1
|
Wang X, Xiong D, Zhang Y, Zhai J, Gu YC, He X. The evolution of the Amber additive protein force field: History, current status, and future. J Chem Phys 2025; 162:030901. [PMID: 39817575 DOI: 10.1063/5.0227517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025] Open
Abstract
Molecular dynamics simulations are pivotal in elucidating the intricate properties of biological molecules. Nonetheless, the reliability of their outcomes hinges on the precision of the molecular force field utilized. In this perspective, we present a comprehensive review of the developmental trajectory of the Amber additive protein force field, delving into researchers' persistent quest for higher precision force fields and the prevailing challenges. We detail the parameterization process of the Amber protein force fields, emphasizing the specific improvements and retained features in each version compared to their predecessors. Furthermore, we discuss the challenges that current force fields encounter in balancing the interactions of protein-protein, protein-water, and water-water in molecular dynamics simulations, as well as potential solutions to overcome these issues.
Collapse
Affiliation(s)
- Xianwei Wang
- School of Physics, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Danyang Xiong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yueqing Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jihang Zhai
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200062, China
| |
Collapse
|
2
|
Jorge M. Theoretically grounded approaches to account for polarization effects in fixed-charge force fields. J Chem Phys 2024; 161:180901. [PMID: 39513441 DOI: 10.1063/5.0236899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
Non-polarizable, or fixed-charge, force fields are the workhorses of most molecular simulation studies. They attempt to describe the potential energy surface (PES) of the system by including polarization effects in an implicit way. This has historically been done in a rather empirical and ad hoc manner. Recent theoretical treatments of polarization, however, offer promise for getting the most out of fixed-charge force fields by judicious choice of parameters (most significantly the net charge or dipole moment of the model) and application of post facto polarization corrections. This Perspective describes these polarization theories, namely the "halfway-charge" theory and the molecular dynamics in electronic continuum theory, and shows that they lead to qualitatively (and often, quantitatively) similar predictions. Moreover, they can be reconciled into a unified approach to construct a force field development workflow that can yield non-polarizable models with charge/dipole values that provide an optimal description of the PES. Several applications of this approach are reviewed, and avenues for future research are proposed.
Collapse
Affiliation(s)
- Miguel Jorge
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom
| |
Collapse
|
3
|
Sprick M, Raabe G. Prediction of toluene/water partition coefficients of SAMPL9 compounds: comparison of the molecular dynamics force fields GAFF/RESP and GAFF/IPolQ-Mod + LJ-fit. Phys Chem Chem Phys 2024; 26:3126-3138. [PMID: 38189577 PMCID: PMC10806620 DOI: 10.1039/d3cp04149b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024]
Abstract
The SAMPL9 blind challenge aims to predict the toluene/water partition coefficient of 16 active pharmaceutical ingredients. In this work, the transfer free energy between the solvation in water and toluene is predicted by molecular dynamics simulations using the MBAR method [M. R. Shirts and J. D. Chodera, J. Chem. Phys., 2008, 129, 123105] with replica exchange molecular dynamics [Y. Sugita, A. Kitao and Y. Okamoto, J. Chem. Phys., 2000, 113, 6042-6051]. Thereby, simulation results using the force field GAFF/IPolQ-Mod + LJ-fit [A. Mecklenfeld and G. Raabe, ADMET and DMPK, 2020, 8, 274-296] are compared to simulations with the standard GAFF/RESP model [J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman and D. A. Case, J. Comput. Chem., 2004, 25, 1157-1174]. By statistical evaluation of RMSD and R2, we compare the results with other participants of the blind challenge. Furthermore, we provide a detailed analysis of solvation structures using the combined distribution function for simulations in water and the plane projection analysis for simulations in toluene, and we work out differences and similarities of the two force fields. These studies allow to gain important insights to increase the understanding of the mechanism of interactions between the drugs and the solvent.
Collapse
Affiliation(s)
- Miriam Sprick
- Institute of Thermodynamics, Technische Universität Braunschweig, Hans-Sommer-Strasse 5, 38106 Braunschweig, Germany.
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Strasse 35a, 38106 Braunschweig, Germany
| | - Gabriele Raabe
- Institute of Thermodynamics, Technische Universität Braunschweig, Hans-Sommer-Strasse 5, 38106 Braunschweig, Germany.
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Strasse 35a, 38106 Braunschweig, Germany
| |
Collapse
|
4
|
Kehrein J, Sotriffer C. Molecular Dynamics Simulations for Rationalizing Polymer Bioconjugation Strategies: Challenges, Recent Developments, and Future Opportunities. ACS Biomater Sci Eng 2024; 10:51-74. [PMID: 37466304 DOI: 10.1021/acsbiomaterials.3c00636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The covalent modification of proteins with polymers is a well-established method for improving the pharmacokinetic properties of therapeutically valuable biologics. The conjugated polymer chains of the resulting hybrid represent highly flexible macromolecular structures. As the dynamics of such systems remain rather elusive for established experimental techniques from the field of protein structure elucidation, molecular dynamics simulations have proven as a valuable tool for studying such conjugates at an atomistic level, thereby complementing experimental studies. With a focus on new developments, this review aims to provide researchers from the polymer bioconjugation field with a concise and up to date overview of such approaches. After introducing basic principles of molecular dynamics simulations, as well as methods for and potential pitfalls in modeling bioconjugates, the review illustrates how these computational techniques have contributed to the understanding of bioconjugates and bioconjugation strategies in the recent past and how they may lead to a more rational design of novel bioconjugates in the future.
Collapse
Affiliation(s)
- Josef Kehrein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| | - Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| |
Collapse
|
5
|
Pan X, Van R, Pu J, Nam K, Mao Y, Shao Y. Free Energy Profile Decomposition Analysis for QM/MM Simulations of Enzymatic Reactions. J Chem Theory Comput 2023; 19:8234-8244. [PMID: 37943896 PMCID: PMC10835707 DOI: 10.1021/acs.jctc.3c00973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
In enzyme mechanistic studies and mutant design, it is highly desirable to know the individual residue contributions to the reaction free energy and barrier. In this work, we show that such free energy contributions from each residue can be readily obtained by postprocessing ab initio quantum mechanical molecular mechanical (ai-QM/MM) free energy simulation trajectories. Specifically, through a mean force integration along the minimum free energy pathway, one can obtain the electrostatic, polarization, and van der Waals contributions from each residue to the free energy barrier. Separately, a similar analysis procedure allows us to assess the contribution from different collective variables along the reaction coordinate. The chorismate mutase reaction is used to demonstrate the utilization of these two trajectory analysis tools.
Collapse
Affiliation(s)
- Xiaoliang Pan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Richard Van
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
- Laboratory of Computational Biology, National, Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20824, United States
| | - Jingzhi Pu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yuezhi Mao
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
6
|
Harris BS, Bejagam KK, Baer MD. Development of a Systematic and Extensible Force Field for Peptoids (STEPs). J Phys Chem B 2023; 127:6573-6584. [PMID: 37462325 DOI: 10.1021/acs.jpcb.3c01424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Peptoids (N-substituted glycines) are a class of biomimetic polymers that have attracted significant attention due to their accessible synthesis and enzymatic and thermal stability relative to their naturally occurring counterparts (polypeptides). While these polymers provide the promise of more robust functional materials via hierarchical approaches, they present a new challenge for computational structure prediction for material design. The reliability of calculations hinges on the accuracy of interactions represented in the force field used to model peptoids. For proteins, structure prediction based on sequence and de novo design has made dramatic progress in recent years; however, these models are not readily transferable for peptoids. Current efforts to develop and implement peptoid-specific force fields are spread out, leading to replicated efforts and a fragmented collection of parameterized sidechains. Here, we developed a peptoid-specific force field containing 70 different side chains, using GAFF2 as starting point. The new model is validated based on the generation of Ramachandran-like plots from DFT optimization compared against force field reproduced potential energy and free energy surfaces as well as the reproduction of equilibrium cis/trans values for some residues experimentally known to form helical structures. Equilibrium cis/trans distributions (Kct) are estimated for all parameterized residues to identify which residues have an intrinsic propensity for cis or trans states in the monomeric state.
Collapse
Affiliation(s)
- Bradley S Harris
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Karteek K Bejagam
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Marcel D Baer
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
7
|
Roterman I, Stapor K, Konieczny L. New insights on the catalytic center of proteins from peptidylprolyl isomerase group based on the FOD-M model. J Cell Biochem 2023. [PMID: 37139783 DOI: 10.1002/jcb.30407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023]
Abstract
Generating the structure of the hydrophobic core is based on the orientation of hydrophobic residues towards the central part of the protein molecule with the simultaneous exposure of polar residues. Such a course of the protein folding process takes place with the active participation of the polar water environment. While the self-assembly process leading to the formation of micelles concerns freely moving bi-polar molecules, bipolar amino acids in polypeptide chain have limited mobility due to the covalent bonds. Therefore, proteins form a more or less perfect micelle-like structure. The criterion is the hydrophobicity distribution, which to a greater or lesser extent reproduces the distribution expressed by the 3D Gaussian function on the protein body. The vast majority of proteins must ensure solubility, so a certain part of it-as it is expected-should reproduce the structuring of micelles. The biological activity of proteins is encoded in the part that does not reproduce the micelle-like system. The location and quantitative assessment of the contribution of orderliness to disorder is of critical importance for the determination of biological activity. The form of maladjustment to the 3D Gauss function may be varied-hence the obtained high diversity of specific interactions with strictly defined molecules: ligands or substrates. The correctness of this interpretation was verified on the basis of the group of enzymes Peptidylprolyl isomerase-E.C.5.2.1.8. In proteins representing this class of enzymes, zones responsible for solubility-micelle-like hydrophobicity system-the location and specificity of the incompatible part in which the specific activity of the enzyme is located and coded were identified. The present study showed that the enzymes of the discussed group show two different schemes of the structure of catalytic center (taking into account the status as defined by the fuzzy oil drop model).
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University-Medical College, Kraków, Poland
| | - Katarzyna Stapor
- Department of Applied Informatics, Faculty of Automatic, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Jagiellonian University-Medical College, Kraków, Poland
| |
Collapse
|
8
|
Jorge M, Barrera MC, Milne AW, Ringrose C, Cole DJ. What is the Optimal Dipole Moment for Nonpolarizable Models of Liquids? J Chem Theory Comput 2023; 19:1790-1804. [PMID: 36827585 PMCID: PMC10061682 DOI: 10.1021/acs.jctc.2c01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Indexed: 02/26/2023]
Abstract
In classical nonpolarizable models, electrostatic interactions are usually described by assigning fixed partial charges to interaction sites. Despite the multitude of methods and theories proposed over the years for partial charge assignment, a fundamental question remains─what is the correct degree of polarization that a fixed-charge model should possess to provide the best balance of interactions (including induction effects) and yield the best description of the potential energy surface of a liquid phase? We address this question by approaching it from two separate and independent viewpoints: the QUantum mechanical BEspoke (QUBE) approach, which assigns bespoke force field parameters for individual molecules from ab initio calculations with minimal empirical fitting, and the Polarization-Consistent Approach (PolCA) force field, based on empirical fitting of force field parameters with an emphasis on transferability by rigorously accounting for polarization effects in the parameterization process. We show that the two approaches yield consistent answers to the above question, namely, that the dipole moment of the model should be approximately halfway between those of the gas and the liquid phase. Crucially, however, the reference liquid-phase dipole needs to be estimated using methods that explicitly consider both mean-field and local contributions to polarization. In particular, continuum dielectric models are inadequate for this purpose because they cannot account for local effects and therefore significantly underestimate the degree of polarization of the molecule. These observations have profound consequences for the development, validation, and testing of nonpolarizable models.
Collapse
Affiliation(s)
- Miguel Jorge
- Department
of Chemical and Process Engineering, University
of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom
| | - Maria Cecilia Barrera
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow G4 0RE, United Kingdom
| | - Andrew W. Milne
- Department
of Chemical and Process Engineering, University
of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom
| | - Chris Ringrose
- School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
upon Tyne NE1 7RU, United Kingdom
| | - Daniel J. Cole
- School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
9
|
Gonçalves YMH, Horta BAC. gmak: A Parameter-Space Mapping Strategy for Force-Field Calibration. J Chem Theory Comput 2023; 19:605-618. [PMID: 36634285 DOI: 10.1021/acs.jctc.2c00955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In the context of classical molecular simulations, the accuracy of a force field is highly influenced by the values of the relevant simulation parameters. In this work, a parameter-space mapping (PSM) workflow is proposed to aid in the calibration of force-field parameters, based mainly on the following features: (i) regular-grid discretization of the search space; (ii) partial sampling of the search-space grid; (iii) training of surrogate models to predict the estimates of the target properties for nonsampled parameter sets; (iv) post hoc interpretation of the results in terms of multiobjective optimization concepts; (v) attenuation of statistical errors achieved via empiric extension of the duration of the simulations; (vi) iterative search-space translation according to a user-defined scalar objective function that measures the accuracy of the force field (e.g., the weighted root-mean-square deviation of the target properties relative to the reference data). This combination of features results in a hybrid of a single- and a multiobjective optimization strategy, allowing for the approximate determination of both a local minimum of the chosen objective function and its neighboring Pareto efficient points. The PSM workflow is implemented in the extensible Python program gmak, which is made available in the Git repository at http://github.com/mssm-labmmol/gmak. Using this implementation, the PSM workflow was tested in a proof-of-concept fashion in the recalibration of the Lennard-Jones parameters of the 3-point Optimal Point Charge (OPC3) water model for compatibility with the GROMOS treatment of nonbonded interactions. The recalibrated model reproduces typical pure-liquid properties with an accuracy similar to the original OPC3 model and represents a significant improvement relative to the Simple Point Charge (SPC) model, which is the official recommendation for simulations using GROMOS force fields.
Collapse
Affiliation(s)
- Yan M H Gonçalves
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Peers Consulting & Technology, Av. Ibirapuera, 1753-18° andar, Moema, São Paulo, São Paulo 04029-90, Brazil
| | - Bruno A C Horta
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Peers Consulting & Technology, Av. Ibirapuera, 1753-18° andar, Moema, São Paulo, São Paulo 04029-90, Brazil
- Laboratory of Applied Intelligence, University of Vale do Itajaí, Itajaí, Santa Catarina 88302-901, Brazil
| |
Collapse
|
10
|
Wang Y, Fass J, Kaminow B, Herr JE, Rufa D, Zhang I, Pulido I, Henry M, Bruce Macdonald HE, Takaba K, Chodera JD. End-to-end differentiable construction of molecular mechanics force fields. Chem Sci 2022; 13:12016-12033. [PMID: 36349096 PMCID: PMC9600499 DOI: 10.1039/d2sc02739a] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/05/2022] [Indexed: 01/07/2023] Open
Abstract
Molecular mechanics (MM) potentials have long been a workhorse of computational chemistry. Leveraging accuracy and speed, these functional forms find use in a wide variety of applications in biomolecular modeling and drug discovery, from rapid virtual screening to detailed free energy calculations. Traditionally, MM potentials have relied on human-curated, inflexible, and poorly extensible discrete chemical perception rules (atom types) for applying parameters to small molecules or biopolymers, making it difficult to optimize both types and parameters to fit quantum chemical or physical property data. Here, we propose an alternative approach that uses graph neural networks to perceive chemical environments, producing continuous atom embeddings from which valence and nonbonded parameters can be predicted using invariance-preserving layers. Since all stages are built from smooth neural functions, the entire process-spanning chemical perception to parameter assignment-is modular and end-to-end differentiable with respect to model parameters, allowing new force fields to be easily constructed, extended, and applied to arbitrary molecules. We show that this approach is not only sufficiently expressive to reproduce legacy atom types, but that it can learn to accurately reproduce and extend existing molecular mechanics force fields. Trained with arbitrary loss functions, it can construct entirely new force fields self-consistently applicable to both biopolymers and small molecules directly from quantum chemical calculations, with superior fidelity than traditional atom or parameter typing schemes. When adapted to simultaneously fit partial charge models, espaloma delivers high-quality partial atomic charges orders of magnitude faster than current best-practices with low inaccuracy. When trained on the same quantum chemical small molecule dataset used to parameterize the Open Force Field ("Parsley") openff-1.2.0 small molecule force field augmented with a peptide dataset, the resulting espaloma model shows superior accuracy vis-á-vis experiments in computing relative alchemical free energy calculations for a popular benchmark. This approach is implemented in the free and open source package espaloma, available at https://github.com/choderalab/espaloma.
Collapse
Affiliation(s)
- Yuanqing Wang
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew York 10065NYUSA,Physiology, Biophysics and System Biology PhD Program, Weill Cornell Medical College, Cornell UniversityNew York 10065NYUSA,MFA Program in Creative Writing, Division of Humanities and Arts, City College of New York, City University of New YorkNew York 10031NYUSA
| | - Josh Fass
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew York 10065NYUSA,Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medical College, Cornell UniversityNew York 10065NYUSA
| | - Benjamin Kaminow
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew York 10065NYUSA,Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medical College, Cornell UniversityNew York 10065NYUSA
| | - John E. Herr
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew York 10065NYUSA
| | - Dominic Rufa
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew York 10065NYUSA,Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medical College, Cornell UniversityNew York 10065NYUSA
| | - Ivy Zhang
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew York 10065NYUSA,Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medical College, Cornell UniversityNew York 10065NYUSA
| | - Iván Pulido
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew York 10065NYUSA
| | - Mike Henry
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew York 10065NYUSA
| | - Hannah E. Bruce Macdonald
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew York 10065NYUSA
| | - Kenichiro Takaba
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew York 10065NYUSA,Pharmaceutical Research Center, Advanced Drug Discovery, Asahi Kasei Pharma CorporationShizuoka 410-2321Japan
| | - John D. Chodera
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew York 10065NYUSA
| |
Collapse
|
11
|
Boothroyd S, Madin OC, Mobley DL, Wang LP, Chodera JD, Shirts MR. Improving Force Field Accuracy by Training against Condensed-Phase Mixture Properties. J Chem Theory Comput 2022; 18:3577-3592. [PMID: 35533269 PMCID: PMC9254460 DOI: 10.1021/acs.jctc.1c01268] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Developing a sufficiently accurate classical force field representation of molecules is key to realizing the full potential of molecular simulations as a route to gaining a fundamental insight into a broad spectrum of chemical and biological phenomena. This is only possible, however, if the many complex interactions between molecules of different species in the system are accurately captured by the model. Historically, the intermolecular van der Waals (vdW) interactions have primarily been trained against densities and enthalpies of vaporization of pure (single-component) systems, with occasional usage of hydration free energies. In this study, we demonstrate how including physical property data of binary mixtures can better inform these parameters, encoding more information about the underlying physics of the system in complex chemical mixtures. To demonstrate this, we retrain a select number of Lennard-Jones parameters describing the vdW interactions of the OpenFF 1.0.0 (Parsley) fixed charge force field against training sets composed of densities and enthalpies of mixing for binary liquid mixtures as well as densities and enthalpies of vaporization of pure liquid systems and assess the performance of each of these combinations. We show that retraining against the mixture data improves the force field's ability to reproduce mixture properties, including solvation free energies, correcting some systematic errors that exist when training vdW interactions against properties of pure systems only.
Collapse
Affiliation(s)
- Simon Boothroyd
- Boothroyd Scientific Consulting Ltd., 71-75 Shelton Street, London WC2H 9JQ, Greater London, U.K
| | - Owen C Madin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - David L Mobley
- Department of Chemistry, University of California, Irvine, California 92617, United States
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92617, United States
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - John D Chodera
- Computational & Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Michael R Shirts
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
12
|
Yao N, Chen X, Fu ZH, Zhang Q. Applying Classical, Ab Initio, and Machine-Learning Molecular Dynamics Simulations to the Liquid Electrolyte for Rechargeable Batteries. Chem Rev 2022; 122:10970-11021. [PMID: 35576674 DOI: 10.1021/acs.chemrev.1c00904] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rechargeable batteries have become indispensable implements in our daily life and are considered a promising technology to construct sustainable energy systems in the future. The liquid electrolyte is one of the most important parts of a battery and is extremely critical in stabilizing the electrode-electrolyte interfaces and constructing safe and long-life-span batteries. Tremendous efforts have been devoted to developing new electrolyte solvents, salts, additives, and recipes, where molecular dynamics (MD) simulations play an increasingly important role in exploring electrolyte structures, physicochemical properties such as ionic conductivity, and interfacial reaction mechanisms. This review affords an overview of applying MD simulations in the study of liquid electrolytes for rechargeable batteries. First, the fundamentals and recent theoretical progress in three-class MD simulations are summarized, including classical, ab initio, and machine-learning MD simulations (section 2). Next, the application of MD simulations to the exploration of liquid electrolytes, including probing bulk and interfacial structures (section 3), deriving macroscopic properties such as ionic conductivity and dielectric constant of electrolytes (section 4), and revealing the electrode-electrolyte interfacial reaction mechanisms (section 5), are sequentially presented. Finally, a general conclusion and an insightful perspective on current challenges and future directions in applying MD simulations to liquid electrolytes are provided. Machine-learning technologies are highlighted to figure out these challenging issues facing MD simulations and electrolyte research and promote the rational design of advanced electrolytes for next-generation rechargeable batteries.
Collapse
Affiliation(s)
- Nan Yao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiang Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhong-Heng Fu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Yang D, Gronenborn AM, Chong LT. Development and Validation of Fluorinated, Aromatic Amino Acid Parameters for Use with the AMBER ff15ipq Protein Force Field. J Phys Chem A 2022; 126:2286-2297. [PMID: 35352936 PMCID: PMC9014858 DOI: 10.1021/acs.jpca.2c00255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/15/2022] [Indexed: 12/27/2022]
Abstract
We developed force field parameters for fluorinated, aromatic amino acids enabling molecular dynamics (MD) simulations of fluorinated proteins. These parameters are tailored to the AMBER ff15ipq protein force field and enable the modeling of 4, 5, 6, and 7F-tryptophan, 3F- and 3,5F-tyrosine, and 4F- or 4-CF3-phenylalanine. The parameters include 181 unique atomic charges derived using the implicitly polarized charge (IPolQ) scheme in the presence of SPC/Eb explicit water molecules and 9 unique bond, angle, or torsion terms. Our simulations of benchmark peptides and proteins maintain expected conformational propensities on the μs time scale. In addition, we have developed an open-source Python program to calculate fluorine relaxation rates from MD simulations. The extracted relaxation rates from protein simulations are in good agreement with experimental values determined by 19F NMR. Collectively, our results illustrate the power and robustness of the IPolQ lineage of force fields for modeling the structure and dynamics of fluorine-containing proteins at the atomic level.
Collapse
Affiliation(s)
- Darian
T. Yang
- Molecular
Biophysics and Structural Biology Graduate Program, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania 15260, United States
- Department
of Structural Biology, University of Pittsburgh
School of Medicine, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Angela M. Gronenborn
- Department
of Structural Biology, University of Pittsburgh
School of Medicine, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Lillian T. Chong
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
14
|
Huggins DJ. Comparing the Performance of Different AMBER Protein Forcefields, Partial Charge Assignments, and Water Models for Absolute Binding Free Energy Calculations. J Chem Theory Comput 2022; 18:2616-2630. [PMID: 35266690 DOI: 10.1021/acs.jctc.1c01208] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Identifying chemical starting points is a vital first step in small molecule drug discovery and can take significant time and money. For this reason, computational approaches to virtual screening are of great interest as they can lower the cost and shorten timeframes. However, simple approaches such as molecular docking and pharmacophore screening are of limited accuracy and provide a low probability of success. Alchemical binding free energies represent a promising approach for virtual screening as they naturally incorporate the key effects of water molecules, protein flexibility, and binding entropy. However, the calculations are technically very challenging, with performance depending on the specific forcefield used. For this reason, it is important that the community has access to benchmark test sets to assess prediction accuracy. In this paper, we present an approach to alchemical binding free energies using OpenMM. We identify effective simulation parameters using an existing BRD4(1) test set and present two new benchmark sets (cMET and PDE2A) that can be used in the community for validation purposes. Our findings also highlight the effectiveness of some AMBER forcefields, in particular, AMBER ff15ipq.
Collapse
Affiliation(s)
- David J Huggins
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States.,Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York 10065, United States
| |
Collapse
|
15
|
Zhou M, Laureanti JA, Bell CJ, Kwon M, Meng Q, Novikova IV, Thomas DG, Nicora CD, Sontag RL, Bedgar DL, O'Bryon I, Merkley ED, Ginovska B, Cort JR, Davin LB, Lewis NG. De novo sequencing and native mass spectrometry revealed hetero-association of dirigent protein homologs and potential interacting proteins in Forsythia × intermedia. Analyst 2021; 146:7670-7681. [PMID: 34806721 DOI: 10.1039/d1an01476e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The discovery of dirigent proteins (DPs) and their functions in plant phenol biochemistry was made over two decades ago with Forsythia × intermedia. Stereo-selective, DP-guided, monolignol-derived radical coupling in vitro was then reported to afford the optically active lignan, (+)-pinoresinol from coniferyl alcohol, provided one-electron oxidase/oxidant capacity was present. It later became evident that DPs have several distinct sub-families, presumably with different functions. Some known DPs require other essential enzymes/proteins (e.g. oxidases) for their functions. However, the lack of a fully sequenced genome for Forsythia × intermedia made it difficult to profile other components co-purified with the (+)-pinoresinol forming DP. Herein, we used an integrated bottom-up, top-down, and native mass spectrometry (MS) approach to de novo sequence the extracted proteins via adaptation of our initial report of DP solubilization and purification. Using publicly available transcriptome and genomic data from closely related species, we identified 14 proteins that were putatively associated with either DP function or the cell wall. Although their co-occurrence after extraction and chromatographic separation is suggestive for potential protein-protein interactions, none were found to form stable protein complexes with DPs in native MS under the specific experimental conditions we have explored. Interestingly, two new DP homologs were found and they formed hetero-trimers. Molecular dynamics simulations suggested that similar hetero-trimers were possible between Arabidopsis DP homologs with comparable sequence similarities. Nevertheless, our integrated mass spectrometry method development helped prepare for future investigations directed to the discovery of novel proteins and protein-protein interactions. These advantages can be highly beneficial for plant and microbial research where fully sequenced genomes may not be readily available.
Collapse
Affiliation(s)
- Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Joseph A Laureanti
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Callum J Bell
- National Center for Genome Resources, Santa Fe, NM, USA
| | - Mi Kwon
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Qingyan Meng
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Irina V Novikova
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Dennis G Thomas
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ryan L Sontag
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Diana L Bedgar
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Isabelle O'Bryon
- Chemical and Biological Signatures Group, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Eric D Merkley
- Chemical and Biological Signatures Group, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Bojana Ginovska
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - John R Cort
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA.,Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Laurence B Davin
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Norman G Lewis
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| |
Collapse
|
16
|
P. Oliveira M, Hünenberger PH. Systematic optimization of a fragment-based force field against experimental pure-liquid properties considering large compound families: application to oxygen and nitrogen compounds. Phys Chem Chem Phys 2021; 23:17774-17793. [PMID: 34350931 PMCID: PMC8386690 DOI: 10.1039/d1cp02001c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/30/2021] [Indexed: 12/04/2022]
Abstract
The CombiFF approach is a workflow for the automated refinement of force-field parameters against experimental condensed-phase data, considering entire classes of organic molecules constructed using a fragment library via combinatorial isomer enumeration. One peculiarity of this approach is that it relies on an electronegativity-equalization scheme to account for induction effects within molecules, with values of the atomic hardness and electronegativity as electrostatic parameters, rather than the partial charges themselves. In a previous article [M. P. Oliveira, M. Andrey, S. R. Rieder, L. Kern, D. F. Hahn, S. Riniker, B. A. C. Horta and P. H. Hünenberger, J. Chem. Theory. Comput. 2020, 16, 7525], CombiFF was introduced and applied to calibrate a GROMOS-compatible united-atom force field for the saturated acyclic (halo-)alkane family. Here, this scheme is employed for the construction of a corresponding force field for saturated acyclic compounds encompassing eight common chemical functional groups involving oxygen and/or nitrogen atoms, namely: ether, aldehyde, ketone, ester, alcohol, carboxylic acid, amine, and amide. Monofunctional as well as homo-polyfunctional compounds are considered. A total of 1712 experimental liquid densities ρliq and vaporization enthalpies ΔHvap concerning 1175 molecules are used for the calibration (339 molecules) and validation (836 molecules) of the 102 non-bonded interaction parameters of the force field. Using initial parameter values based on the GROMOS 2016H66 parameter set, convergence is reached after five iterations. Given access to one processor per simulated system, this operation only requires a few days of wall-clock computing time. After optimization, the root-mean-square deviations from experiment are 29.9 (22.4) kg m-3 for ρliq and 4.1 (5.5) kJ mol-1 for ΔHvap for the calibration (validation) set. Thus, a very good level of agreement with experiment is achieved in terms of these two properties, although the errors are inhomogeneously distributed across the different chemical functional groups.
Collapse
Affiliation(s)
- Marina P. Oliveira
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCICH-8093 ZürichSwitzerland+41 44 632 5503
| | - Philippe H. Hünenberger
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCICH-8093 ZürichSwitzerland+41 44 632 5503
| |
Collapse
|
17
|
Jorge M, Milne AW, Barrera MC, Gomes JR. New Force-Field for Organosilicon Molecules in the Liquid Phase. ACS PHYSICAL CHEMISTRY AU 2021; 1:54-69. [PMID: 34939073 PMCID: PMC8679648 DOI: 10.1021/acsphyschemau.1c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 11/29/2022]
Abstract
In this paper, we present a new molecular model that can accurately predict thermodynamic liquid state and phase-change properties for organosilicon molecules including several functional groups (alkylsilane, alkoxysilane, siloxane, and silanol). These molecules are of great importance in geological processes, biological systems, and material science, yet no force field currently exists that is widely applicable to organosilicates. The model is parametrized according to the recent Polarization-Consistent Approach (PolCA), which allows for polarization effects to be incorporated into a nonpolarizable model through post facto correction terms and is therefore consistent with previous parametrizations of the PolCA force field. Alkyl groups are described by the United-Atom approach, bond and angle parameters were taken from previous literature studies, dihedral parameters were fitted to new quantum chemical energy profiles, point charges were calculated from quantum chemical optimizations in a continuum solvent, and Lennard-Jones dispersion/repulsion parameters were fitted to match the density and enthalpy of vaporization of a small number of selected compounds. Extensive validation efforts were carried out, after careful collection and curation of experimental data for organosilicates. Overall, the model performed quite well for the density, enthalpy of vaporization, dielectric constant, and self-diffusion coefficient, but it slightly overestimated the magnitude of self-solvation free energies. The modular and transferable nature of the PolCA force field allows for further extensions to other types of silicon-containing compounds.
Collapse
Affiliation(s)
- Miguel Jorge
- Department
of Chemical and Process Engineering, University
of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom,
| | - Andrew W. Milne
- Department
of Chemical and Process Engineering, University
of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom
| | - Maria Cecilia Barrera
- Department
of Chemical and Process Engineering, University
of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom
| | - José R.
B. Gomes
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
18
|
|
19
|
Oliveira MP, Andrey M, Rieder SR, Kern L, Hahn DF, Riniker S, Horta BAC, Hünenberger PH. Systematic Optimization of a Fragment-Based Force Field against Experimental Pure-Liquid Properties Considering Large Compound Families: Application to Saturated Haloalkanes. J Chem Theory Comput 2020; 16:7525-7555. [DOI: 10.1021/acs.jctc.0c00683] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Marina P. Oliveira
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Honggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Maurice Andrey
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Honggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Salomé R. Rieder
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Honggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Leyla Kern
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Honggerberg, HCI, CH-8093 Zürich, Switzerland
| | - David F. Hahn
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Honggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Sereina Riniker
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Honggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Bruno A. C. Horta
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Philippe H. Hünenberger
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Honggerberg, HCI, CH-8093 Zürich, Switzerland
| |
Collapse
|
20
|
Kashefolgheta S, Oliveira MP, Rieder SR, Horta BAC, Acree WE, Hünenberger PH. Evaluating Classical Force Fields against Experimental Cross-Solvation Free Energies. J Chem Theory Comput 2020; 16:7556-7580. [DOI: 10.1021/acs.jctc.0c00688] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sadra Kashefolgheta
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Marina P. Oliveira
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Salomé R. Rieder
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Bruno A. C. Horta
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - William E. Acree
- Department of Chemistry, University of North Texas, 1155 Union Circle Drive #305070, Denton, Texas 76203, United States
| | - Philippe H. Hünenberger
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| |
Collapse
|
21
|
Cardona J, Jorge M, Lue L. Simple corrections for the static dielectric constant of liquid mixtures from model force fields. Phys Chem Chem Phys 2020; 22:21741-21749. [PMID: 32959821 DOI: 10.1039/d0cp04034g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pair-wise additive force fields provide fairly accurate predictions, through classical molecular simulations, for a wide range of structural, thermodynamic, and dynamical properties of many materials. However, one key property that has not been well captured is the static dielectric constant, which characterizes the response of a system to an applied electric field and is important in determining the screening of electrostatic interactions through a system. A simple correction has been found to provide a relatively robust method to improve the estimate of the static dielectric constant from molecular simulations for a broad range of compounds. This approach accounts for the electronic contribution to molecular polarizability and assumes that the charges that couple a molecule to an applied electric field are proportional to the effective force field charges. In this work, we examine how this correction performs for systems at different temperatures and for binary mixtures. Using a value for the electronic polarizability, based on the experimental index of refraction, and a charge scaling factor, determined at a single temperature, we find that the static dielectric constant can be predicted remarkably well, in comparison to the experimentally measured values. This provides good evidence that the effective charges that appear in pair-wise additive force fields developed to reproduce the potential energy surface of a system are not the same as those that determine the static dielectric constant; however, they can be captured in a relatively simple manner, which is dependent on the particular force field.
Collapse
Affiliation(s)
- Javier Cardona
- Department of Chemical and Process Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, UK. and Department of Electronic and Electrical Engineering, University of Strathclyde, Royal College Building, 204 George Street, Glasgow G1 1XW, UK
| | - Miguel Jorge
- Department of Chemical and Process Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, UK.
| | - Leo Lue
- Department of Chemical and Process Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, UK.
| |
Collapse
|
22
|
A theoretical investigation of different point charges combined with GAFF and OPLS-AA for acetic anhydride. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Bogetti AT, Piston HE, Leung JMG, Cabalteja CC, Yang DT, DeGrave AJ, Debiec KT, Cerutti DS, Case DA, Horne WS, Chong LT. A twist in the road less traveled: The AMBER ff15ipq-m force field for protein mimetics. J Chem Phys 2020; 153:064101. [PMID: 35287464 PMCID: PMC7419161 DOI: 10.1063/5.0019054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/19/2020] [Indexed: 12/17/2022] Open
Abstract
We present a new force field, AMBER ff15ipq-m, for simulations of protein mimetics in applications from therapeutics to biomaterials. This force field is an expansion of the AMBER ff15ipq force field that was developed for canonical proteins and enables the modeling of four classes of artificial backbone units that are commonly used alongside natural α residues in blended or "heterogeneous" backbones: chirality-reversed D-α-residues, the Cα-methylated α-residue Aib, homologated β-residues (β3) bearing proteinogenic side chains, and two cyclic β residues (βcyc; APC and ACPC). The ff15ipq-m force field includes 472 unique atomic charges and 148 unique torsion terms. Consistent with the AMBER IPolQ lineage of force fields, the charges were derived using the Implicitly Polarized Charge (IPolQ) scheme in the presence of explicit solvent. To our knowledge, no general force field reported to date models the combination of artificial building blocks examined here. In addition, we have derived Karplus coefficients for the calculation of backbone amide J-coupling constants for β3Ala and ACPC β residues. The AMBER ff15ipq-m force field reproduces experimentally observed J-coupling constants in simple tetrapeptides and maintains the expected conformational propensities in reported structures of proteins/peptides containing the artificial building blocks of interest-all on the μs timescale. These encouraging results demonstrate the power and robustness of the IPolQ lineage of force fields in modeling the structure and dynamics of natural proteins as well as mimetics with protein-inspired artificial backbones in atomic detail.
Collapse
Affiliation(s)
- Anthony T. Bogetti
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Hannah E. Piston
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Jeremy M. G. Leung
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | - Darian T. Yang
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania 15260, USA
| | - Alex J. DeGrave
- School of Computer Science and Engineering, University of Washington, Seattle, Washington 98115, USA
| | | | - David S. Cerutti
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 008854, USA
| | - David A. Case
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 008854, USA
| | - W. Seth Horne
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Lillian T. Chong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
24
|
Kelly BD, Smith WR. A Simple Method for Including Polarization Effects in Solvation Free Energy Calculations When Using Fixed-Charge Force Fields: Alchemically Polarized Charges. ACS OMEGA 2020; 5:17170-17181. [PMID: 32715202 PMCID: PMC7376688 DOI: 10.1021/acsomega.0c01148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
The incorporation of polarizability in classical force-field molecular simulations is an ongoing area of research. We focus here on its application to hydration free energy simulations of organic molecules. In contrast to computationally complex approaches involving the development of explicitly polarizable force fields, we present herein a simple methodology for incorporating polarization into such simulations using standard fixed-charge force fields, which we call the alchemically polarized charges (APolQ) method. APolQ employs a standard classical alchemical free energy change simulation to calculate the free energy difference between a fully polarized solute particle in a condensed phase and its unpolarized state in a vacuum. APolQ can in principle be applied to any microscopically homogeneous system (e.g., pure or mixed solvents). We applied APolQ to hydration free energy data for a test set of 45 neutral solute molecules in the FreeSolv database and compared results obtained using three different water models (SPC/E, TIP3P, and OPC3) and using minimal basis iterative Stockholder (MBIS) and restrained electrostatic potential (RESP) partial charge methodologies. In comparison with AM1-BCC, we found that APolQ outperforms it for the test set. Despite our method using default GAFF parameters, the MBIS partial charges yield absolute average deviations 1.5-1.9 kJ mol-1 lower than using AM1 bond charge correction (AM1-BCC). We conjecture that this method can be further improved by fitting the Lennard-Jones and torsional parameters to partial charges derived using MBIS or RESP methodologies.
Collapse
Affiliation(s)
- Braden D. Kelly
- Department
of Mathematics and Statistics, University
of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - William R. Smith
- Department
of Mathematics and Statistics, University
of Guelph, Guelph, Ontario N1G 2W1, Canada
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Faculty
of Science, Ontario Tech University, Oshawa, Ontario L1H 7K4, Canada
| |
Collapse
|
25
|
Qiu Y, Smith DGA, Stern CD, Feng M, Jang H, Wang LP. Driving torsion scans with wavefront propagation. J Chem Phys 2020; 152:244116. [PMID: 32610969 DOI: 10.1063/5.0009232] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The parameterization of torsional/dihedral angle potential energy terms is a crucial part of developing molecular mechanics force fields. Quantum mechanical (QM) methods are often used to provide samples of the potential energy surface (PES) for fitting the empirical parameters in these force field terms. To ensure that the sampled molecular configurations are thermodynamically feasible, constrained QM geometry optimizations are typically carried out, which relax the orthogonal degrees of freedom while fixing the target torsion angle(s) on a grid of values. However, the quality of results and computational cost are affected by various factors on a non-trivial PES, such as dependence on the chosen scan direction and the lack of efficient approaches to integrate results started from multiple initial guesses. In this paper, we propose a systematic and versatile workflow called TorsionDrive to generate energy-minimized structures on a grid of torsion constraints by means of a recursive wavefront propagation algorithm, which resolves the deficiencies of conventional scanning approaches and generates higher quality QM data for force field development. The capabilities of our method are presented for multi-dimensional scans and multiple initial guess structures, and an integration with the MolSSI QCArchive distributed computing ecosystem is described. The method is implemented in an open-source software package that is compatible with many QM software packages and energy minimization codes.
Collapse
Affiliation(s)
- Yudong Qiu
- Department of Chemistry, UC Davis, Davis, California 95616, USA
| | - Daniel G A Smith
- The Molecular Sciences Software Institute, Blacksburg, Virginia 24060, USA
| | - Chaya D Stern
- Computational and Systems Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Mudong Feng
- Department of Chemistry and Biochemistry, UC San Diego, La Jolla, California 92093, USA
| | - Hyesu Jang
- Department of Chemistry, UC Davis, Davis, California 95616, USA
| | - Lee-Ping Wang
- Department of Chemistry, UC Davis, Davis, California 95616, USA
| |
Collapse
|
26
|
Abstract
The restrained electrostatic potential (RESP) approach is a highly regarded and widely used method of assigning partial charges to molecules for simulations. RESP uses a quantum-mechanical method that yields fortuitous overpolarization and thereby accounts only approximately for self-polarization of molecules in the condensed phase. Here we present RESP2, a next generation of this approach, where the polarity of the charges is tuned by a parameter, δ, which scales the contributions from gas- and aqueous-phase calculations. When the complete non-bonded force field model, including Lennard-Jones parameters, is optimized to liquid properties, improved accuracy is achieved, even with this reduced set of five Lennard-Jones types. We argue that RESP2 with δ≈0.6 (60% aqueous, 40% gas-phase charges) is an accurate and robust method of generating partial charges, and that a small set of Lennard-Jones types is good starting point for a systematic re-optimization of this important non-bonded term.
Collapse
|
27
|
Visscher KM, Geerke DP. Deriving a Polarizable Force Field for Biomolecular Building Blocks with Minimal Empirical Calibration. J Phys Chem B 2020; 124:1628-1636. [PMID: 32073849 PMCID: PMC7061328 DOI: 10.1021/acs.jpcb.9b10903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/23/2020] [Indexed: 12/31/2022]
Abstract
Force field parametrization involves a complex set of linked optimization problems, with the goal of describing complex molecular interactions by using simple classical potential-energy functions that model Coulomb interactions, dispersion, and exchange repulsion. These functions comprise a set of atomic (and molecular) parameters and together with the bonded terms they constitute the molecular mechanics force field. Traditionally, many of these parameters have been fitted in a calibration approach in which experimental measures for thermodynamic and other relevant properties of small-molecule compounds are used for fitting and validation. As these approaches are laborious and time-consuming and represent an underdetermined optimization problem, we study methods to fit and derive an increasing number of parameters directly from electronic structure calculations, in order to greatly reduce possible parameter space for the remaining free parameters. In the current work we investigate a polarizable model with a higher order dispersion term for use in biomolecular simulation. Results for 49 biochemically relevant molecules are presented including updated parameters for hydrocarbon side chains. We show that our recently presented set of QM/MM derived atomic polarizabilities can be used in direct conjunction with partial charges and a higher order dispersion model that are quantum-mechanically determined, to freeze nearly all (i.e., 132 out of 138) nonbonded parameters to their quantum determined values.
Collapse
Affiliation(s)
- Koen M. Visscher
- AIMMS Division of Molecular
Toxicology, De Boelelaan
1108, 1081 HV Amsterdam, The Netherlands
| | - Daan P. Geerke
- AIMMS Division of Molecular
Toxicology, De Boelelaan
1108, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
28
|
Lemkul JA. Pairwise-additive and polarizable atomistic force fields for molecular dynamics simulations of proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:1-71. [PMID: 32145943 DOI: 10.1016/bs.pmbts.2019.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein force fields have been undergoing continual development since the first complete parameter sets were introduced nearly four decades ago. The functional forms that underlie these models have many common elements for the treatment of bonded and nonbonded forces, which are reviewed here. The most widely used force fields to date use a fixed-charge convention in which electronic polarization effects are treated via a mean-field approximation during partial charge assignment. Despite success in modeling folded proteins over many years, the fixed-charge assumption has limitations that cannot necessarily be overcome within their potential energy equations. To overcome these limitations, several force fields have recently been derived that explicitly treat electronic polarization effects with straightforward extensions of the potential energy functions used by nonpolarizable force fields. Here, we review the history of the most popular nonpolarizable force fields (AMBER, CHARMM, OPLS, and GROMOS) as well as studies that have validated them and applied them to studies of protein folding and misfolding. Building upon these force fields are more recent polarizable interaction potentials, including fluctuating charge models, POSSIM, AMOEBA, and the classical Drude oscillator. These force fields differ in their implementations but all attempt to model electronic polarization in a computationally tractable manner. Despite their recent emergence in the field of protein folding, several studies have already applied these polarizable models to challenging problems in this domain, including the role of polarization in folding free energies and sequence-specific effects on the stability of α-helical structures.
Collapse
Affiliation(s)
- Justin A Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States.
| |
Collapse
|
29
|
Kelly BD, Smith WR. Alchemical Hydration Free-Energy Calculations Using Molecular Dynamics with Explicit Polarization and Induced Polarity Decoupling: An On–the–Fly Polarization Approach. J Chem Theory Comput 2020; 16:1146-1161. [DOI: 10.1021/acs.jctc.9b01139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Braden D. Kelly
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - William R. Smith
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Faculty of Science, Ontario Tech University, Oshawa, ON L1H 7K4, Canada
| |
Collapse
|
30
|
Zhou A, Schauperl M, Nerenberg PS. Benchmarking Electronic Structure Methods for Accurate Fixed-Charge Electrostatic Models. J Chem Inf Model 2019; 60:249-258. [PMID: 31805237 DOI: 10.1021/acs.jcim.9b00962] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The accuracy of classical molecular mechanics (MM) force fields used for condensed phase molecular simulations depends strongly on the accuracy of modeling nonbonded interactions between atoms, such as electrostatic interactions. Some popular fixed-charge MM force fields use partial atomic charges derived from gas phase electronic structure calculations using the Hartree-Fock (HF) method with the relatively small 6-31G* basis set (HF/6-31G*). It is generally believed that HF/6-31G* generates fortuitously overpolarized electron distributions, as would be expected in the higher dielectric environment of the condensed phase. Using a benchmark set of 47 molecules, we show that HF/6-31G* overpolarizes molecules by just under 10% on average with respect to experimental gas phase dipole moments. The overpolarization of this method/basis set combination varies significantly though and, in some cases, even leads to molecular dipole moments that are lower than experimental gas phase measurements. We further demonstrate that using computationally inexpensive density functional theory (DFT) methods, together with appropriate augmented basis sets and a continuum solvent model, can yield molecular dipole moments that are both more strongly and more uniformly overpolarized. These data suggest that these methods-or ones similar to them-should be adopted for the derivation of accurate partial atomic charges for next-generation MM force fields.
Collapse
Affiliation(s)
| | - Michael Schauperl
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , California 92093 , United States
| | | |
Collapse
|
31
|
Tian C, Kasavajhala K, Belfon KAA, Raguette L, Huang H, Migues AN, Bickel J, Wang Y, Pincay J, Wu Q, Simmerling C. ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution. J Chem Theory Comput 2019; 16:528-552. [PMID: 31714766 DOI: 10.1021/acs.jctc.9b00591] [Citation(s) in RCA: 1055] [Impact Index Per Article: 175.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecular dynamics (MD) simulations have become increasingly popular in studying the motions and functions of biomolecules. The accuracy of the simulation, however, is highly determined by the molecular mechanics (MM) force field (FF), a set of functions with adjustable parameters to compute the potential energies from atomic positions. However, the overall quality of the FF, such as our previously published ff99SB and ff14SB, can be limited by assumptions that were made years ago. In the updated model presented here (ff19SB), we have significantly improved the backbone profiles for all 20 amino acids. We fit coupled φ/ψ parameters using 2D φ/ψ conformational scans for multiple amino acids, using as reference data the entire 2D quantum mechanics (QM) energy surface. We address the polarization inconsistency during dihedral parameter fitting by using both QM and MM in aqueous solution. Finally, we examine possible dependency of the backbone fitting on side chain rotamer. To extensively validate ff19SB parameters, and to compare to results using other Amber models, we have performed a total of ∼5 ms MD simulations in explicit solvent. Our results show that after amino-acid-specific training against QM data with solvent polarization, ff19SB not only reproduces the differences in amino-acid-specific Protein Data Bank (PDB) Ramachandran maps better but also shows significantly improved capability to differentiate amino-acid-dependent properties such as helical propensities. We also conclude that an inherent underestimation of helicity is present in ff14SB, which is (inexactly) compensated for by an increase in helical content driven by the TIP3P bias toward overly compact structures. In summary, ff19SB, when combined with a more accurate water model such as OPC, should have better predictive power for modeling sequence-specific behavior, protein mutations, and also rational protein design. Of the explicit water models tested here, we recommend use of OPC with ff19SB.
Collapse
Affiliation(s)
- Chuan Tian
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794 , United States.,Laufer Center for Physical and Quantitative Biology , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Koushik Kasavajhala
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794 , United States.,Laufer Center for Physical and Quantitative Biology , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Kellon A A Belfon
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794 , United States.,Laufer Center for Physical and Quantitative Biology , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Lauren Raguette
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794 , United States.,Laufer Center for Physical and Quantitative Biology , Stony Brook University , Stony Brook , New York 11794 , United States
| | - He Huang
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794 , United States.,Laufer Center for Physical and Quantitative Biology , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Angela N Migues
- Laufer Center for Physical and Quantitative Biology , Stony Brook University , Stony Brook , New York 11794 , United States
| | - John Bickel
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Yuzhang Wang
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794 , United States.,Laufer Center for Physical and Quantitative Biology , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Jorge Pincay
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Qin Wu
- Center for Functional Nanomaterials , Brookhaven National Laboratory , Upton , New York 11973 , United States
| | - Carlos Simmerling
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794 , United States.,Laufer Center for Physical and Quantitative Biology , Stony Brook University , Stony Brook , New York 11794 , United States
| |
Collapse
|
32
|
Applicability of a thermodynamic cycle approach for a force field parametrization targeting non-aqueous solvation free energies. J Comput Aided Mol Des 2019; 34:71-82. [PMID: 31781991 DOI: 10.1007/s10822-019-00261-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/21/2019] [Indexed: 10/25/2022]
Abstract
Accurate solvation free energy ΔGsolv predictions require well parametrized force fields. In order to refit Lennard-Jones (LJ) parameters for improved ΔGsolv predictions for a variety of compound classes and chemical environments, a large number of ΔGsolv calculations is required. As the calculation of ΔGsolv is computational expensive, there is need for efficient but precise calculation methods. In this work, we focus on the computation of non-aqueous solvation free energies. We compare ΔGsolv results from highly precise reference simulations for transferring a solute from the vacuum into a condensed phase and results obtained from a thermodynamic cycle implementation. As test systems, we alter LJ parameters ε and σ of widely used GAFF atom types ca, cl, n1, oh and os in various solute/solvent combinations. We examine the degree of configurational space overlap and find an impact by hydrogen bonds and the solvent accessible surface area. We conclude that the application of a thermodynamic cycle for the parametrization of force fields targeting ΔGsolv is useful if the adaptation of LJ parameters is limited to atom types in the solute or if only ε is changed.
Collapse
|
33
|
Jia X. Solvation Free Energy Calculations: The Combination between the Implicitly Polarized Fixed‐charge Model and the Reference Potential Strategy. J Comput Chem 2019; 40:2801-2809. [PMID: 31433076 DOI: 10.1002/jcc.26055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/27/2019] [Accepted: 08/04/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Xiangyu Jia
- NYU Shanghai, 1555 Century Avenue Shanghai 200122 China
- NYU‐ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North Shanghai 200127 China
| |
Collapse
|
34
|
Abramov A, Iglauer S. Application of the CLAYFF and the DREIDING Force Fields for Modeling of Alkylated Quartz Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5746-5752. [PMID: 30942583 DOI: 10.1021/acs.langmuir.9b00527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To extend applicability and to overcome limitations of combining rules for nonbond potential parameters, in this study, CLAYFF and DREIDING force fields are coupled at the level of atomic site charges to model quartz surfaces with chemisorpt hydrocarbons. Density functional theory and Bader charge analysis are applied to calculate charges of atoms of the OC bond connecting a quartz crystal and an alkyl group. The study demonstrates that the hydrogen atom of the quartz surface hydroxyl group can be removed and its charge can be redistributed among the oxygen and carbon atoms of the OC bond in a manner consistent with the results calculated at the density functional level of theory. Augmented with modified charges of the OC bond, force fields can then be applied to a practical problem of evaluation of the contact angle of a water droplet on alkylated quartz surfaces in a carbon dioxide environment, which is relevant for carbon geo-sequestration and in a broader context of oil and gas recovery. Alkylated quartz surfaces have been shown to be extremely hydrophobic even when the surface density of hydroxyl groups is close to the highest naturally observed density of 6.2 OH groups per square nanometer.
Collapse
Affiliation(s)
- Aleksandr Abramov
- School of Engineering , Edith Cowan University , 270 Joondalup Drive , Joondalup , WA 6027 Western Australia , Australia
| | - Stefan Iglauer
- School of Engineering , Edith Cowan University , 270 Joondalup Drive , Joondalup , WA 6027 Western Australia , Australia
| |
Collapse
|
35
|
Jing Z, Liu C, Cheng SY, Qi R, Walker BD, Piquemal JP, Ren P. Polarizable Force Fields for Biomolecular Simulations: Recent Advances and Applications. Annu Rev Biophys 2019; 48:371-394. [PMID: 30916997 DOI: 10.1146/annurev-biophys-070317-033349] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Realistic modeling of biomolecular systems requires an accurate treatment of electrostatics, including electronic polarization. Due to recent advances in physical models, simulation algorithms, and computing hardware, biomolecular simulations with advanced force fields at biologically relevant timescales are becoming increasingly promising. These advancements have not only led to new biophysical insights but also afforded opportunities to advance our understanding of fundamental intermolecular forces. This article describes the recent advances and applications, as well as future directions, of polarizable force fields in biomolecular simulations.
Collapse
Affiliation(s)
- Zhifeng Jing
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA;
| | - Chengwen Liu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA;
| | - Sara Y Cheng
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA;
| | - Rui Qi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA;
| | - Brandon D Walker
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA;
| | - Jean-Philip Piquemal
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA; .,Sorbonne Université, CNRS, Laboratoire de Chimie Theórique, 75252 Paris CEDEX 05, France.,Institut Universitaire de France, 75005 Paris, France
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA;
| |
Collapse
|
36
|
Visscher KM, Geerke DP. Deriving Force-Field Parameters from First Principles Using a Polarizable and Higher Order Dispersion Model. J Chem Theory Comput 2019; 15:1875-1883. [PMID: 30763086 PMCID: PMC6581419 DOI: 10.1021/acs.jctc.8b01105] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Indexed: 11/30/2022]
Abstract
In this work we propose a strategy based on quantum mechanical (QM) calculations to parametrize a polarizable force field for use in molecular dynamics (MD) simulations. We investigate the use of multiple atoms-in-molecules (AIM) strategies to partition QM determined molecular electron densities into atomic subregions. The partitioned atomic densities are subsequently used to compute atomic dispersion coefficients from effective exchange-hole-dipole moment (XDM) calculations. In order to derive values for the repulsive van der Waals parameters from first principles, we use a simple volume relation to scale effective atomic radii. Explicit inclusion of higher order dispersion coefficients was tested for a series of alkanes, and we show that combining C6 and C8 attractive terms together with a C11 repulsive potential yields satisfying models when used in combination with our van der Waals parameters and electrostatic and bonded parameters as directly obtained from quantum calculations as well. This result highlights that explicit inclusion of higher order dispersion terms could be viable in simulation, and it suggests that currently available QM analysis methods allow for first-principles parametrization of molecular mechanics models.
Collapse
Affiliation(s)
- Koen M. Visscher
- AIMMS Division of Molecular Toxicology,
Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Daan P. Geerke
- AIMMS Division of Molecular Toxicology,
Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| |
Collapse
|
37
|
Jia X, Li P. Solvation Free Energy Calculation Using a Fixed-Charge Model: Implicit and Explicit Treatments of the Polarization Effect. J Phys Chem B 2019; 123:1139-1148. [PMID: 30628452 DOI: 10.1021/acs.jpcb.8b10479] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, IPolQ-Mod charges and the reference potential scheme are used to calculate the solvation free energies of a set of organic molecules. Both methods could capture the phase transfer of a solute with accompanying polarization cost utilizing a fixed-charge model. The IPolQ-Mod charges, which are the average of two charge sets fitted in a vacuum state and a condensed phase, take account of the polarization effect implicitly. For the reference potential method, the quantum mechanics polarization corrections are calculated explicitly by thermodynamic perturbation. The polarization effect captured by the IPolQ-Mod charges is an approximation to that of the reference potential method theoretically. In the present study, the reference potential method shows a slight improvement over the classical restrained electrostatic potential (RESP) charges, which perform pretty well in predicting the solvation free energy. However, IPolQ-Mod(MP2) shows a poor agreement with the experimental data. Compared with IPolQ-Mod(MP2), IPolQ-Mod(M06-2X) or IPolQ-Mod(ωB97X) is found to give more appropriate prediction of the molecule's dipole and the solvation free energies calculated by IPolQ-Mod(M06-2X) or IPolQ-Mod(ωB97X) are more compatible with those of the RESP charges. If the other force field parameters remain unchanged, M06-2X or ωB97X is recommended to derive the IPolQ-Mod charges.
Collapse
Affiliation(s)
- Xiangyu Jia
- NYU Shanghai , 1555 Century Avenue , Shanghai 200122 , China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai , 3663 Zhongshan Road North , Shanghai 200127 , China
| | - Pengfei Li
- State Key Laboratory of Precision Spectroscopy and Department of Physics and Institute of Theoretical and Computational Science , East China Normal University , Shanghai 200062 , China
| |
Collapse
|
38
|
Milne AW, Jorge M. Polarization Corrections and the Hydration Free Energy of Water. J Chem Theory Comput 2018; 15:1065-1078. [DOI: 10.1021/acs.jctc.8b01115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Andrew W. Milne
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow G1 1XQ, United Kingdom
| | - Miguel Jorge
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow G1 1XQ, United Kingdom
| |
Collapse
|
39
|
Visscher KM, Swope WC, Geerke DP. A QM/MM Derived Polarizable Water Model for Molecular Simulation. Molecules 2018; 23:E3131. [PMID: 30501058 PMCID: PMC6321318 DOI: 10.3390/molecules23123131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 11/26/2022] Open
Abstract
In this work, we propose an improved QM/MM-based strategy to determine condensed-phase polarizabilities and we use this approach to optimize a new and simple polarizable four-site water model for classical molecular simulation. For the determination of the model value for the polarizability from QM/MM, we show that our proposed consensus-fitting strategy significantly reduces the uncertainty in calculated polarizabilities in cases where the size of the local external electric field is small. By fitting electrostatic, polarization and dispersion properties of our water model based on quantum and/or combined QM/MM calculations, only a single model parameter (describing exchange repulsion) is left for empirical calibration. The resulting model performs well in describing relevant pure-liquid thermodynamic and transport properties, which illustrates the merit of our approach to minimize the number of free variables in our model.
Collapse
Affiliation(s)
- Koen M Visscher
- AIMMS Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, De Boelelaan 1108, 1081 HV Amsterdam, The Netherlands.
| | - William C Swope
- IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA.
| | - Daan P Geerke
- AIMMS Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, De Boelelaan 1108, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Joseph JA, Wales DJ. Intrinsically Disordered Landscapes for Human CD4 Receptor Peptide. J Phys Chem B 2018; 122:11906-11921. [DOI: 10.1021/acs.jpcb.8b08371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jerelle A. Joseph
- Department of Chemistry, University of Cambridge, Lenfield Road, Cambridge CB2 1EW, United Kingdom
| | - David J. Wales
- Department of Chemistry, University of Cambridge, Lenfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
41
|
Riquelme M, Lara A, Mobley DL, Verstraelen T, Matamala AR, Vöhringer-Martinez E. Hydration Free Energies in the FreeSolv Database Calculated with Polarized Iterative Hirshfeld Charges. J Chem Inf Model 2018; 58:1779-1797. [PMID: 30125107 PMCID: PMC6195221 DOI: 10.1021/acs.jcim.8b00180] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Computer simulations of biomolecular systems often use force fields, which are combinations of simple empirical atom-based functions to describe the molecular interactions. Even though polarizable force fields give a more detailed description of intermolecular interactions, nonpolarizable force fields, developed several decades ago, are often still preferred because of their reduced computation cost. Electrostatic interactions play a major role in biomolecular systems and are therein described by atomic point charges. In this work, we address the performance of different atomic charges to reproduce experimental hydration free energies in the FreeSolv database in combination with the GAFF force field. Atomic charges were calculated by two atoms-in-molecules approaches, Hirshfeld-I and Minimal Basis Iterative Stockholder (MBIS). To account for polarization effects, the charges were derived from the solute's electron density computed with an implicit solvent model, and the energy required to polarize the solute was added to the free energy cycle. The calculated hydration free energies were analyzed with an error model, revealing systematic errors associated with specific functional groups or chemical elements. The best agreement with the experimental data is observed for the AM1-BCC and the MBIS atomic charge methods. The latter includes the solvent polarization and presents a root-mean-square error of 2.0 kcal mol-1 for the 613 organic molecules studied. The largest deviation was observed for phosphorus-containing molecules and the molecules with amide, ester and amine functional groups.
Collapse
Affiliation(s)
- Maximiliano Riquelme
- Departamento de Físico-Química, Facultad de Ciencias Químicas , Universidad de Concepción , 4070386 Concepción , Chile
| | - Alejandro Lara
- Departamento de Físico-Química, Facultad de Ciencias Químicas , Universidad de Concepción , 4070386 Concepción , Chile
| | - David L Mobley
- Departments of Pharmaceutical Sciences and Chemistry, 147 Bison Modular , University of California, Irvine , Irvine , California 92617 , United States
| | - Toon Verstraelen
- Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 903 , B-9052 Ghent , Belgium
| | - Adelio R Matamala
- Departamento de Físico-Química, Facultad de Ciencias Químicas , Universidad de Concepción , 4070386 Concepción , Chile
| | - Esteban Vöhringer-Martinez
- Departamento de Físico-Química, Facultad de Ciencias Químicas , Universidad de Concepción , 4070386 Concepción , Chile
| |
Collapse
|
42
|
Pantsar T, Poso A. Binding Affinity via Docking: Fact and Fiction. Molecules 2018; 23:molecules23081899. [PMID: 30061498 PMCID: PMC6222344 DOI: 10.3390/molecules23081899] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/22/2018] [Accepted: 07/26/2018] [Indexed: 01/03/2023] Open
Abstract
In 1982, Kuntz et al. published an article with the title “A Geometric Approach to Macromolecule-Ligand Interactions”, where they described a method “to explore geometrically feasible alignment of ligands and receptors of known structure”. Since then, small molecule docking has been employed as a fast way to estimate the binding pose of a given compound within a specific target protein and also to predict binding affinity. Remarkably, the first docking method suggested by Kuntz and colleagues aimed to predict binding poses but very little was specified about binding affinity. This raises the question as to whether docking is the right tool to estimate binding affinity. The short answer is no, and this has been concluded in several comprehensive analyses. However, in this opinion paper we discuss several critical aspects that need to be reconsidered before a reliable binding affinity prediction through docking is realistic. These are not the only issues that need to be considered, but they are perhaps the most critical ones. We also consider that in spite of the huge efforts to enhance scoring functions, the accuracy of binding affinity predictions is perhaps only as good as it was 10–20 years ago. There are several underlying reasons for this poor performance and these are analyzed. In particular, we focus on the role of the solvent (water), the poor description of H-bonding and the lack of the systems’ true dynamics. We hope to provide readers with potential insights and tools to overcome the challenging issues related to binding affinity prediction via docking.
Collapse
Affiliation(s)
- Tatu Pantsar
- School of Pharmacy, University of Eastern Finland, P.O. BOX 1627, 70211 Kuopio, Finland.
| | - Antti Poso
- School of Pharmacy, University of Eastern Finland, P.O. BOX 1627, 70211 Kuopio, Finland.
- Department of Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Strasse 14, 72076 Tübingen, Germany.
| |
Collapse
|
43
|
Zhang H, Jiang Y, Cui Z, Yin C. Force Field Benchmark of Amino Acids. 2. Partition Coefficients between Water and Organic Solvents. J Chem Inf Model 2018; 58:1669-1681. [DOI: 10.1021/acs.jcim.8b00493] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| | - Yang Jiang
- Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Box 53, 100029 Beijing, China
| | - Ziheng Cui
- Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Box 53, 100029 Beijing, China
| | - Chunhua Yin
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| |
Collapse
|
44
|
Cerutti DS, Debiec KT, Case DA, Chong LT. Links between the charge model and bonded parameter force constants in biomolecular force fields. J Chem Phys 2018; 147:161730. [PMID: 29096508 DOI: 10.1063/1.4985866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ff15ipq protein force field is a fixed charge model built by automated tools based on the two charge sets of the implicitly polarized charge method: one set (appropriate for vacuum) for deriving bonded parameters and the other (appropriate for aqueous solution) for running simulations. The duality is intended to treat water-induced electronic polarization with an understanding that fitting data for bonded parameters will come from quantum mechanical calculations in the gas phase. In this study, we compare ff15ipq to two alternatives produced with the same fitting software and a further expanded data set but following more conventional methods for tailoring bonded parameters (harmonic angle terms and torsion potentials) to the charge model. First, ff15ipq-Qsolv derives bonded parameters in the context of the ff15ipq solution phase charge set. Second, ff15ipq-Vac takes ff15ipq's bonded parameters and runs simulations with the vacuum phase charge set used to derive those parameters. The IPolQ charge model and associated protocol for deriving bonded parameters are shown to be an incremental improvement over protocols that do not account for the material phases of each source of their fitting data. Both force fields incorporating the polarized charge set depict stable globular proteins and have varying degrees of success modeling the metastability of short (5-19 residues) peptides. In this particular case, ff15ipq-Qsolv increases stability in a number of α-helices, correctly obtaining 70% helical character in the K19 system at 275 K and showing appropriately diminishing content up to 325 K, but overestimating the helical fraction of AAQAA3 by 50% or more, forming long-lived α-helices in simulations of a β-hairpin, and increasing the likelihood that the disordered p53 N-terminal peptide will also form a helix. This may indicate a systematic bias imparted by the ff15ipq-Qsolv parameter development strategy, which has the hallmarks of strategies used to develop other popular force fields, and may explain some of the need for manual corrections in this force fields' evolution. In contrast, ff15ipq-Vac incorrectly depicts globular protein unfolding in numerous systems tested, including Trp cage, villin, lysozyme, and GB3, and does not perform any better than ff15ipq or ff15ipq-Qsolv in tests on short peptides. We analyze the free energy surfaces of individual amino acid dipeptides and the electrostatic potential energy surfaces of each charge model to explain the differences.
Collapse
Affiliation(s)
- David S Cerutti
- Department of Chemistry and Chemical Biology, Rutgers University, 174 Frelinghueysen Road, Piscataway, New Jersey 08854-8066, USA
| | - Karl T Debiec
- Epic Systems, 1979 Milky Way, Verona, Wisconsin 53593, USA
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers University, 174 Frelinghueysen Road, Piscataway, New Jersey 08854-8066, USA
| | - Lillian T Chong
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
45
|
Zhang H, Yin C, Jiang Y, van der Spoel D. Force Field Benchmark of Amino Acids: I. Hydration and Diffusion in Different Water Models. J Chem Inf Model 2018; 58:1037-1052. [DOI: 10.1021/acs.jcim.8b00026] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chunhua Yin
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yang Jiang
- Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Box 53, Beijing 100029, China
| | - David van der Spoel
- Uppsala Center for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box
596, SE-75124 Uppsala, Sweden
| |
Collapse
|
46
|
Melcr J, Martinez-Seara H, Nencini R, Kolafa J, Jungwirth P, Ollila OHS. Accurate Binding of Sodium and Calcium to a POPC Bilayer by Effective Inclusion of Electronic Polarization. J Phys Chem B 2018; 122:4546-4557. [DOI: 10.1021/acs.jpcb.7b12510] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Josef Melcr
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 117 20 Prague 6, Czech Republic
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 117 20 Prague 6, Czech Republic
| | - Ricky Nencini
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 117 20 Prague 6, Czech Republic
| | - Jiří Kolafa
- Department of Physical Chemistry, Institute of Chemical Technology, 166 28 Prague 6, Czech Republic
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 117 20 Prague 6, Czech Republic
- Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
| | - O. H. Samuli Ollila
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 117 20 Prague 6, Czech Republic
- Institute of Biotechnology, University of Helsinki, 00100 Helsinki, Finland
| |
Collapse
|
47
|
New developments in force fields for biomolecular simulations. Curr Opin Struct Biol 2018; 49:129-138. [DOI: 10.1016/j.sbi.2018.02.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/30/2018] [Accepted: 02/04/2018] [Indexed: 11/18/2022]
|
48
|
Mecklenfeld A, Raabe G. Comparison of RESP and IPolQ-Mod Partial Charges for Solvation Free Energy Calculations of Various Solute/Solvent Pairs. J Chem Theory Comput 2017; 13:6266-6274. [PMID: 29125770 DOI: 10.1021/acs.jctc.7b00692] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The calculation of solvation free energies ΔGsolv by molecular simulations is of great interest as they are linked to other physical properties such as relative solubility, partition coefficient, and activity coefficient. However, shortcomings in molecular models can lead to ΔGsolv deviations from experimental data. Various studies have demonstrated the impact of partial charges on free energy results. Consequently, calculation methods for partial charges aimed at more accurate ΔGsolv predictions are the subject of various studies in the literature. Here we compare two methods to derive partial charges for the general AMBER force field (GAFF), i.e. the default RESP as well as the physically motivated IPolQ-Mod method that implicitly accounts for polarization costs. We study 29 solutes which include characteristic functional groups of drug-like molecules, and 12 diverse solvents were examined. In total, we consider 107 solute/solvent pairs including two water models TIP3P and TIP4P/2005. Comparison with experimental results yields better agreement for TIP3P, regardless of the partial charge scheme. The overall performance of GAFF/RESP and GAFF/IPolQ-Mod is similar, though specific shortcomings in the description of ΔGsolv for both RESP and IPolQ-Mod can be identified. However, the high correlation between free energies obtained with GAFF/RESP and GAFF/IPolQ-Mod demonstrates the compatibility between the modified charges and remaining GAFF parameters.
Collapse
Affiliation(s)
- Andreas Mecklenfeld
- Institut für Thermodynamik, Technische Universität Braunschweig , Hans-Sommer-Strasse 5, 38106 Braunschweig, Germany.,Center of Pharmaceutical Engineering, Technische Universität Braunschweig , Franz-Liszt-Strasse 35a, 38106 Braunschweig, Germany
| | - Gabriele Raabe
- Institut für Thermodynamik, Technische Universität Braunschweig , Hans-Sommer-Strasse 5, 38106 Braunschweig, Germany
| |
Collapse
|
49
|
Jin C, Cerutti D, Cukier RI. Molecular Dynamics of Oxazole Yellow Dye in its Ground and First Excited Electronic States in Solution and when Intercalated in dsDNA. J Phys Chem B 2017; 121:10242-10248. [PMID: 29022340 DOI: 10.1021/acs.jpcb.7b08187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxazole yellow (YOPRO), a cyanine dye consisting of benzoxazole and quinoline rings connected by a linker, is almost nonfluorescent in water, but its fluorescence is greatly enhanced after intercalation in double-stranded DNA, forming the basis of DNA concentration assays. To explore this difference, new potential energy surfaces for the two linker dihedral angles in the ground S0 and first excited S1 electronic states are developed. Umbrella sampling molecular dynamics is used to obtain the free energy of rotation around the two dihedral angles of the linker. The two-dimensional free energy surface of the S1 state, spanning the Franck-Condon transition point from the S0 electronic state minimum (dihedral 1 around 180°, dihedral 2 around 0°) to the S1 state minimum (∼90, ∼0), is obtained in water and when intercalated. In water, YOPRO's S1 free energy surface is completely downhill from the Franck-Condon point, whereas when intercalated, there is a barrier on the path. Thus, when intercalated in DNA, S1 YOPRO is more constrained than in water, supporting the hypothesis that intercalation does inhibit ring rotational motion around the linker and therefore strongly reduces the nonradiative relaxation, resulting in higher fluorescence intensity.
Collapse
Affiliation(s)
- Chi Jin
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - David Cerutti
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Robert I Cukier
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| |
Collapse
|
50
|
Huang J, MacKerell AD. Force field development and simulations of intrinsically disordered proteins. Curr Opin Struct Biol 2017; 48:40-48. [PMID: 29080468 DOI: 10.1016/j.sbi.2017.10.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/30/2017] [Accepted: 10/04/2017] [Indexed: 12/17/2022]
Abstract
Intrinsically disordered proteins (IDPs) play important roles in many physiological processes such as signal transduction and transcriptional regulation. Computer simulations that are based on empirical force fields have been increasingly used to understand the biophysics of disordered proteins. In this review, we focus on recent improvement of protein force fields, including polarizable force fields, concerning their accuracy in modeling intrinsically disordered proteins. Some recent benchmarks and applications of these force fields are also overviewed.
Collapse
Affiliation(s)
- Jing Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, 20 Penn St., Baltimore, MD 21201, USA; Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, 5635 Fishers Lane, Rockville, MD 20852, USA
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, 20 Penn St., Baltimore, MD 21201, USA.
| |
Collapse
|