1
|
Pathak B, Kesari S, Patwari GN. Enticing a Proton using Single Ammonia Molecule as Bait. J Phys Chem B 2024; 128:1022-1028. [PMID: 38240575 DOI: 10.1021/acs.jpcb.3c06761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
In microhydrated acid-solvent clusters, deprotonation of an acid is assisted by a critical number of solvent molecules and a solvent electric field. Born-Oppenheimer molecular dynamics simulations reveal that trifluoroacetic acid undergoes spontaneous proton transfer in water clusters, with the critical number being five. Acetic acid and phenol, on the other hand, do not dissociate even in the presence of a large number of water molecules (in excess of 40). The addition of a single ammonia molecule to the water cluster, which interacts directly with the protic group, lowers the critical number of solvent water molecules required for proton transfer to three and seven in the case of acetic acid and phenol, respectively. The population of the undissociated and the proton-transferred structures get dispersed to form separate islands on the electric field versus the O-H distance representation with the cusp representing the critical values. The critical electric fields for the spontaneous proton transfer are around 254, 237, and 318 MV cm-1 for trifluoroacetic acid, acetic acid, and phenol, respectively. In the case of phenol, the free energy profiles suggest that proton transfer to the ammonia moiety embedded in water promotes proton transfer efficiently due to the higher basicity of ammonia and enhanced hydrogen bonding network of solvent water, vis-à-vis phenol-ammonia clusters.
Collapse
Affiliation(s)
- Bijaya Pathak
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shaivi Kesari
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - G Naresh Patwari
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
2
|
Khuu T, Schleif T, Mohamed A, Mitra S, Johnson MA, Valdiviezo J, Heindel JP, Head-Gordon T. Intra-cluster Charge Migration upon Hydration of Protonated Formic Acid Revealed by Anharmonic Analysis of Cold Ion Vibrational Spectra. J Phys Chem A 2023; 127:7501-7509. [PMID: 37669457 DOI: 10.1021/acs.jpca.3c03971] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The rates of many chemical reactions are accelerated when carried out in micron-sized droplets, but the molecular origin of the rate acceleration remains unclear. One example is the condensation reaction of 1,2-diaminobenzene with formic acid to yield benzimidazole. The observed rate enhancements have been rationalized by invoking enhanced acidity at the surface of methanol solvent droplets with low water content to enable protonation of formic acid to generate a cationic species (protonated formic acid or PFA) formed by attachment of a proton to the neutral acid. Because PFA is the key feature in this reaction mechanism, vibrational spectra of cryogenically cooled, microhydrated PFA·(H2O)n=1-6 were acquired to determine how the extent of charge localization depends on the degree of hydration. Analysis of these highly anharmonic spectra with path integral ab initio molecular dynamics simulations reveals the gradual displacement of the excess proton onto the water network in the microhydration regime at low temperatures with n = 3 as the tipping point for intra-cluster proton transfer.
Collapse
Affiliation(s)
- Thien Khuu
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Tim Schleif
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Ahmed Mohamed
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Sayoni Mitra
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Mark A Johnson
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Jesús Valdiviezo
- Pitzer Theory Center, Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Joseph P Heindel
- Pitzer Theory Center, Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Pitzer Theory Center, Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Das S, Chakraborty A. Computational investigation of the conformer selective complexes of 1,2,3,4-tetrahydroisoquinoline: Ammonia (THIQ: NH3) in S0. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
A Schiff base with excited-state intramolecular proton transfer and its Zinc(II) complex: Mechanochromic luminescence and acid-base stimuli response. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Giri N, Mahapatra S. Optimal control of photodissociation of phenol using genetic algorithm. J Chem Phys 2022; 156:094305. [DOI: 10.1063/5.0081282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Photodissociation dynamics of the OH bond of phenol is studied with an optimally shaped laser pulse. The theoretical model consists of three electronic states (the ground electronic state, ππ* state, and πσ* state) in two nuclear coordinates (the OH stretching coordinate as a reaction coordinate, r, and the CCOH dihedral angle as a coupling coordinate, θ). The optimal UV laser pulse is designed using the genetic algorithm, which optimizes the total dissociative flux of the wave packet. The latter is calculated in the adiabatic asymptotes of the S0 and S1 electronic states of phenol. The initial state corresponds to the vibrational levels of the electronic ground state and is defined as | n r, n θ⟩, where n r and n θ represent the number of nodes along r and θ, respectively. The optimal UV field excites the system to the optically dark πσ* state predominantly over the optically bright ππ* state with the intensity borrowing effect for the |0, 0⟩ and |0, 1⟩ initial states. For the |0, 0⟩ initial condition, the photodissociation to the S1 asymptotic channel is favored slightly over the S0 asymptotic channel. Addition of one quantum of energy along the coupling coordinate increases the dissociation probability in the S1 channel. This is because the wave packet spreads along the coupling coordinate on the πσ* state and follows the adiabatic path. Hence, the S1 asymptotic channel gets more ([Formula: see text]11%) dissociative flux as compared to the S0 asymptotic channel for the |0, 1⟩ initial condition. The |1, 0⟩ and |1, 1⟩ states are initially excited to both the ππ* and πσ* states in the presence of the optimal UV pulse. For these initial conditions, the S1 channel gets more dissociative flux as compared to the S0 channel. This is because the high energy components of the wave packet readily reach the S1 channel. The central frequency of the optimal UV pulse for the |0, 0⟩ and |0, 1⟩ initial states has a higher value as compared to the |1, 0⟩ and |1, 1⟩ initial states. This is explained with the help of an excitation mechanism of a given initial state in relation to its energy.
Collapse
Affiliation(s)
- Nitai Giri
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - S. Mahapatra
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
6
|
Singh RK, Pant R, Patwari GN. Ultrafast Proton-Transfer Reaction in Phenol–(Ammonia)n Clusters: An Ab Initio Molecular Dynamics Investigation. J Phys Chem B 2022; 126:1590-1597. [DOI: 10.1021/acs.jpcb.1c09700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Reman Kumar Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rakesh Pant
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - G. Naresh Patwari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
7
|
Jouvet C, Miyazaki M, Fujii M. Revealing the role of excited state proton transfer (ESPT) in excited state hydrogen transfer (ESHT): systematic study in phenol-(NH 3) n clusters. Chem Sci 2021; 12:3836-3856. [PMID: 34163653 PMCID: PMC8179502 DOI: 10.1039/d0sc06877b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Excited State Hydrogen Transfer (ESHT), proposed at the end of the 20th century by the corresponding authors, has been observed in many neutral or protonated molecules and become a new paradigm to understand excited state dynamics/photochemistry of aromatic molecules. For example, a significant number of photoinduced proton-transfer reactions from X–H bonds have been re-defined as ESHT, including those of phenol, indole, tryptophan, aromatic amino acid cations and so on. Photo-protection mechanisms of biomolecules, such as isolated nucleic acids of DNA, are also discussed in terms of ESHT. Therefore, a systematic and up-to-date description of ESHT mechanism is important for researchers in chemistry, biology and related fields. In this review, we will present a general model of ESHT which unifies the excited state proton transfer (ESPT) and the ESHT mechanisms and reveals the hidden role of ESPT in controlling the reaction rate of ESHT. For this purpose, we give an overview of experimental and theoretical work on the excited state dynamics of phenol–(NH3)n clusters and related molecular systems. The dynamics has a significant dependence on the number of solvent molecules in the molecular cluster. Three-color picosecond time-resolved IR/near IR spectroscopy has revealed that ESHT becomes an electron transfer followed by a proton transfer in highly solvated clusters. The systematic change from ESHT to decoupled electron/proton transfer according to the number of solvent molecules is rationalized by a general model of ESHT including the role of ESPT. A general model of excited state hydrogen transfer (ESHT) which unifies ESHT and the excited state proton transfer (ESPT) is presented from experimental and theoretical works on phenol–(NH3)n. The hidden role of ESPT is revealed.![]()
Collapse
Affiliation(s)
- Christophe Jouvet
- CNRS, Aix Marseille Université, Physique des Interactions Ioniques et Moleculaires (PIIM), UMR 7345 13397 Marseille Cedex France .,World Research Hub Initiatives, Institute of Innovative Research, Tokyo Institute of Technology 4259-R1-15, Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Mitsuhiko Miyazaki
- Natural Science Division, Faculty of Core Research, Ochanomizu University 2-1-1 Ohtsuka, Bunkyo-ku Tokyo 112-8610 Japan.,Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259-R1-15, Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Masaaki Fujii
- World Research Hub Initiatives, Institute of Innovative Research, Tokyo Institute of Technology 4259-R1-15, Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan.,Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259-R1-15, Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
8
|
Sadhukhan D, Hazra A, Patwari GN. Bend-to-Break: Curvilinear Proton Transfer in Phenol-Ammonia Clusters. J Phys Chem A 2020; 124:3101-3108. [PMID: 32227953 DOI: 10.1021/acs.jpca.0c00102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electric field experienced by the OH group of phenol embedded in the cluster of ammonia molecules depends on the relative orientation of the ammonia molecules, and a critical field of 236 MV cm-1 is essential for the transfer of a proton from phenol to the surrounding ammonia cluster. However, exceptions to this rule were observed, which indicates that the projection of the solvent electric field over the O-H bond is not a definite descriptor of the proton transfer reaction. Therefore, a critical electric field is necessary, but it is not a sufficient condition for the proton abstraction. This, in combination with an adequate solvation of the acceptor ammonia molecule in a triple donor motif that energetically favors the proton transfer process, constitutes necessary and sufficient conditions for the spontaneous proton abstraction. The proton transfer process in phenol-(ammonia)n clusters is statistically favored to occur away from the plane of the phenyl ring and follows a curvilinear path which includes the O-H bond elongation and out-of-plane movement of the proton. Colloquially, this proton transfer can be referred to as a "bend-to-break" process.
Collapse
Affiliation(s)
- Debopriya Sadhukhan
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anirban Hazra
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - G Naresh Patwari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
9
|
Ishiuchi SI, Kamizori J, Tsuji N, Sakai M, Miyazaki M, Dedonder C, Jouvet C, Fujii M. Excited state hydrogen transfer dynamics in phenol-(NH 3) 2 studied by picosecond UV-near IR-UV time-resolved spectroscopy. Phys Chem Chem Phys 2020; 22:5740-5748. [PMID: 32104812 DOI: 10.1039/c9cp06369b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Time-evolutions of excited state hydrogen transfer (ESHT) in phenol (PhOH)-(NH3)2 clusters have been measured by three-color picosecond (ps) ultraviolet (UV)-near infrared (NIR)-UV pump-probe ion dip spectroscopy. The formation of a reaction product, ˙NH4NH3, is detected by its NIR absorption due to a 3p-3s Rydberg transition. The ESHT reactions from all of the vibronic levels show biexponential time-evolutions, even from the S1 origin. Based on the biexponential time-evolution, it is suggested that there is a second reaction path via the triplet πσ* state, which gives the slow component. The fast time-evolution of the ESHT reaction from the S1 origin is measured to be 268 ps, which is 10-times slower than that in PhOH-(NH3)3, and a higher barrier between the ππ* and reactive πσ* states is suggested. The size dependence of the ESHT reaction rates is discussed based on a potential distortion due to the proton transferred state in the ππ* potential surface.
Collapse
Affiliation(s)
- Shun-Ichi Ishiuchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1-15, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Niu B, Cai J, Song W, Zhao G. Novel Electrochemical Pretreatment for Preferential Removal of Nonylphenol in Industrial Wastewater: Biodegradability Improvement and Toxicity Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1258-1266. [PMID: 31702138 DOI: 10.1021/acs.est.9b03153] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Preferential pretreatment of nonylphenol (NP) before biological treatment is of great significance due to its horizontal gene transfer effect and endocrine disruption activity. A novel molecular imprinting high-index facet SnO2 (MI-SnO2, HIF) electrode is designed. NP was effectively removed from industrial wastewater at 1.8 V with totally suppressing human estrogen activity. The ratio of 5 day biological oxygen demand to chemical oxygen demand (BOD5/CODCr) was enhanced to 0.412 from 0.186 after preferential pretreatment. The effluent concentration of NP was 6.4 μg L-1 after further simulating anaerobic-anoxic-oxic treatment, which was about 1/10 of that without pretreatment. This preferential electrochemical pretreatment is interpreted as prior adsorption and enrichment of target pollutants on the MI-SnO2, HIF surface. The reactive oxygen species and subsequent oxidation products were investigated by in situ electron paramagnetic resonance and electrochemical infrared spectroscopy. The degradation pathway of NP was further analyzed by liquid chromatography-mass spectrometry. This unique pretreatment method for a complex tannery wastewater system has irreplaceable status because no methods with similar advantages have been reported, expecting to be widely used in preferential pretreatment of toxic contaminants blended with highly concentrated nontoxic organics.
Collapse
Affiliation(s)
- Baoling Niu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability , Tongji University , Shanghai 200092 , China
| | - Junzhuo Cai
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability , Tongji University , Shanghai 200092 , China
| | - Wenjing Song
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability , Tongji University , Shanghai 200092 , China
| |
Collapse
|
11
|
Ohshimo K, Miyazaki S, Hattori K, Misaizu F. Long-distance proton transfer induced by a single ammonia molecule: ion mobility mass spectrometry of protonated benzocaine reacted with NH3. Phys Chem Chem Phys 2020; 22:8164-8170. [DOI: 10.1039/c9cp06923b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A long-distance proton transfer via the vehicle mechanism in the absence of a hydrogen-bonded solvent-bridge in molecules.
Collapse
Affiliation(s)
- Keijiro Ohshimo
- Department of Chemistry, Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Shun Miyazaki
- Department of Chemistry, Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Keigo Hattori
- Department of Chemistry, Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Fuminori Misaizu
- Department of Chemistry, Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| |
Collapse
|
12
|
Chatterjee P, Biswas S, Chakraborty T. Hydrogen Bonding Effects on Vibrational Dynamics and Photochemistry in Selected Binary Molecular Complexes. J Indian Inst Sci 2019. [DOI: 10.1007/s41745-019-00158-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Yamamoto K, Takatsuka K. On the Elementary Chemical Mechanisms of Unidirectional Proton Transfers: A Nonadiabatic Electron-Wavepacket Dynamics Study. J Phys Chem A 2019; 123:4125-4138. [PMID: 30977655 DOI: 10.1021/acs.jpca.9b01178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We propose a set of chemical reaction mechanisms of unidirectional proton transfers, which may possibly work as an elementary process in chemical and biological systems. Being theoretically derived based on our series of studies on charge separation dynamics in water splitting by Mn oxides, the present mechanisms have been constructed after careful exploration over the accumulated biological studies on cytochrome c oxidase (CcO) and bacteriorhodopsin. In particular, we have focused on the biochemical findings in the literature that unidirectional transfers of approximately two protons are driven by one electron passage through the reaction center (binuclear center) in CcO, whereas no such dissipative electron transfer is believed to be demanded in the proton transport in bacteriorhodopsin. The proposed basic mechanisms of unidirectional proton transfers are further reduced to two elementary dynamical processes, namely, what we call the coupled proton and electron-wavepacket transfer (CPEWT) and the inverse CPEWT. To show that the proposed mechanisms can indeed be materialized in a molecular level, we construct model systems with possible molecules that are rather familiar in biological chemistry, for which we perform the ab initio calculations of full-dimensional nonadiabatic electron-wavepacket dynamics coupled with all nuclear motions including proton transfers.
Collapse
Affiliation(s)
- Kentaro Yamamoto
- Fukui Institute for Fundamental Chemistry , Kyoto University , Sakyou-ku, Kyoto 606-8103 , Japan
| | - Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry , Kyoto University , Sakyou-ku, Kyoto 606-8103 , Japan
| |
Collapse
|
14
|
Chatterjee P, Ghosh AK, Samanta M, Chakraborty T. Barrierless Proton Transfer in the Weak C-H···O Hydrogen Bonded Methacrolein Dimer upon Nonresonant Multiphoton Ionization in the Gas Phase. J Phys Chem A 2018; 122:5563-5573. [PMID: 29878781 DOI: 10.1021/acs.jpca.8b02597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intermolecular proton transfer (IMPT) in a C-H···O hydrogen bonded dimer of an α,β-unsaturated aldehyde, methacrolein (MC), upon nonresonant multiphoton ionization by 532 nm laser pulses (10 ns), has been investigated using time-of-flight (TOF) mass spectrometry under supersonic cooling condition. The mass peaks corresponding to both the protonated molecular ion [(MC)H+] and intact dimer cation [(MC)2]•+ show up in the mass spectra, and the peak intensity of the former increases proportionately with the latter with betterment of the jet cooling conditions. The observations indicate that [(MC)2]•+ is the likely precursor of (MC)H+ and, on the basis of electronic structure calculations, IMPT in the dimer cation has been shown to be the key reaction for formation of the latter. Laser power dependences of ion yields indicate that at this wavelength the dimer is photoionized by means of 4-photon absorption process, and the total 4-photon energy is nearly the same as the predicted vertical ionization energy of the dimer. Electronic structure calculations reveal that the optimized structures of [(MC)2]•+ correspond to a proton transferred configuration wherein the aldehydic hydrogen is completely shifted to the carbonyl oxygen of the neighboring moiety. Potential energy scans along the C-H···O coordinate also show that the IMPT in [(MC)2]•+ is a barrierless process.
Collapse
Affiliation(s)
- Piyali Chatterjee
- Department of Physical Chemistry , Indian Association for the Cultivation of Science , 2A Raja S C Mullick Road , Jadavpur, Kolkata 700032 , India
| | - Arup K Ghosh
- Department of Chemistry , Dharmsinh Desai University , Nadiad 387001 , Gujarat , India
| | - Monoj Samanta
- Department of Physical Chemistry , Indian Association for the Cultivation of Science , 2A Raja S C Mullick Road , Jadavpur, Kolkata 700032 , India
| | - Tapas Chakraborty
- Department of Physical Chemistry , Indian Association for the Cultivation of Science , 2A Raja S C Mullick Road , Jadavpur, Kolkata 700032 , India
| |
Collapse
|
15
|
Miyazaki M, Naito A, Ikeda T, Klyne J, Sakota K, Sekiya H, Dopfer O, Fujii M. Real-time observation of the photoionization-induced water rearrangement dynamics in the 5-hydroxyindole-water cluster by time-resolved IR spectroscopy. Phys Chem Chem Phys 2018; 20:3079-3091. [PMID: 29143839 DOI: 10.1039/c7cp06127g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solvation plays an essential role in controlling the mechanism and dynamics of chemical reactions in solution. The present study reveals that changes in the local solute-solvent interaction have a great impact on the timescale of solvent rearrangement dynamics. Time-resolved IR spectroscopy has been applied to a hydration rearrangement reaction in the monohydrated 5-hydroxyindole-water cluster induced by photoionization of the solute molecule. The water molecule changes the stable hydration site from the indolic NH site to the substituent OH site, both of which provide a strongly attractive potential for hydration. The rearrangement time constant amounts to 8 ± 2 ns, and is further slowed down by a factor of more than five at lower excess energy. These rearrangement times are slower by about three orders of magnitude than those reported for related systems where the water molecule is repelled from a repulsive part of the interaction potential toward an attractive well. The excess energy dependence of the time constant is well reproduced by RRKM theory. Differences in the reaction mechanism are discussed on the basis of energy relaxation dynamics.
Collapse
Affiliation(s)
- Mitsuhiko Miyazaki
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 R1-15, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Shimizu T, Hashimoto K, Hada M, Miyazaki M, Fujii M. A theoretical study on the size-dependence of ground-state proton transfer in phenol-ammonia clusters. Phys Chem Chem Phys 2018; 20:3265-3276. [PMID: 29134211 DOI: 10.1039/c7cp05247b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Geometries and infrared (IR) spectra in the mid-IR region of phenol-(ammonia)n (PhOH-(NH3)n) (n = 0-10) clusters have been studied using density functional theory (DFT) to investigate the critical number of solvent molecules necessary to promote ground-state proton transfer (GSPT). For n ≤ 8 clusters, the most stable isomer is a non-proton-transferred (non-PT) structure, and all isomers found within 1.5 kcal mol-1 from it are also non-PT structures. For n = 9, the most stable isomer is also a non-PT structure; however, the second stable isomer is a PT structure, whose relative energy is within the experimental criterion of population (0.7 kcal mol-1). For n = 10, the PT structure is the most stable one. We can therefore estimate that the critical size of GSPT is n = 9. This is confirmed by the fact that these calculated IR spectra are in good accordance with our previous experimental results of mid-IR spectra. It is demonstrated that characteristic changes of the ν9a and ν12 bands in the skeletal vibrational region provide clear information that the GSPT reaction has occurred. It was also found that the shortest distance between the π-ring and the solvent moiety is a good indicator of the PT reaction.
Collapse
Affiliation(s)
- Toshihiko Shimizu
- Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
| | | | | | | | | |
Collapse
|
17
|
Shen CC, Tsai TT, Wu JY, Ho JW, Chen YW, Cheng PY. Watching proton transfer in real time: Ultrafast photoionization-induced proton transfer in phenol-ammonia complex cation. J Chem Phys 2017; 147:164302. [PMID: 29096460 DOI: 10.1063/1.5001375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In this paper, we give a full account of our previous work [C. C. Shen et al., J. Chem. Phys. 141, 171103 (2014)] on the study of an ultrafast photoionization-induced proton transfer (PT) reaction in the phenol-ammonia (PhOH-NH3) complex using ultrafast time-resolved ion photofragmentation spectroscopy implemented by the photoionization-photofragmentation pump-probe detection scheme. Neutral PhOH-NH3 complexes prepared in a free jet are photoionized by femtosecond 1 + 1 resonance-enhanced multiphoton ionization via the S1 state. The evolving cations are then probed by delayed pulses that result in ion fragmentation, and the ionic dynamics is followed by measuring the parent-ion depletion as a function of the pump-probe delay time. By comparing with systems in which PT is not feasible and the steady-state ion photofragmentation spectra, we concluded that the observed temporal evolutions of the transient ion photofragmentation spectra are consistent with an intracomplex PT reaction after photoionization from the initial non-PT to the final PT structures. Our experiments revealed that PT in [PhOH-NH3]+ cation proceeds in two distinct steps: an initial impulsive wave-packet motion in ∼70 fs followed by a slower relaxation of about 1 ps that stabilizes the system into the final PT configuration. These results indicate that for a barrierless PT system, even though the initial PT motions are impulsive and ultrafast, the time scale to complete the reaction can be much slower and is determined by the rate of energy dissipation into other modes.
Collapse
Affiliation(s)
- Ching-Chi Shen
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
| | - Tsung-Ting Tsai
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
| | - Jun-Yi Wu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
| | - Jr-Wei Ho
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
| | - Yi-Wei Chen
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
| | - Po-Yuan Cheng
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
| |
Collapse
|
18
|
Mukhopadhyay DP, Biswas S, Chakraborty T. Intermolecular vibrations and vibrational dynamics of a phenol⋯methanol binary complex studied by LIF spectroscopy. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.02.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Shimizu T, Miyazaki M, Fujii M. Theoretical Study on the Size Dependence of Ground-State Proton Transfer in 1-Naphthol–Ammonia Clusters. J Phys Chem A 2016; 120:7167-74. [DOI: 10.1021/acs.jpca.6b07079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Toshihiko Shimizu
- Laboratory
for Chemistry
and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Mitsuhiko Miyazaki
- Laboratory
for Chemistry
and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Masaaki Fujii
- Laboratory
for Chemistry
and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
20
|
Shimizu T, Manita S, Yoshikawa S, Hashimoto K, Miyazaki M, Fujii M. The mechanism of excited-state proton transfer in 1-naphthol–piperidine clusters. Phys Chem Chem Phys 2015; 17:25393-402. [DOI: 10.1039/c5cp03620h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoexcitation directly triggers proton transfer in 1-naphthol–(piperidine)n. This mechanism is essentially different from 1-naphthol–(NH3)n in which the internal conversion process is required to promote excited-state proton transfer.
Collapse
Affiliation(s)
- Toshihiko Shimizu
- Chemical Resources Laboratory
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Shun Manita
- Chemical Resources Laboratory
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Shunpei Yoshikawa
- Chemical Resources Laboratory
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Kenro Hashimoto
- Department of Chemistry
- Graduate School of Science and Engineering
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Mitsuhiko Miyazaki
- Chemical Resources Laboratory
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Masaaki Fujii
- Chemical Resources Laboratory
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| |
Collapse
|
21
|
Communication: Ultrafast time-resolved ion photofragmentation spectroscopy of photoionization-induced proton transfer in phenol-ammonia complex. J Chem Phys 2014; 141:171103. [DOI: 10.1063/1.4901329] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
van der Loop TH, Ruesink F, Amirjalayer S, Sanders HJ, Buma WJ, Woutersen S. Unraveling the Mechanism of a Reversible Photoactivated Molecular Proton Crane. J Phys Chem B 2014; 118:12965-71. [DOI: 10.1021/jp508911v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Tibert H. van der Loop
- Van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Freek Ruesink
- Van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Saeed Amirjalayer
- Van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Hans J. Sanders
- Van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Wybren J. Buma
- Van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - S. Woutersen
- Van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
23
|
Shimizu T, Yoshikawa S, Hashimoto K, Miyazaki M, Fujii M. Theoretical Study on the Size Dependence of Excited State Proton Transfer in 1-Naphthol–Ammonia Clusters. J Phys Chem B 2014; 119:2415-24. [DOI: 10.1021/jp507222n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Toshihiko Shimizu
- Chemical
Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Shunpei Yoshikawa
- Chemical
Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Kenro Hashimoto
- Department
of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, 192-0397, Japan
| | - Mitsuhiko Miyazaki
- Chemical
Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Masaaki Fujii
- Chemical
Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
24
|
León I, Millán J, Cocinero EJ, Lesarri A, Fernández JA. Molecular hydration of propofol dimers in supersonic expansions: formation of active centre-like structures. Phys Chem Chem Phys 2014; 16:23301-7. [DOI: 10.1039/c4cp03101f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solvation of propofol dimers is characterized by the formation of hydrogen bond networks attached to an active site-like centre.
Collapse
Affiliation(s)
- Iker León
- Department of Physical Chemistry
- Faculty of Science and Technology
- University of the Basque Country (UPV/EHU)
- Leioa 48940, Spain
| | - Judith Millán
- Department of Chemistry
- Faculty of Science
- Agricultural Studies and Informatics
- University of La Rioja
- Logroño 26006, Spain
| | - Emilio J. Cocinero
- Department of Physical Chemistry
- Faculty of Science and Technology
- University of the Basque Country (UPV/EHU)
- Leioa 48940, Spain
| | - Alberto Lesarri
- Department of Physical Chemistry and Inorganic Chemistry
- Faculty of Science
- University of Valladolid
- Valladolid 47011, Spain
| | - José A. Fernández
- Department of Physical Chemistry
- Faculty of Science and Technology
- University of the Basque Country (UPV/EHU)
- Leioa 48940, Spain
| |
Collapse
|
25
|
Ataelahi M, Omidyan R. Microhydration effects on the electronic properties of protonated phenol: a theoretical study. J Phys Chem A 2013; 117:12842-50. [PMID: 24191660 DOI: 10.1021/jp409537s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The CC2 (second-order approximate coupled cluster method) has been employed to investigate microhydration effect on electronic properties of protonated phenol (PhH(+)) According to the CC2 calculation results on electronic excited states of microhydrated PhH(+), for the S1 and S2 electronic states, which are of (1)ππ* nature and belong to the A' representation of molecular Cs point group, a significant blue shift effect on the S1 and S2 electronic states, which are of 1ππ* nature and belong to the A' representation of molecular Cs point group, in comparison to corresponding transitions on bare cation (PhH(+)), has been predicted. Nevertheless, for the S3-S0 (1A'', 1σπ*) transition, a large red shift effect has been predicted. Furthermore, it has been found that the lowest (1)σπ* state plays a prominent role in the photochemistry of these systems. In the bare protonated phenol, the (1)σπ* state is a bound state with a broad potential curve along the OH stretching coordinate, while it is dissociative in microhydrated species. This indicates to a predissociation of the S1((1)ππ*) state by a low-lying (1)σπ* state, which leads the excited system to a concerted proton-transfer reaction from protonated chromophore to the solvent. The dissociative (1)σπ* state in monohydrated PhH(+) has small barrier, while increasing the solvent molecules up to three removes the barrier and consequently expedites the proton-transfer reaction dynamics.
Collapse
Affiliation(s)
- Mitra Ataelahi
- Department of Chemistry, University of Isfahan , 81746-73441 Isfahan, Iran
| | | |
Collapse
|
26
|
Suhm MA, Kollipost F. Femtisecond single-mole infrared spectroscopy of molecular clusters. Phys Chem Chem Phys 2013; 15:10702-21. [DOI: 10.1039/c3cp51515j] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|