1
|
Rojas AV, Maisuradze GG, Scheraga HA, Liwo A. Probing Protein Aggregation Using the Coarse-Grained UNRES Force Field. Methods Mol Biol 2022; 2340:79-104. [PMID: 35167071 DOI: 10.1007/978-1-0716-1546-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein aggregation is the cause of many, often lethal, diseases, including the Alzheimer's, Parkinson's, and Huntington's diseases, and familial amyloidosis. Theoretical investigation of the mechanism of this process, including the structures of the oligomeric intermediates which are the most toxic, is difficult because of long time scale of aggregation. Coarse-grained models, which enable us to extend the simulation time scale by three or more orders of magnitude, are, therefore, of great advantage in such studies. In this chapter, we describe the application of the physics-based UNited RESidue (UNRES) force field developed in our laboratory to study protein aggregation, in both free simulations and simulations of aggregation propagation from an existing template (seed), and illustrate it with the examples of Aβ-peptide aggregation and Aβ-peptide-assisted aggregation of the peptides derived from the repeat domains of tau (TauRD).
Collapse
Affiliation(s)
- Ana V Rojas
- Schrodinger Inc., 120 West 45th Street New York, New York, 10036, NY, USA
| | - Gia G Maisuradze
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, 14853-1301, NY, USA
| | - Harold A Scheraga
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, 14853-1301, NY, USA
| | - Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk, 80-308, Poland.
| |
Collapse
|
2
|
Jasim SB, Li Z, Guest EE, Hirst JD. DichroCalc: Improvements in Computing Protein Circular Dichroism Spectroscopy in the Near-Ultraviolet. J Mol Biol 2018; 430:2196-2202. [DOI: 10.1016/j.jmb.2017.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/24/2017] [Accepted: 12/10/2017] [Indexed: 12/13/2022]
|
3
|
Rojas A, Maisuradze N, Kachlishvili K, Scheraga HA, Maisuradze GG. Elucidating Important Sites and the Mechanism for Amyloid Fibril Formation by Coarse-Grained Molecular Dynamics. ACS Chem Neurosci 2017; 8:201-209. [PMID: 28095675 DOI: 10.1021/acschemneuro.6b00331] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Fibrils formed by the β-amyloid (Aβ) peptide play a central role in the development of Alzheimer's disease. In this study, the principles governing their growth and stability are investigated by analyzing canonical and replica-exchange molecular dynamics trajectories of Aβ(9-40) fibrils. In particular, an unstructured monomer was allowed to interact freely with an Aβ fibril template. Trajectories were generated with the coarse-grained united-residue force field, and one- and two-dimensional free-energy landscapes (FELs) along the backbone virtual-bond angle θ and backbone virtual-bond-dihedral angle γ of each residue and principal components, respectively, were analyzed. Also, thermal unbinding (unfolding) of an Aβ peptide from the fibril template was investigated. These analyses enable us to illustrate the entire process of Aβ fibril elongation and to elucidate the key residues involved in it. Several different pathways were identified during the search for the fibril conformation by the monomer, which finally follows a dock-lock mechanism with two distinct locking stages. However, it was found that the correct binding, with native hydrogen bonds, of the free monomer to the fibril template at both stages is crucial for fibril elongation. In other words, if the monomer is incorrectly bound (with nonnative hydrogen bonds) to the fibril template during the first "docking" stage, it can remain attached to it for a long time before it dissociates and either attempts a different binding or allows another monomer to bind. This finding is consistent with an experimentally observed "stop-and-go" mechanism of fibril growth.
Collapse
Affiliation(s)
- Ana Rojas
- Baker Laboratory
of Chemistry
and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
| | - Nika Maisuradze
- Baker Laboratory
of Chemistry
and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
| | - Khatuna Kachlishvili
- Baker Laboratory
of Chemistry
and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
| | - Harold A. Scheraga
- Baker Laboratory
of Chemistry
and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
| | - Gia G. Maisuradze
- Baker Laboratory
of Chemistry
and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
4
|
Schwierz N, Frost CV, Geissler PL, Zacharias M. Dynamics of Seeded Aβ40-Fibril Growth from Atomistic Molecular Dynamics Simulations: Kinetic Trapping and Reduced Water Mobility in the Locking Step. J Am Chem Soc 2016; 138:527-39. [PMID: 26694883 DOI: 10.1021/jacs.5b08717] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Filamentous β-amyloid aggregates are crucial for the pathology of Alzheimer's disease. Despite the tremendous biomedical importance, the molecular pathway of growth propagation is not completely understood and remains challenging to investigate by simulations due to the long time scales involved. Here, we apply extensive all-atom molecular dynamics simulations in explicit water to obtain free energy profiles and kinetic information from position-dependent diffusion profiles for three different Aβ9-40-growth processes: fibril elongation by single monomers at the structurally unequal filament tips and association of larger filament fragments. Our approach provides insight into the molecular steps of the kinetic pathway and allows close agreement with experimental binding free energies and macroscopic growth rates. Water plays a decisive role, and solvent entropy is identified as the main driving force for assembly. Fibril growth is disfavored energetically due to cancellation of direct peptide-peptide interactions and solvation effects. The kinetics of growth is consistent with the characteristic dock/lock mechanism, and docking is at least 2 orders of magnitude faster. During initial docking, interactions are mediated by transient non-native hydrogen bonds, which efficiently catch the incoming monomer or fragment already at separations of about 3 nm. In subsequent locking, the dynamics is much slower due to formation of kinetically trapped conformations caused by long-lived non-native hydrogen bonds. Fibril growth additionally requires collective motion of water molecules to create a dry binding interface. Fibril growth is further retarded due to reduced mobility of the involved hydration water, evident from a 2-fold reduction of the diffusion coefficient.
Collapse
Affiliation(s)
- Nadine Schwierz
- Chemistry Department, University of California , Berkeley, California 94720, United States
| | - Christina V Frost
- Physik Department, Technische Universität München , 85748 Garching, Germany
| | - Phillip L Geissler
- Chemistry Department, University of California , Berkeley, California 94720, United States
| | - Martin Zacharias
- Physik Department, Technische Universität München , 85748 Garching, Germany
| |
Collapse
|
5
|
Müller-Schiffmann A, Herring A, Abdel-Hafiz L, Chepkova AN, Schäble S, Wedel D, Horn AHC, Sticht H, de Souza Silva MA, Gottmann K, Sergeeva OA, Huston JP, Keyvani K, Korth C. Amyloid-β dimers in the absence of plaque pathology impair learning and synaptic plasticity. Brain 2015; 139:509-25. [DOI: 10.1093/brain/awv355] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/17/2015] [Indexed: 11/12/2022] Open
Abstract
Abstract
Despite amyloid plaques, consisting of insoluble, aggregated amyloid-β peptides, being a defining feature of Alzheimer’s disease, their significance has been challenged due to controversial findings regarding the correlation of cognitive impairment in Alzheimer’s disease with plaque load. The amyloid cascade hypothesis defines soluble amyloid-β oligomers, consisting of multiple amyloid-β monomers, as precursors of insoluble amyloid-β plaques. Dissecting the biological effects of single amyloid-β oligomers, for example of amyloid-β dimers, an abundant amyloid-β oligomer associated with clinical progression of Alzheimer’s disease, has been difficult due to the inability to control the kinetics of amyloid-β multimerization. For investigating the biological effects of amyloid-β dimers, we stabilized amyloid-β dimers by an intermolecular disulphide bridge via a cysteine mutation in the amyloid-β peptide (Aβ-S8C) of the amyloid precursor protein. This construct was expressed as a recombinant protein in cells and in a novel transgenic mouse, termed tgDimer mouse. This mouse formed constant levels of highly synaptotoxic soluble amyloid-β dimers, but not monomers, amyloid-β plaques or insoluble amyloid-β during its lifespan. Accordingly, neither signs of neuroinflammation, tau hyperphosphorylation or cell death were observed. Nevertheless, these tgDimer mice did exhibit deficits in hippocampal long-term potentiation and age-related impairments in learning and memory, similar to what was observed in classical Alzheimer’s disease mouse models. Although the amyloid-β dimers were unable to initiate the formation of insoluble amyloid-β aggregates in tgDimer mice, after crossbreeding tgDimer mice with the CRND8 mouse, an amyloid-β plaque generating mouse model, Aβ-S8C dimers were sequestered into amyloid-β plaques, suggesting that amyloid-β plaques incorporate neurotoxic amyloid-β dimers that by themselves are unable to self-assemble. Our results suggest that within the fine interplay between different amyloid-β species, amyloid-β dimer neurotoxic signalling, in the absence of amyloid-β plaque pathology, may be involved in causing early deficits in synaptic plasticity, learning and memory that accompany Alzheimer’s disease.
10.1093/brain/awv355_video_abstract awv355_video_abstract
Collapse
Affiliation(s)
| | - Arne Herring
- 2 Institute of Neuropathology, University of Duisburg-Essen, Germany
| | - Laila Abdel-Hafiz
- 3 Centre for Behavioural Neuroscience, Heinrich Heine University, Düsseldorf, Germany
| | - Aisa N. Chepkova
- 4 Institute for Neuro- and Sensory Physiology, Heinrich Heine University, Düsseldorf, Germany
| | - Sandra Schäble
- 3 Centre for Behavioural Neuroscience, Heinrich Heine University, Düsseldorf, Germany
- *Present address: Comparative Psychology, Institute of Experimental Psychology, Heinrich Heine University, Düsseldorf, Germany
| | - Diana Wedel
- 1 Department Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | - Anselm H. C. Horn
- 5 Institute for Biochemistry, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Heinrich Sticht
- 5 Institute for Biochemistry, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Kurt Gottmann
- 4 Institute for Neuro- and Sensory Physiology, Heinrich Heine University, Düsseldorf, Germany
| | - Olga A. Sergeeva
- 4 Institute for Neuro- and Sensory Physiology, Heinrich Heine University, Düsseldorf, Germany
| | - Joseph P. Huston
- 3 Centre for Behavioural Neuroscience, Heinrich Heine University, Düsseldorf, Germany
| | - Kathy Keyvani
- 2 Institute of Neuropathology, University of Duisburg-Essen, Germany
| | - Carsten Korth
- 1 Department Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
6
|
Ashraf GM, Greig NH, Khan TA, Hassan I, Tabrez S, Shakil S, Sheikh IA, Zaidi SK, Akram M, Jabir NR, Firoz CK, Naeem A, Alhazza IM, Damanhouri GA, Kamal MA. Protein misfolding and aggregation in Alzheimer's disease and type 2 diabetes mellitus. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2015; 13:1280-93. [PMID: 25230234 DOI: 10.2174/1871527313666140917095514] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 05/11/2014] [Accepted: 05/12/2014] [Indexed: 12/27/2022]
Abstract
In general, proteins can only execute their various biological functions when they are appropriately folded. Their amino acid sequence encodes the relevant information required for correct three-dimensional folding, with or without the assistance of chaperones. The challenge associated with understanding protein folding is currently one of the most important aspects of the biological sciences. Misfolded protein intermediates form large polymers of unwanted aggregates and are involved in the pathogenesis of many human diseases, including Alzheimer's disease (AD) and Type 2 diabetes mellitus (T2DM). AD is one of the most prevalent neurological disorders and has worldwide impact; whereas T2DM is considered a metabolic disease that detrementally influences numerous organs, afflicts some 8% of the adult population, and shares many risk factors with AD. Research data indicates that there is a widespread conformational change in the proteins involved in AD and T2DM that form β-sheet like motifs. Although conformation of these β-sheets is common to many functional proteins, the transition from α-helix to β-sheet is a typical characteristic of amyloid deposits. Any abnormality in this transition results in protein aggregation and generation of insoluble fibrils. The abnormal and toxic proteins can interact with other native proteins and consequently catalyze their transition into the toxic state. Both AD and T2DM are prevalent in the aged population. AD is characterized by the accumulation of amyloid-β (Aβ) in brain, while T2DM is characterized by the deposition of islet amyloid polypeptide (IAPP, also known as amylin) within beta-cells of the pancreas. T2DM increases pathological angiogenesis and immature vascularisation. This also leads to chronic cerebral hypoperfusion, which results in dysfunction and degeneration of neuroglial cells. With an abundance of common mechanisms underpinning both disorders, a significant question that can be posed is whether T2DM leads to AD in aged individuals and the associations between other protein misfolding diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Kingdom of Saudi Arabia.
| |
Collapse
|
7
|
Abstract
This is a tour of a physical chemist through 65 years of protein chemistry from the time when emphasis was placed on the determination of the size and shape of the protein molecule as a colloidal particle, with an early breakthrough by James Sumner, followed by Linus Pauling and Fred Sanger, that a protein was a real molecule, albeit a macromolecule. It deals with the recognition of the nature and importance of hydrogen bonds and hydrophobic interactions in determining the structure, properties, and biological function of proteins until the present acquisition of an understanding of the structure, thermodynamics, and folding pathways from a linear array of amino acids to a biological entity. Along the way, with a combination of experiment and theoretical interpretation, a mechanism was elucidated for the thrombin-induced conversion of fibrinogen to a fibrin blood clot and for the oxidative-folding pathways of ribonuclease A. Before the atomic structure of a protein molecule was determined by x-ray diffraction or nuclear magnetic resonance spectroscopy, experimental studies of the fundamental interactions underlying protein structure led to several distance constraints which motivated the theoretical approach to determine protein structure, and culminated in the Empirical Conformational Energy Program for Peptides (ECEPP), an all-atom force field, with which the structures of fibrous collagen-like proteins and the 46-residue globular staphylococcal protein A were determined. To undertake the study of larger globular proteins, a physics-based coarse-grained UNited-RESidue (UNRES) force field was developed, and applied to the protein-folding problem in terms of structure, thermodynamics, dynamics, and folding pathways. Initially, single-chain and, ultimately, multiple-chain proteins were examined, and the methodology was extended to protein-protein interactions and to nucleic acids and to protein-nucleic acid interactions. The ultimate results led to an understanding of a variety of biological processes underlying natural and disease phenomena.
Collapse
|
8
|
Han W, Schulten K. Fibril elongation by Aβ(17-42): kinetic network analysis of hybrid-resolution molecular dynamics simulations. J Am Chem Soc 2014; 136:12450-60. [PMID: 25134066 PMCID: PMC4156860 DOI: 10.1021/ja507002p] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
A critical step of β-amyloid
fibril formation is fibril elongation
in which amyloid-β monomers undergo structural transitions to
fibrillar structures upon their binding to fibril tips. The atomic
detail of the structural transitions remains poorly understood. Computational
characterization of the structural transitions is limited so far to
short Aβ segments (5–10 aa) owing to the long time scale
of Aβ fibril elongation. To overcome the computational time
scale limit, we combined a hybrid-resolution model with umbrella sampling
and replica exchange molecular dynamics and performed altogether ∼1.3
ms of molecular dynamics simulations of fibril elongation for Aβ17–42. Kinetic network analysis of biased simulations
resulted in a kinetic model that encompasses all Aβ segments
essential for fibril formation. The model not only reproduces key
properties of fibril elongation measured in experiments, including
Aβ binding affinity, activation enthalpy of Aβ structural
transitions and a large time scale gap (τlock/τdock = 103–104) between Aβ
binding and its structural transitions, but also reveals detailed
pathways involving structural transitions not seen before, namely,
fibril formation both in hydrophobic regions L17-A21 and G37-A42 preceding
fibril formation in hydrophilic region E22-A30. Moreover, the model
identifies as important kinetic intermediates strand–loop–strand
(SLS) structures of Aβ monomers, long suspected to be related
to fibril elongation. The kinetic model suggests further that fibril
elongation arises faster at the fibril tip with exposed L17-A21, rather
than at the other tip, explaining thereby unidirectional fibril growth
observed previously in experiments.
Collapse
Affiliation(s)
- Wei Han
- Beckman Institute, ‡Center for Biophysics and Computational Biology, and §Department of Physics, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | |
Collapse
|