1
|
Radhakrishnan R, Manna B, Ghosh A. Solvent induced conformational changes for the altered activity of laccase: A molecular dynamics study. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127123. [PMID: 34530268 DOI: 10.1016/j.jhazmat.2021.127123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
The growing demands of solvent-based industries like paint, pharmaceutical, petrochemical, paper and pulp, etc., have directly increased the release of effluents that are rich in hazardous aromatic compounds in the environment. A sustainable biotechnological approach utilizing laccases as biocatalyst enable in biodegradation of these aromatic toxin-rich effluents. However, this enzymatic process is ineffective as laccases lose their stability and catalytic activity at high organic solvent concentrations. In this study, molecular dynamic simulations of a novel solvent tolerant laccase, DLac from Cerrena sp. RSD1 was performed to explore the molecular-level understanding of DLac in 30%(v/v) acetone and acetonitrile. Solvent-induced conformational changes were analyzed via protein structure network, which was illustrated with respect to cliques and communities. In the presence of acetonitrile, the cliques around the active site and substrate-binding site were disjoined, thus the communities lost their network integrity. Whereas with acetone, the community near the substrate-binding site gained new residues and formed a rigidified network that corresponded to enhanced DLac's activity. Moreover, prominent solvent binding sites were speculated, which can be probable mutation targets to further improve solvent tolerance and catalytic activity. The molecular basis behind solvent induced catalytic activity will further aid in engineering laccase for its industrial application.
Collapse
Affiliation(s)
- Rokesh Radhakrishnan
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Bharat Manna
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Amit Ghosh
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India; School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
2
|
Ma Y, Velioğlu S, Yin Z, Wang R, Chew JW. Molecular dynamics investigation of membrane fouling in organic solvents. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
3
|
Wang YP, Liang F, Liu S. Molecular dynamics simulations of amino acid adsorption and transport at the acetonitrile–water–silica interface: the role of side chains. RSC Adv 2021; 11:21666-21677. [PMID: 35478806 PMCID: PMC9034086 DOI: 10.1039/d1ra03982b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/14/2021] [Indexed: 11/24/2022] Open
Abstract
The solvation and transport of amino acid residues at liquid–solid interfaces have great importance for understanding the mechanism of separation of biomolecules in liquid chromatography. This study uses umbrella sampling molecular dynamics simulations to study the adsorption and transport of three amino acid molecules with different side chains (phenylalanine (Phe), leucine (Leu) and glutamine (Gln)) at the silica–water–acetonitrile interface in liquid chromatography. Free energy analysis shows that the Gln molecule has stronger binding affinity than the other two molecules, indicating the side chain polarity may play a primary role in adsorption at the liquid–solid interface. The Phe molecule with a phenyl side chain exhibits stronger adsorption free energy than Leu with a non-polar side chain, which can be ascribed to the better solvated configuration of Phe. Further analysis of molecular orientations found that the amino acid molecules with apolar side chains (Phe and Leu) have ‘standing up’ configurations at their stable adsorption state, where the polar functional groups are close to the interface and the side chain is far from the interface, whereas the amino acid molecule with a polar side chain (Gln) chooses the ‘lying’ configuration, and undergoes a sharp orientation transition when the molecule moves away from the silica surface. Extending our simulation studies to systems with different solute concentrations reveals that there is a decrease in the adsorption free energy as well as surface diffusion as the solute concentration increases, which is related to the crowding in the interfacial layers. This simulation study gives a detailed microscopic description of amino acid molecule solvation and transport at the acetonitrile–water–silica interface in liquid chromatography and will be helpful for understanding the retention mechanism for amino acid separation. The solvation and transport of amino acid residues at liquid–solid interfaces have great importance for understanding the mechanism of separation of biomolecules in liquid chromatography.![]()
Collapse
Affiliation(s)
- Yong-Peng Wang
- School of Materials Science and Engineering
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Fei Liang
- School of Materials Science and Engineering
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Shule Liu
- School of Materials Science and Engineering
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education
| |
Collapse
|
4
|
Janbazi M, T. Azar Y, Ziaie F. EPR parameters of L-α-alanine radicals in aqueous solution: a first-principles study. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1456684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mehdi Janbazi
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Yavar T. Azar
- Physics and Accelerator Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Farhood Ziaie
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| |
Collapse
|
5
|
Verma R, Mitchell-Koch K. In Silico Studies of Small Molecule Interactions with Enzymes Reveal Aspects of Catalytic Function. Catalysts 2017; 7:212. [PMID: 30464857 PMCID: PMC6241538 DOI: 10.3390/catal7070212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Small molecules, such as solvent, substrate, and cofactor molecules, are key players in enzyme catalysis. Computational methods are powerful tools for exploring the dynamics and thermodynamics of these small molecules as they participate in or contribute to enzymatic processes. In-depth knowledge of how small molecule interactions and dynamics influence protein conformational dynamics and function is critical for progress in the field of enzyme catalysis. Although numerous computational studies have focused on enzyme-substrate complexes to gain insight into catalytic mechanisms, transition states and reaction rates, the dynamics of solvents, substrates, and cofactors are generally less well studied. Also, solvent dynamics within the biomolecular solvation layer play an important part in enzyme catalysis, but a full understanding of its role is hampered by its complexity. Moreover, passive substrate transport has been identified in certain enzymes, and the underlying principles of molecular recognition are an area of active investigation. Enzymes are highly dynamic entities that undergo different conformational changes, which range from side chain rearrangement of a residue to larger-scale conformational dynamics involving domains. These events may happen nearby or far away from the catalytic site, and may occur on different time scales, yet many are related to biological and catalytic function. Computational studies, primarily molecular dynamics (MD) simulations, provide atomistic-level insight and site-specific information on small molecule interactions, and their role in conformational pre-reorganization and dynamics in enzyme catalysis. The review is focused on MD simulation studies of small molecule interactions and dynamics to characterize and comprehend protein dynamics and function in catalyzed reactions. Experimental and theoretical methods available to complement and expand insight from MD simulations are discussed briefly.
Collapse
Affiliation(s)
- Rajni Verma
- Department of Chemistry, McKinley Hall, Wichita State University, 1845 Fairmount, Wichita, KS 67260-0051, USA
| | - Katie Mitchell-Koch
- Department of Chemistry, McKinley Hall, Wichita State University, 1845 Fairmount, Wichita, KS 67260-0051, USA
| |
Collapse
|
6
|
Maiangwa J, Mohamad Ali MS, Salleh AB, Rahman RNZRA, Normi YM, Mohd Shariff F, Leow TC. Lid opening and conformational stability of T1 Lipase is mediated by increasing chain length polar solvents. PeerJ 2017; 5:e3341. [PMID: 28533982 PMCID: PMC5438581 DOI: 10.7717/peerj.3341] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 04/21/2017] [Indexed: 11/20/2022] Open
Abstract
The dynamics and conformational landscape of proteins in organic solvents are events of potential interest in nonaqueous process catalysis. Conformational changes, folding transitions, and stability often correspond to structural rearrangements that alter contacts between solvent molecules and amino acid residues. However, in nonaqueous enzymology, organic solvents limit stability and further application of proteins. In the present study, molecular dynamics (MD) of a thermostable Geobacillus zalihae T1 lipase was performed in different chain length polar organic solvents (methanol, ethanol, propanol, butanol, and pentanol) and water mixture systems to a concentration of 50%. On the basis of the MD results, the structural deviations of the backbone atoms elucidated the dynamic effects of water/organic solvent mixtures on the equilibrium state of the protein simulations in decreasing solvent polarity. The results show that the solvent mixture gives rise to deviations in enzyme structure from the native one simulated in water. The drop in the flexibility in H2O, MtOH, EtOH and PrOH simulation mixtures shows that greater motions of residues were influenced in BtOH and PtOH simulation mixtures. Comparing the root mean square fluctuations value with the accessible solvent area (SASA) for every residue showed an almost correspondingly high SASA value of residues to high flexibility and low SASA value to low flexibility. The study further revealed that the organic solvents influenced the formation of more hydrogen bonds in MtOH, EtOH and PrOH and thus, it is assumed that increased intraprotein hydrogen bonding is ultimately correlated to the stability of the protein. However, the solvent accessibility analysis showed that in all solvent systems, hydrophobic residues were exposed and polar residues tended to be buried away from the solvent. Distance variation of the tetrahedral intermediate packing of the active pocket was not conserved in organic solvent systems, which could lead to weaknesses in the catalytic H-bond network and most likely a drop in catalytic activity. The conformational variation of the lid domain caused by the solvent molecules influenced its gradual opening. Formation of additional hydrogen bonds and hydrophobic interactions indicates that the contribution of the cooperative network of interactions could retain the stability of the protein in some solvent systems. Time-correlated atomic motions were used to characterize the correlations between the motions of the atoms from atomic coordinates. The resulting cross-correlation map revealed that the organic solvent mixtures performed functional, concerted, correlated motions in regions of residues of the lid domain to other residues. These observations suggest that varying lengths of polar organic solvents play a significant role in introducing dynamic conformational diversity in proteins in a decreasing order of polarity.
Collapse
Affiliation(s)
- Jonathan Maiangwa
- Department of Cell and Molecular Biology/Enzyme Microbial Technology Research center/Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Serlangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Department of Biochemistry/Enzyme Microbial Technology Research center/Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Abu Bakar Salleh
- Department of Biochemistry/Enzyme Microbial Technology Research center/Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Department of Microbiology/Enzyme Microbial Technology Research center/Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Department of Cell and Molecular Biology/Enzyme Microbial Technology Research center/Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Serlangor, Malaysia
| | - Fairolniza Mohd Shariff
- Department of Microbiology/Enzyme Microbial Technology Research center/Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Department of Cell and Molecular Biology/Enzyme and Microbial Technology Research center/Faculty of Biotechnology and Biomolecular Science/Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
7
|
Zhao D, Zhou J. Electrostatics-mediated α-chymotrypsin inhibition by functionalized single-walled carbon nanotubes. Phys Chem Chem Phys 2017; 19:986-995. [DOI: 10.1039/c6cp04962a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Electrostatics-mediated α-chymotrypsin inhibition by functionalized single-walled carbon nanotubes.
Collapse
Affiliation(s)
- Daohui Zhao
- School of Chemistry and Chemical Engineering
- Guangdong Provincial Key Lab for Green Chemical Product Technology
- South China University of Technology
- Guangzhou
- P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering
- Guangdong Provincial Key Lab for Green Chemical Product Technology
- South China University of Technology
- Guangzhou
- P. R. China
| |
Collapse
|
8
|
Dahanayake JN, Gautam DN, Verma R, Mitchell-Koch KR. To Keep or Not to Keep? The Question of Crystallographic Waters for Enzyme Simulations in Organic Solvent. MOLECULAR SIMULATION 2016; 42:1001-1013. [PMID: 27403032 DOI: 10.1080/08927022.2016.1139108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The use of enzymes in non-aqueous solvents expands the use of biocatalysts to hydrophobic substrates, with the ability to tune selectivity of reactions through solvent selection. Non-aqueous enzymology also allows for fundamental studies on the role of water and other solvents in enzyme structure, dynamics, and function. Molecular dynamics simulations serve as a powerful tool in this area, providing detailed atomic information about the effect of solvents on enzyme properties. However, a common protocol for non-aqueous enzyme simulations does not exist. If you want to simulate enzymes in non-aqueous solutions, how many and which crystallographic waters do you keep? In the present work, this question is addressed by determining which crystallographic water molecules lead most quickly to an equilibrated protein structure. Five different methods of selecting and keeping crystallographic waters are used in order to discover which crystallographic waters lead the protein structure to reach an equilibrated structure more rapidly in organic solutions. It is found that buried waters contribute most to rapid equilibration in organic solvent, with slow-diffusing waters giving similar results.
Collapse
Affiliation(s)
- Jayangika N Dahanayake
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, United States
| | - Devaki N Gautam
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, United States
| | - Rajni Verma
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, United States
| | - Katie R Mitchell-Koch
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, United States
| |
Collapse
|
9
|
|
10
|
Probing immobilization mechanism of alpha-chymotrypsin onto carbon nanotube in organic media by molecular dynamics simulation. Sci Rep 2015; 5:9297. [PMID: 25787884 PMCID: PMC4365409 DOI: 10.1038/srep09297] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/26/2015] [Indexed: 11/16/2022] Open
Abstract
The enzyme immobilization has been adopted to enhance the activity and stability of enzymes in non-aqueous enzymatic catalysis. However, the activation and stabilization mechanism has been poorly understood on experiments. Thus, we used molecular dynamics simulation to study the adsorption of α-chymotrypsin (α-ChT) on carbon nanotube (CNT) in aqueous solution and heptane media. The results indicate that α-ChT has stronger affinity with CNT in aqueous solution than in heptane media, as confirmed by more adsorption atoms, larger contact area and higher binding free energies. Although the immobilization causes significant structure deviations from the crystal one, no significant changes in secondary structure of the enzyme upon adsorption are observed in the two media. Different from aqueous solution, the stabilization effects on some local regions far from the surface of CNT were observed in heptane media, in particular for S1 pocket, which should contribute to the preservation of specificity reported by experiments. Also, CNT displays to some extent stabilization role in retaining the catalytic H-bond network of the active site in heptane media, which should be associated with the enhanced activity of enzymes. The observations from the work can provide valuable information for improving the catalytic properties of enzymes in non-aqueous media.
Collapse
|
11
|
Understanding the effects on constitutive activation and drug binding of a D130N mutation in the β2 adrenergic receptor via molecular dynamics simulation. J Mol Model 2014; 20:2491. [PMID: 25342155 DOI: 10.1007/s00894-014-2491-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/06/2014] [Indexed: 01/21/2023]
Abstract
G-protein-coupled receptors (GPCRs) are currently one of the largest families of drug targets. The constitutive activation induced by mutation of key GPCR residues is associated closely with various diseases. However, the structural basis underlying such activation and its role in drug binding has remained unclear. Herein, we used all-atom molecular dynamics simulations and free energy calculations to study the effects of a D130N mutation on the structure of β2 adrenergic receptor (β2AR) and its binding of the agonist salbutamol. The results indicate that the mutation caused significant changes in some key helices. In particular, the mutation leads to the departure of transmembrane 3 (TM3) from transmembrane 6 (TM6) and marked changes in the NPxxY region as well as the complete disruption of a key ionic lock, all of which contribute to the observed constitutive activation. In addition, the D130N mutation weakens some important H-bonds, leading to structural changes in these regions. Binding free energy calculations indicate that van der Waals and electrostatic interactions are the main driving forces in binding salbutamol; however, binding strength in the mutant β2AR is significantly enhanced mainly through modifying electrostatic interactions. Further analysis revealed that the increase in binding energy upon mutation stems mainly from the H-bonds formed between the hydroxyl group of salbutamol and the serine residues of TM5. This observation suggests that modifications of the H-bond groups of this drug could significantly influence drug efficacy in the treatment of diseases associated with this mutation.
Collapse
|
12
|
Jiang Y, Li L, Zhang H, Feng W, Tan T. Lid Closure Mechanism of Yarrowia lipolytica Lipase in Methanol Investigated by Molecular Dynamics Simulation. J Chem Inf Model 2014; 54:2033-41. [DOI: 10.1021/ci500163y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yang Jiang
- Beijing
Key Lab of Bioprocess,
College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lingli Li
- Beijing
Key Lab of Bioprocess,
College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haiyang Zhang
- Beijing
Key Lab of Bioprocess,
College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Feng
- Beijing
Key Lab of Bioprocess,
College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tianwei Tan
- Beijing
Key Lab of Bioprocess,
College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
13
|
Sarkar D, Pramanik AK, Mondal TK. Synthesis, crystal structure and spectral properties of 2-[(1-Methyl-2-benzimidazolyl)azo]-p-cresol: an experimental and theoretical study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 115:421-425. [PMID: 23867644 DOI: 10.1016/j.saa.2013.06.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/06/2013] [Accepted: 06/12/2013] [Indexed: 06/02/2023]
Abstract
2-[(1-Methyl-2-benzimidazolyl)azo]-p-cresol (HL), containing phenolic-OH function and benzimidazole moiety has been synthesized and characterized. The chemical, electronic structure and photophysical properties have been studied by spectroscopic analysis abetted with DFT and TDDFT calculations. The change in electronic spectra of HL by titration with aq. NaOH is studied and well supported by TDDFT calculations. The structure is confirmed by single crystal X-ray study. In the unit cell, two HL molecules are H-bonded with H2O molecule and forms dimmeric structure. The molecule forms 2D-supramolecular structure by inter-molecular H-bonding and π-π interactions.
Collapse
Affiliation(s)
- Deblina Sarkar
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | | | | |
Collapse
|
14
|
Yang W, Zhang L, Li M, Pu X, Zhao N. Effects of Non‐specific and Specific Solvation on Adsorption of BPTI on Au Surface: Insight from Molecular Dynamics Simulation. CHINESE J CHEM PHYS 2013. [DOI: 10.1063/1674-0068/26/05/558-568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Meng Y, Yuan Y, Zhu Y, Guo Y, Li M, Wang Z, Pu X, Jiang L. Effects of organic solvents and substrate binding on trypsin in acetonitrile and hexane media. J Mol Model 2013; 19:3749-66. [DOI: 10.1007/s00894-013-1900-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/27/2013] [Indexed: 11/29/2022]
|
16
|
Effects of water content on the tetrahedral intermediate of chymotrypsin - trifluoromethylketone in polar and non-polar media: observations from molecular dynamics simulation. J Mol Model 2013; 19:2525-38. [PMID: 23455930 DOI: 10.1007/s00894-013-1807-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 02/12/2013] [Indexed: 10/27/2022]
Abstract
The work uses MD simulation to study effects of five water contents (3 %, 10 %, 20 %, 50 %, 100 % v/v) on the tetrahedral intermediate of chymotrypsin - trifluoromethyl ketone in polar acetonitrile and non-polar hexane media. The water content induced changes in the structure of the intermediate, solvent distribution and H-bonding are analyzed in the two organic media. Our results show that the changes in overall structure of the protein almost display a clear correlation with the water content in hexane media while to some extent U-shaped/bell-shaped dependence on the water content is observed in acetonitrile media with a minimum/maximum at 10-20 % water content. In contrast, the water content change in the two organic solvents does not play an observable role in the stability of catalytic hydrogen-bond network, which still exhibits high stability in all hydration levels, different from observations on the free enzyme system [Zhu L, Yang W, Meng YY, Xiao X, Guo Y, Pu X, Li M (2012) J Phys Chem B 116(10):3292-3304]. In low hydration levels, most water molecules mainly distribute near the protein surface and an increase in the water content could not fully exclude the organic solvent from the protein surface. However, the acetonitrile solvent displays a stronger ability to strip off water molecules from the protein than the hexane. In a summary, the difference in the calculated properties between the two organic solvents is almost significant in low water content (<10 %) and become to be small with increasing water content. In addition, some structural properties at 10 ~ 20 % v/v hydration zone, to large extent, approach to those in aqueous solution.
Collapse
|
17
|
Xu J, Zhuang Y, Wu B, Su L, He B. Calcium-ion-induced stabilization of the protease from Bacillus cereus WQ9-2 in aqueous hydrophilic solvents: effect of calcium ion binding on the hydration shell and intramolecular interactions. J Biol Inorg Chem 2013; 18:211-221. [PMID: 23322168 DOI: 10.1007/s00775-012-0966-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/24/2012] [Indexed: 01/12/2023]
Abstract
The neutral protease WQ from Bacillus cereus is stable in various aqueous organic mixtures, with the exception of those containing acetonitrile (ACN) and dimethylformamide (DMF). The stability of the enzyme in aqueous hydrophilic solvents was dramatically enhanced with the addition of calcium ions, with the degree of improvement in the half-life relative to different solutions ranging from fourfold to more than 70-fold. Studies of the kinetic constants showed that calcium ions induced slight conformational changes in the active site of the enzyme in aqueous ACN. We investigated the molecular mechanisms underlying this stabilizing effect by employing a combination of biophysical techniques and molecular dynamics simulation. In aqueous ACN, the intrinsic fluorescence and circular dichroism analysis demonstrated that the addition of calcium ions induced a relatively compact conformation and maintained both the native-like microenvironment near the tryptophan residues and the secondary structure. Alternatively, homology modeling confirmed the location of four calcium-ion-binding sites in the enzyme, and molecular dynamics simulation revealed that three other calcium ions were bound to the surface of the enzyme. Calcium ions, known as a type of kosmotrope, can strongly bond with water molecules, thus aiding in the formation of the regional hydration shell required for the maintenance of enzyme activity. In addition, the introduction of calcium ions resulted in the formation of additional ionic interactions, providing propitious means for protein stabilization. Thus, the stronger intramolecular interactions were also expected to contribute partially to the enhanced stability of the enzyme in an aqueous organic solvent.
Collapse
Affiliation(s)
- Jiaxing Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, 30 Puzhunan Road, Nanjing, 211816, Jiangsu, China
| | - Yu Zhuang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, 30 Puzhunan Road, Nanjing, 211816, Jiangsu, China
| | - Bin Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, 30 Puzhunan Road, Nanjing, 211816, Jiangsu, China
| | - Long Su
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, 30 Puzhunan Road, Nanjing, 211816, Jiangsu, China
| | - Bingfang He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, 30 Puzhunan Road, Nanjing, 211816, Jiangsu, China.
| |
Collapse
|
18
|
Lousa D, Baptista AM, Soares CM. A molecular perspective on nonaqueous biocatalysis: contributions from simulation studies. Phys Chem Chem Phys 2013; 15:13723-36. [DOI: 10.1039/c3cp51761f] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|