, Sergeyev IV, Gronenborn AM, Polenova T. Fast 19F Magic-Angle Spinning Nuclear Magnetic Resonance for the Structural Characterization of Active Pharmaceutical Ingredients in Blockbuster Drugs. Anal Chem 2021; 93:13029-13037. [PMID: 34517697 DOI: 10.1021/acs.analchem.1c02917] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fluorinated drugs occupy a large and growing share of the pharmaceutical market. Here, we explore high-frequency, 60 to 111 kHz, 19F magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy for the structural characterization of fluorinated active pharmaceutical ingredients in commercial formulations of seven blockbuster drugs: Celebrex, Cipro, Crestor, Levaquin, Lipitor, Prozac, and Zyvox. 19F signals can be observed in a single scan, and spectra with high signal-to-noise ratios can be acquired in minutes. 19F spectral parameters, such as chemical shifts and line widths, are sensitive to both the nature of the fluorine moiety and the formulation. We anticipate that the fast 19F MAS NMR-based approach presented here will be valuable for the rapid analysis of fluorine-containing drugs in a wide variety of formulations.
Collapse
Affiliation(s)
- Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Roman Zadorozhnyi
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Ivan V Sergeyev
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Angela M Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States.,Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, Pennsylvania 15261, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
6
|
Dey K, Lodhi L, Ghosh M. Study of the Variation of the Electronic Distribution and Motional Dynamics of Two Independent Molecules of an Asymmetric Unit of Atorvastatin Calcium by Solid-State NMR Measurements. ACS OMEGA 2021; 6:22752-22764. [PMID: 34514246 PMCID: PMC8427786 DOI: 10.1021/acsomega.1c03095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Significant changes in the spin-lattice time and chemical shift anisotropy (CSA) parameters are observed in two independent molecules of an asymmetric unit of atorvastatin calcium (ATC-I) (which is referred to as "a"- and "b"-type molecules by following Wang et al.). The longitudinal magnetization decay curve is fitted by two exponentials-one with longer relaxation time and another with shorter relaxation time for most of the carbon nuclei sites. The local correlation time also varies significantly. This is the experimental evidence of the coexistence of two different kinds of motional degrees of freedom within ATC-I molecule. The solubility and bioavailability of the drug molecule are enhanced due to the existence of two different kinds of dynamics. Hence, the macroscopic properties like solubility and bioavailability of a drug molecule are highly correlated with its microscopic properties. The motional degrees of freedom of "a"- and "b"-type molecules are also varied remarkably at certain carbon nuclei sites. This is the first time the change in the molecular dynamics of two independent molecules of an asymmetric unit of atorvastatin calcium is quantified using solid-state NMR methodology. These types of studies, in which the chemical shift anisotropy (CSA) parameters and spin-lattice relaxation time provide information about the change in electronic distribution and the spin dynamics at the various crystallographic location of the drug molecule, will enrich the field "NMR crystallography". It will also help us to understand the electronic distribution around a nucleus and the nuclear spin dynamics at various parts of the molecule, which is essential to develop the strategies for the administration of the drug.
Collapse
Affiliation(s)
- Krishna
Kishor Dey
- Department
of Physics, Dr. Harisingh Gour Central University, Sagar 470003, Madhya Pradesh, India
| | - Lekhan Lodhi
- Department
of Zoology, Dr. Harisingh Gour Central University, Sagar 470003, Madhya Pradesh, India
| | - Manasi Ghosh
- Physics
Section, Mahila Maha Vidyalaya, Banaras
Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
7
|
Alnajjar R, Mohamed N, Kawafi N. Bicyclo[1.1.1]Pentane as Phenyl Substituent in Atorvastatin Drug to improve Physicochemical Properties: Drug-likeness, DFT, Pharmacokinetics, Docking, and Molecular Dynamic Simulation. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Holmes ST, Vojvodin CS, Schurko RW. Dispersion-Corrected DFT Methods for Applications in Nuclear Magnetic Resonance Crystallography. J Phys Chem A 2020; 124:10312-10323. [DOI: 10.1021/acs.jpca.0c06372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sean T. Holmes
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Cameron S. Vojvodin
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Robert W. Schurko
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| |
Collapse
|
9
|
Bai S, Quinn CM, Holmes ST, Dybowski C. High-resolution 13 C and 43 Ca solid-state NMR and computational studies of the ethylene glycol solvate of atorvastatin calcium. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:1010-1017. [PMID: 31469449 DOI: 10.1002/mrc.4937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
We report 43 Ca and 13 C solid-state nuclear magnetic resonance (NMR) spectroscopic studies of the ethylene glycol solvate of atorvastatin calcium. The 13 C and 43 Ca chemical shift and 43 Ca quadrupolar coupling tensor parameters are reported. The results are interpreted in terms of the reported X-ray diffraction crystal structure of the solvate and are compared with the NMR parameters of atorvastatin calcium trihydrate, the active pharmaceutical ingredient in Lipitor®. Hartree-Fock and density functional theory calculations of the NMR parameters based on a cluster model derived from the optimized X-ray diffraction crystal structure of the ethylene glycol solvate of atorvastatin calcium are in reasonable agreement with the experimental 43 Ca and 13 C NMR measurables.
Collapse
Affiliation(s)
- Shi Bai
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Sean T Holmes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Cecil Dybowski
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| |
Collapse
|
10
|
Hodgkinson P. NMR crystallography of molecular organics. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 118-119:10-53. [PMID: 32883448 DOI: 10.1016/j.pnmrs.2020.03.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/25/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
Developments of NMR methodology to characterise the structures of molecular organic structures are reviewed, concentrating on the previous decade of research in which density functional theory-based calculations of NMR parameters in periodic solids have become widespread. With a focus on demonstrating the new structural insights provided, it is shown how "NMR crystallography" has been used in a spectrum of applications from resolving ambiguities in diffraction-derived structures (such as hydrogen atom positioning) to deriving complete structures in the absence of diffraction data. As well as comprehensively reviewing applications, the different aspects of the experimental and computational techniques used in NMR crystallography are surveyed. NMR crystallography is seen to be a rapidly maturing subject area that is increasingly appreciated by the wider crystallographic community.
Collapse
Affiliation(s)
- Paul Hodgkinson
- Department of Chemistry, Durham University, Stockton Road, Durham DH1 3LE, UK.
| |
Collapse
|
11
|
Lu X, Li M, Huang C, Lowinger MB, Xu W, Yu L, Byrn SR, Templeton AC, Su Y. Atomic-Level Drug Substance and Polymer Interaction in Posaconazole Amorphous Solid Dispersion from Solid-State NMR. Mol Pharm 2020; 17:2585-2598. [DOI: 10.1021/acs.molpharmaceut.0c00268] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xingyu Lu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Mingyue Li
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Chengbin Huang
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Michael B. Lowinger
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Lian Yu
- School of Pharmacy and Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53705, United States
| | - Stephen R. Byrn
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, Indiana 47907, United States
| | - Allen C. Templeton
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, Indiana 47907, United States
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
12
|
Tizaoui C, Galai H, Barrio M, Clevers S, Couvrat N, Dupray V, Coquerel G, Tamarit JL, Rietveld IB. Does the trihydrate of atorvastatin calcium possess a melting point? Eur J Pharm Sci 2020; 148:105334. [PMID: 32259678 DOI: 10.1016/j.ejps.2020.105334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022]
Abstract
To decide whether an active pharmaceutical ingredient can be used in its amorphous form in drug formulations, often the glass transition is studied in relation to the melting point of the pharmaceutical. If the glass transition temperature is high enough and found relatively close to the melting point, the pharmaceutical is considered to be a good glass former. However, it is obviously important that the observed melting point and glass transition involve exactly the same system, otherwise the two temperatures cannot be compared. Although this may seem trivial, in the case of hydrates, where water may leave the system on heating, the composition of the system may not be evident. Atorvastatin calcium is a case in point, where confusing terminology, absence of a proper anhydrate form, and loss of water on heating lead to several doubtful conclusions in the literature. However, considering that no anhydrate crystal has ever been observed and that the glass transition of the anhydrous system is found at 144 °C, it can be concluded that if the system is kept isolated from water, the chances that atorvastatin calcium crystallises at room temperature is negligible. The paper discusses the various thermal effects of atorvastatin calcium on heating and proposes a tentative binary phase diagram with water.
Collapse
Affiliation(s)
- Chaima Tizaoui
- SMS Laboratory (EA 3233), Université de Rouen-Normandie, Place Émile Blondel, Mont Saint Aignan 76821, France; Laboratory of Materials, Treatment and Analysis (LMTA), National Institute of Research and Physical-chemical Analysis, Technopark of Sidi-Thabet, Ariana 2020, Tunisia; Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna Bizerte 7021, Tunisia
| | - Haykel Galai
- Laboratory of Materials, Treatment and Analysis (LMTA), National Institute of Research and Physical-chemical Analysis, Technopark of Sidi-Thabet, Ariana 2020, Tunisia
| | - Maria Barrio
- Grup de Caracterització de Materials, Departament de Física and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, Catalonia, Barcelona E-08019, Spain
| | - Simon Clevers
- SMS Laboratory (EA 3233), Université de Rouen-Normandie, Place Émile Blondel, Mont Saint Aignan 76821, France
| | - Nicolas Couvrat
- SMS Laboratory (EA 3233), Université de Rouen-Normandie, Place Émile Blondel, Mont Saint Aignan 76821, France
| | - Valérie Dupray
- SMS Laboratory (EA 3233), Université de Rouen-Normandie, Place Émile Blondel, Mont Saint Aignan 76821, France
| | - Gérard Coquerel
- SMS Laboratory (EA 3233), Université de Rouen-Normandie, Place Émile Blondel, Mont Saint Aignan 76821, France
| | - Josep-Lluis Tamarit
- Grup de Caracterització de Materials, Departament de Física and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, Catalonia, Barcelona E-08019, Spain
| | - Ivo B Rietveld
- SMS Laboratory (EA 3233), Université de Rouen-Normandie, Place Émile Blondel, Mont Saint Aignan 76821, France; Faculté de Pharmacie, Université de Paris, 4 avenue de l'observatoire, Paris 75006, France.
| |
Collapse
|
13
|
Holmes ST, Engl OG, Srnec MN, Madura JD, Quiñones R, Harper JK, Schurko RW, Iuliucci RJ. Chemical Shift Tensors of Cimetidine Form A Modeled with Density Functional Theory Calculations: Implications for NMR Crystallography. J Phys Chem A 2020; 124:3109-3119. [DOI: 10.1021/acs.jpca.0c00421] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sean T. Holmes
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Olivia G. Engl
- Department of Chemistry, Washington and Jefferson College, Washington, Pennsylvania 15301, United States
| | - Matthew N. Srnec
- Department of Chemistry, Physics, & Engineering, Franciscan University, Steubenville, Ohio 43952, United States
| | - Jeffry D. Madura
- Department of Chemistry & Biochemistry, Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Rosalynn Quiñones
- Department of Chemistry, Marshall University, Huntington, West Virginia 25755, United States
| | - James K. Harper
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Robert W. Schurko
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Robbie J. Iuliucci
- Department of Chemistry, Washington and Jefferson College, Washington, Pennsylvania 15301, United States
| |
Collapse
|
14
|
Holmes ST, Wang WD, Hou G, Dybowski C, Wang W, Bai S. A new NMR crystallographic approach to reveal the calcium local structure of atorvastatin calcium. Phys Chem Chem Phys 2019; 21:6319-6326. [DOI: 10.1039/c8cp07673a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We combine experimental and computational determination of 43Ca solid-state NMR parameters (chemical shift tensors, quadrupolar coupling tensors, and Euler angles) to constrain the structure of the local calcium–ligand coordination environment.
Collapse
Affiliation(s)
- Sean T. Holmes
- Department of Chemistry and Biochemistry
- University of Delaware
- Newark
- Delaware
- USA
| | - Wei D. Wang
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou
- China
| | - Guangjin Hou
- Department of Chemistry and Biochemistry
- University of Delaware
- Newark
- Delaware
- USA
| | - Cecil Dybowski
- Department of Chemistry and Biochemistry
- University of Delaware
- Newark
- Delaware
- USA
| | - Wei Wang
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou
- China
| | - Shi Bai
- Department of Chemistry and Biochemistry
- University of Delaware
- Newark
- Delaware
- USA
| |
Collapse
|
15
|
Qi SY, Tian Y, Zou WB, Hu CQ. Characterization of Solid-State Drug Polymorphs and Real-Time Evaluation of Crystallization Process Consistency by Near-Infrared Spectroscopy. Front Chem 2018; 6:506. [PMID: 30406084 PMCID: PMC6204365 DOI: 10.3389/fchem.2018.00506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/03/2018] [Indexed: 11/13/2022] Open
Abstract
Herein, we aimed to develop a strategy for evaluating the consistency of pharmaceutically important crystallization processes in real time, focusing on two typical cases of polymorphism. Theoretical analysis using a combination of 13C solid-state nuclear magnetic resonance spectroscopy with other polymorphism analysis techniques identified a number of marker signals, the changes of which revealed the presence of two or more structural orientations (lattices and/or molecular conformations) in both cefazolin sodium pentahydrate (α-CEZ-Na) and cephathiamidine (CETD). The proportions of these forms were shown to be batch-dependent and were defined as critical quality attributes (CQAs) to evaluate process consistency. Subsequently, real-time analysis by chemometrics-assisted near-infrared spectroscopy (NIR) was used to obtain useful information corresponding to CQAs. The pretreated spectra of representative samples were transformed by first derivative and vector normalization methods and used to calculate standard deviations at each wavelength and thus detect significant differences. As a result, vibrational responses of H2O, CH3, and CH2 moieties (at 5,280, 4,431, and 4,339 cm-1, respectively) were shown to be sensitive to the CQAs of α-CEZ-Na, which allowed us to establish a highly accurate discrimination model. Moreover, signals of H2O, CONH, and COOH moieties (at 5,211, 5,284, and 5,369 cm-1, respectively) played the same role in the case of CETD, as confirmed by theoretical results. Thus, we established a technique for the rapid evaluation of crystallization process consistency and deepened our understanding of crystallization behavior by using NIR in combination with polymorphism analysis techniques.
Collapse
Affiliation(s)
- Shu-Ye Qi
- National Institutes for Food and Drug Control, Beijing, China.,State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Ye Tian
- National Institutes for Food and Drug Control, Beijing, China
| | - Wen-Bo Zou
- National Institutes for Food and Drug Control, Beijing, China
| | - Chang-Qin Hu
- National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
16
|
Zapata-Catzin GA, Bonilla-Hernández M, Vargas-Coronado RF, Cervantes-Uc JM, Vázquez-Torres H, Hernandez-Baltazar E, Chan-Chan LH, Borzacchiello A, Cauich-Rodríguez JV. Effect of the rigid segment content on the properties of segmented polyurethanes conjugated with atorvastatin as chain extender. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:161. [PMID: 30357534 DOI: 10.1007/s10856-018-6165-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
Segmented polyurethanes were prepared with polycaprolactone diol as soft segment and various amounts of 4,4´-Methylenebis(cyclohexyl isocyanate) and atorvastatin, a statin used for lowering cholesterol, in order to obtain SPU with different content of rigid segments. Polyurethanes with 35% or 50% of rigid segment content were physicochemically characterized and their biocompatibility assessed with L929 fibroblasts. High concentrations of atorvastatin were incorporated by increasing the content of rigid segments as shown by FTIR, Raman, NMR, XPS and EDX. Thermal and mechanical characterization showed that polyurethanes containing atorvastatin and 35% of rigid segments were low modulus (13 MPa) semicrystalline polymers as they exhibited a glass transition temperature (Tg) at -38 °C, melting temperature (Tm) at 46 °C and crystallinity close to 35.9% as determined by DSC. In agreement with this, X-ray diffraction showed reflections at 21.3° and 23.6° for PCL without reflections for atorvastatin suggesting its presence in amorphous form with higher potential bioavailability. Low content of rigid segments led to highly degradable polymer in acidic, alkaline and oxidative media with an acceptable fibroblast cytotoxicity up to 7 days possibly due to low atorvastatin content.
Collapse
Affiliation(s)
- Guido A Zapata-Catzin
- Centro de Investigación Científica de Yucatán, Calle 43 # 130×32y 34, Colonia Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Marcos Bonilla-Hernández
- Centro de Investigación Científica de Yucatán, Calle 43 # 130×32y 34, Colonia Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Rossana F Vargas-Coronado
- Centro de Investigación Científica de Yucatán, Calle 43 # 130×32y 34, Colonia Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - José M Cervantes-Uc
- Centro de Investigación Científica de Yucatán, Calle 43 # 130×32y 34, Colonia Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Humberto Vázquez-Torres
- Universidad Autónoma Metropolitana-Iztapalapa, CBI, Depto. de Física, Ave. San Rafael Atlixco, Colonia Vicentina, C.P. 09340, Cd. de México, Mexico
| | - Efrén Hernandez-Baltazar
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, C.P. 62209, Cuernavaca, Morelos, Mexico
| | - Lerma H Chan-Chan
- CONACyT-Universidad de Sonora, Blvd. Luis Encinas y Rosales, Centro, Hermosillo C.P. 83000, Sonora, Mexico
| | - Assunta Borzacchiello
- Institute for Polymers, Composite and Biomaterials-National Research Council (IPCB-CNR), Mostra d'Oltremare pad, 20, Viale J.F. Kennedy 54, 80125, Napoli, Italy
| | - Juan V Cauich-Rodríguez
- Centro de Investigación Científica de Yucatán, Calle 43 # 130×32y 34, Colonia Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico.
| |
Collapse
|
17
|
Tian Y, Wang WD, Zou WB, Qian JQ, Hu CQ. Application of Solid-State NMR to Reveal Structural Differences in Cefazolin Sodium Pentahydrate From Different Manufacturing Processes. Front Chem 2018; 6:113. [PMID: 29692988 PMCID: PMC5902681 DOI: 10.3389/fchem.2018.00113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/26/2018] [Indexed: 11/17/2022] Open
Abstract
Solid-state Nuclear magnetic resonance, thermogravimetric analysis, X-ray diffraction, and Fourier-transform infrared spectroscopy were combined with theoretical calculation to investigate different crystal packings of α-cefazolin sodium obtained from three different vendors and conformational polymorphism was identified to exist in α-cefazolin sodium. Marginal differences observed among cefazolin sodium pentahydrate 1, 2, and 3 were speculated as being caused by the proportion of conformation 2.
Collapse
Affiliation(s)
- Ye Tian
- National Institutes for Food and Drug Control, Beijing, China
| | - Wei D Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Wen-Bo Zou
- National Institutes for Food and Drug Control, Beijing, China
| | - Jian-Qin Qian
- Zhejiang Institute for Food and Drug Control, Hangzhou, China
| | - Chang-Qin Hu
- National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
18
|
Schwinté P, Mariotte A, Anand P, Keller L, Idoux-Gillet Y, Huck O, Fioretti F, Tenenbaum H, Georgel P, Wenzel W, Irusta S, Benkirane-Jessel N. Anti-inflammatory effect of active nanofibrous polymeric membrane bearing nanocontainers of atorvastatin complexes. Nanomedicine (Lond) 2017; 12:2651-2674. [DOI: 10.2217/nnm-2017-0198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We developed polymeric membranes for local administration of nonsoluble anti-inflammatory statin, as potential wound patch in rheumatic joint or periodontal lesions. Methods: Electrospun polycaprolactone membranes were fitted with polysaccharide-atorvastatin nanoreservoirs by using complexes with poly-aminocyclodextrin. Characterization methods are UV-Visible and X-ray photoelectron spectroscopy, molecular dynamics, scanning and transmission electron microscopy. In vitro, membranes were seeded with macrophages, and inflammatory cytokine expression were monitored. Results & conclusion: Stable inclusion complexes were formed in solution (1:1 stability constant 368 M- 1, -117.40 kJ mol- 1), with supramolecular globular organization (100 nm, substructure 30 nm). Nanoreservoir technology leads to homogeneous distribution of atorvastatin calcium trihydrate complexes in the membrane. Quantity embedded was estimated (70–90 μg in 30 μm × 6 mm membrane). Anti-inflammatory effect by cell contact-dependent release reached 60% inhibition for TNF-α and 80% for IL-6. The novelty resides in the double protection offered by the cyclodextrins as drug molecular chaperones, with further embedding into biodegradable nanoreservoirs. The strategy is versatile and can target other diseases.
Collapse
Affiliation(s)
- Pascale Schwinté
- INSERM (French National Institute of Health & Medical Research), UMR 1109, “Osteoarticular & Dental Regenerative Nanomedicine”, Faculté de Médecine, 11 rue Humann, FMTS, Strasbourg, F-67085, France
| | - Alexandre Mariotte
- INSERM UMR 1109, Molecular ImmunoRheumatology, LabEx TRANSPLANTEX, Faculté de Médecine, Center de Recherche d'Immunologie et d'Hématologie, 4 rue Kirschleger, FMTS, Université de Strasbourg, Strasbourg, F-67085, France
| | - Priya Anand
- Institute of Nanotechnology, Karlsruhe Institute of Technology, KIT Campus North, Hermann-von-Helmholtz-Platz 1, Building 640, Eggenstein-Leopoldshafen, D-76344, Germany
| | - Laetitia Keller
- INSERM (French National Institute of Health & Medical Research), UMR 1109, “Osteoarticular & Dental Regenerative Nanomedicine”, Faculté de Médecine, 11 rue Humann, FMTS, Strasbourg, F-67085, France
| | - Ysia Idoux-Gillet
- INSERM (French National Institute of Health & Medical Research), UMR 1109, “Osteoarticular & Dental Regenerative Nanomedicine”, Faculté de Médecine, 11 rue Humann, FMTS, Strasbourg, F-67085, France
| | - Olivier Huck
- INSERM (French National Institute of Health & Medical Research), UMR 1109, “Osteoarticular & Dental Regenerative Nanomedicine”, Faculté de Médecine, 11 rue Humann, FMTS, Strasbourg, F-67085, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 1 place de l'Hôpital, Strasbourg F-67085, France
| | - Florence Fioretti
- INSERM (French National Institute of Health & Medical Research), UMR 1109, “Osteoarticular & Dental Regenerative Nanomedicine”, Faculté de Médecine, 11 rue Humann, FMTS, Strasbourg, F-67085, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 1 place de l'Hôpital, Strasbourg F-67085, France
| | - Henri Tenenbaum
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 1 place de l'Hôpital, Strasbourg F-67085, France
| | - Philippe Georgel
- INSERM UMR 1109, Molecular ImmunoRheumatology, LabEx TRANSPLANTEX, Faculté de Médecine, Center de Recherche d'Immunologie et d'Hématologie, 4 rue Kirschleger, FMTS, Université de Strasbourg, Strasbourg, F-67085, France
| | - Wolfgang Wenzel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, KIT Campus North, Hermann-von-Helmholtz-Platz 1, Building 640, Eggenstein-Leopoldshafen, D-76344, Germany
| | - Silvia Irusta
- Department of Chemical Engineering & Aragon Nanoscience Institute, University of Zaragoza, C/Mariano Esquillor, s/n, Zaragoza, 50018, Spain
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health & Medical Research), UMR 1109, “Osteoarticular & Dental Regenerative Nanomedicine”, Faculté de Médecine, 11 rue Humann, FMTS, Strasbourg, F-67085, France
| |
Collapse
|
19
|
Alkan F, Holmes ST, Dybowski C. Role of Exact Exchange and Relativistic Approximations in Calculating 19F Magnetic Shielding in Solids Using a Cluster Ansatz. J Chem Theory Comput 2017; 13:4741-4752. [DOI: 10.1021/acs.jctc.7b00555] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Fahri Alkan
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Sean T. Holmes
- Department
of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Cecil Dybowski
- Department
of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
20
|
Amorphization of Atorvastatin Calcium by Mechanical Process: Characterization and Stabilization Within Polymeric Matrix. J Pharm Innov 2017. [DOI: 10.1007/s12247-017-9282-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Holmes ST, Iuliucci RJ, Mueller KT, Dybowski C. Semi-empirical refinements of crystal structures using 17O quadrupolar-coupling tensors. J Chem Phys 2017; 146:064201. [DOI: 10.1063/1.4975170] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Sean T. Holmes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Robbie J. Iuliucci
- Department of Chemistry, Washington and Jefferson College, Washington, Pennsylvania 15301, USA
| | - Karl T. Mueller
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Cecil Dybowski
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
22
|
Practical Pd(TFA)2-Catalyzed Aerobic [4+1] Annulation for the Synthesis of Pyrroles via “One-Pot” Cascade Reactions. Catalysts 2016. [DOI: 10.3390/catal6110169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
23
|
Dittrich N, Jung EK, Davidson SJ, Barker D. An acyl-Claisen/Paal-Knorr approach to fully substituted pyrroles. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.06.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Asada MN, Nemoto T, Mimura H. Pharmaceutical Applications of Relaxation Filter-Selective Signal Excitation Methods for ¹⁹F Solid-State Nuclear Magnetic Resonance: Case Study With Atorvastatin in Dosage Formulation. J Pharm Sci 2016; 105:1233-8. [PMID: 26886305 DOI: 10.1016/j.xphs.2015.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/16/2015] [Accepted: 12/11/2015] [Indexed: 11/30/2022]
Abstract
We recently developed several new relaxation filter-selective signal excitation (RFS) methods for (13)C solid-state nuclear magnetic resonance (NMR) that allow (13)C signal extraction of the target components from pharmaceuticals. These methods were successful in not only qualification but also quantitation over the wide range of 5% to 100%. Here, we aimed to improve the sensitivity of these methods and initially applied them to (19)F solid-state NMR, on the basis that the fluorine atom is one of the most sensitive NMR-active nuclei. For testing, we selected atorvastatin calcium (ATC), an antilipid BCS class II drug that inhibits 3-hydroxy-3-methylglutaryl-coenzyme A reductase and is marketed in crystalline and amorphous forms. Tablets were obtained from 2 generic drug suppliers, and the ATC content occurred mainly as an amorphous form. Using the RFS method with (19)F solid-state NMR, we succeeded in qualifying trace amounts (less than 0.5% w/w level) of crystalline phase (Form I) of ATC in the tablets. RFS methods with (19)F solid-state NMR are practical and time efficient and can contribute not only to the study of pharmaceutical drugs, including those with small amounts of a highly potent active ingredient within a formulated product, but also to the study of fluoropolymers in material sciences.
Collapse
Affiliation(s)
- Mamiko Nasu Asada
- Analytical Research Labs, Astellas Pharma Inc., Yaizu, Shizuoka 425-0072, Japan
| | - Takayuki Nemoto
- Analytical Research Labs, Astellas Pharma Inc., Yaizu, Shizuoka 425-0072, Japan.
| | - Hisashi Mimura
- Analytical Research Labs, Astellas Pharma Inc., Yaizu, Shizuoka 425-0072, Japan
| |
Collapse
|
25
|
Abraham A, Crull G. Understanding API–Polymer Proximities in Amorphous Stabilized Composite Drug Products Using Fluorine–Carbon 2D HETCOR Solid-State NMR. Mol Pharm 2014; 11:3754-9. [DOI: 10.1021/mp400629j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anuji Abraham
- Drug Product
Science and
Technology, Material Science Division, Bristol-Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - George Crull
- Drug Product
Science and
Technology, Material Science Division, Bristol-Myers Squibb, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
26
|
Vogt FG, Williams GR, Strohmeier M, Johnson MN, Copley RCB. Solid-State NMR Analysis of a Complex Crystalline Phase of Ronacaleret Hydrochloride. J Phys Chem B 2014; 118:10266-84. [DOI: 10.1021/jp505061j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Frederick G. Vogt
- Product
Development, GlaxoSmithKline plc. 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Glenn R. Williams
- Product
Development, GlaxoSmithKline plc. 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Mark Strohmeier
- Product
Development, GlaxoSmithKline plc. 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Matthew N. Johnson
- Product
Development, GlaxoSmithKline plc., Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, United Kingdom
| | - Royston C. B. Copley
- Analytical
Chemistry, GlaxoSmithKline plc., Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, United Kingdom
| |
Collapse
|
27
|
Solid-state NMR in the analysis of drugs and naturally occurring materials. J Pharm Biomed Anal 2014; 93:27-42. [DOI: 10.1016/j.jpba.2013.09.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 11/17/2022]
|
28
|
Hildebrand M, Hamaed H, Namespetra AM, Donohue JM, Fu R, Hung I, Gan Z, Schurko RW. 35Cl solid-state NMR of HCl salts of active pharmaceutical ingredients: structural prediction, spectral fingerprinting and polymorph recognition. CrystEngComm 2014. [DOI: 10.1039/c4ce00544a] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A series of HCl salts of active pharmaceutical ingredients (APIs) have been characterized via35Cl solid-state NMR (SSNMR) spectroscopy and first-principles plane-wave DFT calculations of 35Cl NMR interaction tensors.
Collapse
Affiliation(s)
- Marcel Hildebrand
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor, Canada N9B 3P4
| | - Hiyam Hamaed
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor, Canada N9B 3P4
| | - Andrew M. Namespetra
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor, Canada N9B 3P4
| | - John M. Donohue
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor, Canada N9B 3P4
| | - Riqiang Fu
- National High Magnetic Field Laboratory
- Tallahassee, USA
| | - Ivan Hung
- National High Magnetic Field Laboratory
- Tallahassee, USA
| | - Zhehong Gan
- National High Magnetic Field Laboratory
- Tallahassee, USA
| | - Robert W. Schurko
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor, Canada N9B 3P4
| |
Collapse
|