1
|
Two energy barriers and a transient intermediate state determine the unfolding and folding dynamics of cold shock protein. Commun Chem 2021; 4:156. [PMID: 36697724 PMCID: PMC9814876 DOI: 10.1038/s42004-021-00592-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/15/2021] [Indexed: 01/28/2023] Open
Abstract
Cold shock protein (Csp) is a typical two-state folding model protein which has been widely studied by biochemistry and single molecule techniques. Recently two-state property of Csp was confirmed by atomic force microscopy (AFM) through direct pulling measurement, while several long-lifetime intermediate states were found by force-clamp AFM. We systematically studied force-dependent folding and unfolding dynamics of Csp using magnetic tweezers with intrinsic constant force capability. Here we report that Csp mostly folds and unfolds with a single step over force range from 5 pN to 50 pN, and the unfolding rates show different force sensitivities at forces below and above ~8 pN, which determines a free energy landscape with two barriers and a transient intermediate state between them along one transition pathway. Our results provide a new insight on protein folding mechanism of two-state proteins.
Collapse
|
2
|
Jacobson DR, Perkins TT. Correcting molecular transition rates measured by single-molecule force spectroscopy for limited temporal resolution. Phys Rev E 2020; 102:022402. [PMID: 32942397 DOI: 10.1103/physreve.102.022402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Equilibrium free-energy-landscape parameters governing biomolecular folding can be determined from nonequilibrium force-induced unfolding by measuring the rates k for transitioning back and forth between states as a function of force F. However, bias in the observed forward and reverse rates is introduced by limited effective temporal resolution, which includes the mechanical response time of the force probe and any smoothing used to improve the signal-to-noise ratio. Here we use simulations to characterize this bias, which is most prevalent when the ratio of forward and reverse rates is far from unity. We find deviations in k(F) at high rates, due to unobserved transitions from short- to long-lived states, and at low rates, due to the corresponding unobserved transitions from long- to short-lived states. These missing events introduce erroneous curvature in log(k) vs F that leads to incorrect landscape parameter determination. To correct the measured k(F), we derive a pair of model-independent analytical formulas. The first correction accounts for unobserved transitions from short- to long-lived states, but does surprisingly little to correct the erroneous energy-landscape parameters. Only by subsequently applying the second formula, which corrects the corresponding reverse process, do we recover the expected k(F) and energy-landscape quantities. Going forward, these corrections should be applied to transition-rate data whenever the highest measured rate is not at least an order of magnitude slower than the effective temporal resolution.
Collapse
Affiliation(s)
- David R Jacobson
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, USA
| | - Thomas T Perkins
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
3
|
Wijeratne SS, Nolasco L, Li J, Jiang K, Moake JL, Kiang CH. Correlating Conformational Dynamics with the Von Willebrand Factor Reductase Activity of Factor H Using Single Molecule Force Measurements. J Phys Chem B 2018; 122:10653-10658. [PMID: 30351116 DOI: 10.1021/acs.jpcb.8b06153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Activation of proteins often involves conformational transitions, and these switches are often difficult to characterize in multidomain proteins. Full-length factor H (FH), consisting of 20 small consensus repeat domains (150 kD), is a complement control protein that regulates the activity of the alternative complement pathway. Different preparations of FH can also reduce the disulfide bonds linking large Von Willebrand factor (VWF) multimers into smaller, less adhesive forms. In contrast, commercially available purified FH (pFH) has little or no VWF reductase activity unless the pFH is chemically modified by either ethylenediaminetetraacetic acid (EDTA) or urea. We used atomic force microscopy single molecule force measurements to investigate different forms of FH, including recombinant FH and pFH, in the presence or absence of EDTA and urea, and to correlate the conformational changes to its activities. We found that the FH conformation depends on the method used for sample preparation, which affects the VWF reductase activity of FH.
Collapse
|
4
|
Nadler H, Shaulov L, Blitsman Y, Mordechai M, Jopp J, Sal-Man N, Berkovich R. Deciphering the Mechanical Properties of Type III Secretion System EspA Protein by Single Molecule Force Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6261-6270. [PMID: 29726683 DOI: 10.1021/acs.langmuir.8b01198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bacterial pathogens inject virulence factors into host cells during bacterial infections using type III secretion systems. In enteropathogenic Escherichia coli, this system contains an external filament, formed by a self-oligomerizing protein called E. coli secreted protein A (EspA). The EspA filament penetrates the thick viscous mucus layer to facilitate the attachment of the bacteria to the gut-epithelium. To do that, the EspA filament requires noteworthy mechanical endurance considering the mechanical shear stresses found within the intestinal tract. To date, the mechanical properties of the EspA filament and the structural and biophysical knowledge of monomeric EspA are very limited, mostly due to the strong tendency of the protein to self-oligomerize. To overcome this limitation, we employed a single molecule force spectroscopy (SMFS) technique and studied the mechanical properties of EspA. Force extension dynamic of (I91)4-EspA-(I91)4 chimera revealed two structural unfolding events occurring at low forces during EspA unfolding, thus indicating no unique mechanical stability of the monomeric protein. SMFS examination of purified monomeric EspA protein, treated by a gradually refolding protocol, exhibited similar mechanical properties as the EspA protein within the (I91)4-EspA-(I91)4 chimera. Overall, our results suggest that the mechanical integrity of the EspA filament likely originates from the interactions between EspA monomers and not from the strength of an individual monomer.
Collapse
Affiliation(s)
- Hila Nadler
- Department of Chemical Engineering , Ben-Gurion University of the Negev , Beer Sheva 8410501 , Israel
| | - Lihi Shaulov
- Department of Microbiology, Immunology and Genetics , Ben-Gurion University of the Negev , Beer Sheva 8410501 , Israel
| | - Yossi Blitsman
- Department of Chemical Engineering , Ben-Gurion University of the Negev , Beer Sheva 8410501 , Israel
| | - Moran Mordechai
- Department of Chemical Engineering , Ben-Gurion University of the Negev , Beer Sheva 8410501 , Israel
| | - Jürgen Jopp
- The Ilse Katz Institute for Nanoscale Science and Technology , Ben-Gurion University of the Negev , Beer Sheva 8410501 , Israel
| | - Neta Sal-Man
- Department of Microbiology, Immunology and Genetics , Ben-Gurion University of the Negev , Beer Sheva 8410501 , Israel
| | - Ronen Berkovich
- Department of Chemical Engineering , Ben-Gurion University of the Negev , Beer Sheva 8410501 , Israel
- The Ilse Katz Institute for Nanoscale Science and Technology , Ben-Gurion University of the Negev , Beer Sheva 8410501 , Israel
| |
Collapse
|
5
|
Stauch T, Dreuw A. Advances in Quantum Mechanochemistry: Electronic Structure Methods and Force Analysis. Chem Rev 2016; 116:14137-14180. [PMID: 27767298 DOI: 10.1021/acs.chemrev.6b00458] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In quantum mechanochemistry, quantum chemical methods are used to describe molecules under the influence of an external force. The calculation of geometries, energies, transition states, reaction rates, and spectroscopic properties of molecules on the force-modified potential energy surfaces is the key to gain an in-depth understanding of mechanochemical processes at the molecular level. In this review, we present recent advances in the field of quantum mechanochemistry and introduce the quantum chemical methods used to calculate the properties of molecules under an external force. We place special emphasis on quantum chemical force analysis tools, which can be used to identify the mechanochemically relevant degrees of freedom in a deformed molecule, and spotlight selected applications of quantum mechanochemical methods to point out their synergistic relationship with experiments.
Collapse
Affiliation(s)
- Tim Stauch
- Interdisciplinary Center for Scientific Computing , Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing , Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
de Sancho D, Best RB. Reconciling Intermediates in Mechanical Unfolding Experiments with Two-State Protein Folding in Bulk. J Phys Chem Lett 2016; 7:3798-3803. [PMID: 27626458 PMCID: PMC5597958 DOI: 10.1021/acs.jpclett.6b01722] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Most experimentally well-characterized single domain proteins of less than 100 residues have been found to be two-state folders. That is, only two distinct populations can explain both equilibrium and kinetic measurements. Results from single molecule force spectroscopy, where a protein is unfolded by applying a mechanical pulling force to its ends, have largely confirmed this description for proteins found to be two-state in ensemble experiments. Recently, however, stable intermediates have been reported in mechanical unfolding experiments on a cold-shock protein previously found to be a prototypical two-state folder. Here, we tackle this discrepancy using free energy landscapes and Markov state models derived from coarse-grained molecular simulations. We show that protein folding intermediates can be selectively stabilized by the pulling force and that the populations of these intermediates vary in a force-dependent manner. Our model qualitatively captures the experimental results and suggests a possible origin of the apparent discrepancy.
Collapse
Affiliation(s)
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
7
|
Tych KM, Batchelor M, Hoffmann T, Wilson MC, Hughes ML, Paci E, Brockwell DJ, Dougan L. Differential Effects of Hydrophobic Core Packing Residues for Thermodynamic and Mechanical Stability of a Hyperthermophilic Protein. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7392-7402. [PMID: 27338140 DOI: 10.1021/acs.langmuir.6b01550] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Proteins from organisms that have adapted to environmental extremes provide attractive systems to explore and determine the origins of protein stability. Improved hydrophobic core packing and decreased loop-length flexibility can increase the thermodynamic stability of proteins from hyperthermophilic organisms. However, their impact on protein mechanical stability is not known. Here, we use protein engineering, biophysical characterization, single-molecule force spectroscopy (SMFS), and molecular dynamics (MD) simulations to measure the effect of altering hydrophobic core packing on the stability of the cold shock protein TmCSP from the hyperthermophilic bacterium Thermotoga maritima. We make two variants of TmCSP in which a mutation is made to reduce the size of aliphatic groups from buried hydrophobic side chains. In the first, a mutation is introduced in a long loop (TmCSP L40A); in the other, the mutation is introduced on the C-terminal β-strand (TmCSP V62A). We use MD simulations to confirm that the mutant TmCSP L40A shows the most significant increase in loop flexibility, and mutant TmCSP V62A shows greater disruption to the core packing. We measure the thermodynamic stability (ΔGD-N) of the mutated proteins and show that there is a more significant reduction for TmCSP L40A (ΔΔG = 63%) than TmCSP V62A (ΔΔG = 47%), as might be expected on the basis of the relative reduction in the size of the side chain. By contrast, SMFS measures the mechanical stability (ΔG*) and shows a greater reduction for TmCSP V62A (ΔΔG* = 8.4%) than TmCSP L40A (ΔΔG* = 2.5%). While the impact on the mechanical stability is subtle, the results demonstrate the power of tuning noncovalent interactions to modulate both the thermodynamic and mechanical stability of a protein. Such understanding and control provide the opportunity to design proteins with optimized thermodynamic and mechanical properties.
Collapse
Affiliation(s)
- Katarzyna M Tych
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Matthew Batchelor
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Toni Hoffmann
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Michael C Wilson
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Megan L Hughes
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Emanuele Paci
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - David J Brockwell
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Lorna Dougan
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
8
|
Hughes ML, Dougan L. The physics of pulling polyproteins: a review of single molecule force spectroscopy using the AFM to study protein unfolding. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:076601. [PMID: 27309041 DOI: 10.1088/0034-4885/79/7/076601] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
One of the most exciting developments in the field of biological physics in recent years is the ability to manipulate single molecules and probe their properties and function. Since its emergence over two decades ago, single molecule force spectroscopy has become a powerful tool to explore the response of biological molecules, including proteins, DNA, RNA and their complexes, to the application of an applied force. The force versus extension response of molecules can provide valuable insight into its mechanical stability, as well as details of the underlying energy landscape. In this review we will introduce the technique of single molecule force spectroscopy using the atomic force microscope (AFM), with particular focus on its application to study proteins. We will review the models which have been developed and employed to extract information from single molecule force spectroscopy experiments. Finally, we will end with a discussion of future directions in this field.
Collapse
Affiliation(s)
- Megan L Hughes
- School of Physics and Astronomy, University of Leeds, LS2 9JT, UK. Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, UK
| | | |
Collapse
|
9
|
Schönfelder J, Perez-Jimenez R, Muñoz V. A simple two-state protein unfolds mechanically via multiple heterogeneous pathways at single-molecule resolution. Nat Commun 2016; 7:11777. [PMID: 27248054 PMCID: PMC4895439 DOI: 10.1038/ncomms11777] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/28/2016] [Indexed: 01/18/2023] Open
Abstract
A major drive in protein folding has been to develop experimental technologies to resolve the myriads of microscopic pathways and complex mechanisms that purportedly underlie simple two-state folding behaviour. This is key for cross-validating predictions from theory and modern computer simulations. Detecting such complexity experimentally has remained elusive even using methods with improved time, structural or single-molecule resolution. Here, we investigate the mechanical unfolding of cold shock protein B (Csp), a showcase two-state folder, using single-molecule force-spectroscopy. Under controlled-moderate pulling forces, the unfolding of Csp emerges as highly heterogeneous with trajectories ranging from single sweeps to different combinations of multiple long-lived mechanical intermediates that also vary in order of appearance. Steered molecular dynamics simulations closely reproduce the experimental observations, thus matching unfolding patterns with structural events. Our results provide a direct glimpse at the nanoscale complexity underlying two-state folding, and postulate these combined methods as unique tools for dissecting the mechanical unfolding mechanisms of such proteins. Previous investigations have indicated that the model protein CspB folds in a simple two-state fashion. Here, the authors provide direct experimental evidence for that the energy landscape of two-state folding proteins is highly heterogeneous and that unfolding can occur via multiple pathways.
Collapse
Affiliation(s)
- Jörg Schönfelder
- Department of Macromolecular Structures, National Biotechnology Center, Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain.,Nanobiosystems Programme, IMDEA Nanosciences, Faraday 9, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain.,Nanobiomechanics Laboratory, CIC nanoGUNE, 20018 San Sebastián, Spain
| | - Raul Perez-Jimenez
- Nanobiomechanics Laboratory, CIC nanoGUNE, 20018 San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Victor Muñoz
- Department of Macromolecular Structures, National Biotechnology Center, Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain.,Nanobiosystems Programme, IMDEA Nanosciences, Faraday 9, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain.,Department of Bioengineering, School of Engineering, University of California, Merced, California 95343, USA
| |
Collapse
|
10
|
Wołek K, Cieplak M. Criteria for folding in structure-based models of proteins. J Chem Phys 2016; 144:185102. [DOI: 10.1063/1.4948783] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Karol Wołek
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Marek Cieplak
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
11
|
Tych KM, Batchelor M, Hoffmann T, Wilson MC, Paci E, Brockwell DJ, Dougan L. Tuning protein mechanics through an ionic cluster graft from an extremophilic protein. SOFT MATTER 2016; 12:2688-2699. [PMID: 26809452 DOI: 10.1039/c5sm02938d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Proteins from extremophilic organisms provide excellent model systems to determine the role of non-covalent interactions in defining protein stability and dynamics as well as being attractive targets for the development of robust biomaterials. Hyperthermophilic proteins have a prevalence of salt bridges, relative to their mesophilic homologues, which are thought to be important for enhanced thermal stability. However, the impact of salt bridges on the mechanical properties of proteins is far from understood. Here, a combination of protein engineering, biophysical characterisation, single molecule force spectroscopy (SMFS) and molecular dynamics (MD) simulations directly investigates the role of salt bridges in the mechanical stability of two cold shock proteins; BsCSP from the mesophilic organism Bacillus subtilis and TmCSP from the hyperthermophilic organism Thermotoga maritima. Single molecule force spectroscopy shows that at ambient temperatures TmCSP is mechanically stronger yet, counter-intuitively, its native state can withstand greater deformation before unfolding (i.e. it is mechanically soft) compared with BsCSP. MD simulations were used to identify the location and quantify the population of salt bridges, and reveal that TmCSP contains a larger number of highly occupied salt bridges than BsCSP. To test the hypothesis that salt-bridges endow these mechanical properties on the hyperthermophilic CSP, a charged triple mutant (CTM) variant of BsCSP was generated by grafting an ionic cluster from TmCSP into the BsCSP scaffold. As expected CTM is thermodynamically more stable and mechanically softer than BsCSP. We show that a grafted ionic cluster can increase the mechanical softness of a protein and speculate that it could provide a mechanical recovery mechanism and that it may be a design feature applicable to other proteins.
Collapse
Affiliation(s)
- Katarzyna M Tych
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | | | | | |
Collapse
|
12
|
Rhys NH, Soper AK, Dougan L. Hydrophilic Association in a Dilute Glutamine Solution Persists Independent of Increasing Temperature. J Phys Chem B 2015; 119:15644-51. [DOI: 10.1021/acs.jpcb.5b07413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Natasha H. Rhys
- School
of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Alan K. Soper
- ISIS Facility,
STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxon OX11
OQX, U.K
| | - Lorna Dougan
- School
of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
13
|
Hoffmann T, Tych KM, Crosskey T, Schiffrin B, Brockwell DJ, Dougan L. Rapid and Robust Polyprotein Production Facilitates Single-Molecule Mechanical Characterization of β-Barrel Assembly Machinery Polypeptide Transport Associated Domains. ACS NANO 2015; 9:8811-21. [PMID: 26284289 DOI: 10.1021/acsnano.5b01962] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Single-molecule force spectroscopy by atomic force microscopy exploits the use of multimeric protein constructs, namely, polyproteins, to decrease the impact of nonspecific interactions, to improve data accumulation, and to allow the accommodation of benchmarking reference domains within the construct. However, methods to generate such constructs are either time- and labor-intensive or lack control over the length or the domain sequence of the obtained construct. Here, we describe an approach that addresses both of these shortcomings that uses Gibson assembly (GA) to generate a defined recombinant polyprotein rapidly using linker sequences. To demonstrate the feasibility of this approach, we used GA to make a polyprotein composed of alternating domains of I27 and TmCsp, (I27-TmCsp)3-I27)(GA), and showed the mechanical fingerprint, mechanical strength, and pulling speed dependence are the same as an analogous polyprotein constructed using the classical approach. After this benchmarking, we exploited this approach to facilitiate the mechanical characterization of POTRA domain 2 of BamA from E. coli (EcPOTRA2) by assembling the polyprotein (I27-EcPOTRA2)3-I27(GA). We show that, as predicted from the α + β topology, EcPOTRA2 domains are mechanically robust over a wide range of pulling speeds. Furthermore, we identify a clear correlation between mechanical robustness and brittleness for a range of other α + β proteins that contain the structural feature of proximal terminal β-strands in parallel geometry. We thus demonstrate that the GA approach is a powerful tool, as it circumvents the usual time- and labor-intensive polyprotein production process and allows for rapid production of new constructs for single-molecule studies. As shown for EcPOTRA2, this approach allows the exploration of the mechanical properties of a greater number of proteins and their variants. This improves our understanding of the relationship between structure and mechanical strength, increasing our ability to design proteins with tailored mechanical properties.
Collapse
Affiliation(s)
- Toni Hoffmann
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, U.K
| | - Katarzyna M Tych
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, U.K
| | - Thomas Crosskey
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, U.K
| | - Bob Schiffrin
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, U.K
| | - David J Brockwell
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, U.K
| | - Lorna Dougan
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, U.K
| |
Collapse
|
14
|
Life in extreme environments: single molecule force spectroscopy as a tool to explore proteins from extremophilic organisms. Biochem Soc Trans 2015; 43:179-85. [DOI: 10.1042/bst20140274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Extremophiles are organisms which survive and thrive in extreme environments. The proteins from extremophilic single-celled organisms have received considerable attention as they are structurally stable and functionally active under extreme physical and chemical conditions. In this short article, we provide an introduction to extremophiles, the structural adaptations of proteins from extremophilic organisms and the exploitation of these proteins in industrial applications. We provide a review of recent developments which have utilized single molecule force spectroscopy to mechanically manipulate proteins from extremophilic organisms and the information which has been gained about their stability, flexibility and underlying energy landscapes.
Collapse
|
15
|
Farrance OE, Paci E, Radford SE, Brockwell DJ. Extraction of accurate biomolecular parameters from single-molecule force spectroscopy experiments. ACS NANO 2015; 9:1315-1324. [PMID: 25646767 DOI: 10.1021/nn505135d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The atomic force microscope (AFM) is able to manipulate biomolecules and their complexes with exquisite force sensitivity and distance resolution. This capability, complemented by theoretical models, has greatly improved our understanding of the determinants of mechanical strength in proteins and revealed the diverse effects of directional forces on the energy landscape of biomolecules. In unbinding experiments, the interacting partners are usually immobilized on their respective substrates via extensible linkers. These linkers affect both the force and contour length (Lc) of the complex at rupture. Surprisingly, while the former effect is well understood, the latter is largely neglected, leading to incorrect estimations of Lc, a parameter that is often used as evidence for the detection of specific interactions and remodeling events and for the inference of interaction regions. To address this problem, a model that predicts contour length measurements from single-molecule forced-dissociation experiments is presented that considers attachment position on the AFM tip, geometric effects, and polymer dynamics of the linkers. Modeled data are compared with measured contour length distributions from several different experimental systems, revealing that current methods underestimate contour lengths. The model enables nonspecific interactions to be identified unequivocally, allows accurate determination of Lc, and, by comparing experimental and modeled distributions, enables partial unfolding events before rupture to be identified unequivocally.
Collapse
Affiliation(s)
- Oliver E Farrance
- Astbury Centre for Structural and Molecular Biology and School of Molecular and Cellular Biology, University of Leeds , Leeds, West Yorkshire, LS2 9JT, U.K
| | | | | | | |
Collapse
|
16
|
Tych KM, Hughes ML, Bourke J, Taniguchi Y, Kawakami M, Brockwell DJ, Dougan L. Optimizing the calculation of energy landscape parameters from single-molecule protein unfolding experiments. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:012710. [PMID: 25679645 DOI: 10.1103/physreve.91.012710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Indexed: 06/04/2023]
Abstract
Single-molecule force spectroscopy using an atomic force microscope (AFM) can be used to measure the average unfolding force of proteins in a constant velocity experiment. In combination with Monte Carlo simulations and through the application of the Zhurkov-Bell model, information about the parameters describing the underlying unfolding energy landscape of the protein can be obtained. Using this approach, we have completed protein unfolding experiments on the polyprotein (I27)(5) over a range of pulling velocities. In agreement with previous work, we find that the observed number of protein unfolding events observed in each approach-retract cycle varies between one and five, due to the nature of the interactions between the polyprotein, the AFM tip, and the substrate, and there is an unequal unfolding probability distribution. We have developed a Monte Carlo simulation that incorporates the impact of this unequal unfolding probability distribution on the median unfolding force and the calculation of the protein unfolding energy landscape parameters. These results show that while there is a significant, unequal unfolding probability distribution, the unfolding energy landscape parameters obtained from use of the Zhurkov-Bell model are not greatly affected. This result is important because it demonstrates that the minimum acceptance criteria typically used in force extension experiments are justified and do not skew the calculation of the unfolding energy landscape parameters. We further validate this approach by determining the error in the energy landscape parameters for two extreme cases, and we provide suggestions for methods that can be employed to increase the level of accuracy in single-molecule experiments using polyproteins.
Collapse
Affiliation(s)
- Katarzyna M Tych
- Astbury Centre for Structural Molecular Biology and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Megan L Hughes
- Astbury Centre for Structural Molecular Biology and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - James Bourke
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yukinori Taniguchi
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Masaru Kawakami
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Lorna Dougan
- Astbury Centre for Structural Molecular Biology and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
17
|
Wolny M, Batchelor M, Knight PJ, Paci E, Dougan L, Peckham M. Stable single α-helices are constant force springs in proteins. J Biol Chem 2014; 289:27825-35. [PMID: 25122759 PMCID: PMC4183817 DOI: 10.1074/jbc.m114.585679] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Single α-helix (SAH) domains are rich in charged residues (Arg, Lys, and Glu) and stable in solution over a wide range of pH and salt concentrations. They are found in many different proteins where they bridge two functional domains. To test the idea that their high stability might enable these proteins to resist unfolding along their length, the properties and unfolding behavior of the predicted SAH domain from myosin-10 were characterized. The expressed and purified SAH domain was highly helical, melted non-cooperatively, and was monomeric as shown by circular dichroism and mass spectrometry as expected for a SAH domain. Single molecule force spectroscopy experiments showed that the SAH domain unfolded at very low forces (<30 pN) without a characteristic unfolding peak. Molecular dynamics simulations showed that the SAH domain unfolds progressively as the length is increased and refolds progressively as the length is reduced. This enables the SAH domain to act as a constant force spring in the mechanically dynamic environment of the cell.
Collapse
Affiliation(s)
- Marcin Wolny
- From the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Matthew Batchelor
- From the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Peter J Knight
- From the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Emanuele Paci
- From the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Lorna Dougan
- From the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Michelle Peckham
- From the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
18
|
Kotamarthi HC, Sharma R, Narayan S, Ray S, Ainavarapu SRK. Multiple Unfolding Pathways of Leucine Binding Protein (LBP) Probed by Single-Molecule Force Spectroscopy (SMFS). J Am Chem Soc 2013; 135:14768-74. [DOI: 10.1021/ja406238q] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hema Chandra Kotamarthi
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Riddhi Sharma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Satya Narayan
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Sayoni Ray
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Sri Rama Koti Ainavarapu
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
19
|
Hoffmann T, Tych KM, Hughes ML, Brockwell DJ, Dougan L. Towards design principles for determining the mechanical stability of proteins. Phys Chem Chem Phys 2013; 15:15767-80. [DOI: 10.1039/c3cp52142g] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Towey JJ, Soper AK, Dougan L. What happens to the structure of water in cryoprotectant solutions? Faraday Discuss 2013; 167:159-76. [DOI: 10.1039/c3fd00084b] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|