1
|
Panda S, Phan H, Karlin KD. Heme-copper and Heme O 2-derived synthetic (bioinorganic) chemistry toward an understanding of cytochrome c oxidase dioxygen chemistry. J Inorg Biochem 2023; 249:112367. [PMID: 37742491 PMCID: PMC10615892 DOI: 10.1016/j.jinorgbio.2023.112367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/22/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023]
Abstract
Cytochrome c oxidase (CcO), also widely known as mitochondrial electron-transport-chain complex IV, is a multi-subunit transmembrane protein responsible for catalyzing the last step of the electron transport chain, dioxygen reduction to water, which is essential to the establishment and maintenance of the membrane proton gradient that drives ATP synthesis. Although many intermediates in the CcO catalytic cycle have been spectroscopically and/or computationally authenticated, the specifics regarding the IP intermediate, hypothesized to be a heme-Cu (hydro)peroxo species whose O-O bond homolysis is supported by a hydrogen-bonding network of water molecules, are largely obscured by the fast kinetics of the A (FeIII-O2•-/CuI/Tyr) → PM (FeIV=O/CuII-OH/Tyr•) step. In this review, we have focused on the recent advancements in the design, development, and characterization of synthetic heme-peroxo‑copper model complexes, which can circumvent the abovementioned limitation, for the investigation of the formation of IP and its O-O cleavage chemistry. Novel findings regarding (a) proton and electron transfer (PT/ET) processes, together with their contributions to exogenous phenol induced O-O cleavage, (b) the stereo-electronic tunability of the secondary coordination sphere (especially hydrogen-bonding) on the geometric and spin state alteration of the heme-peroxo‑copper unit, and (c) a plausible mechanism for the Tyr-His cofactor biogenesis, are discussed in great detail. Additionally, since the ferric-superoxide and the ferryl-oxo (Compound II) species are critically involved in the CcO catalytic cycle, this review also highlights a few fundamental aspects of these heme-only (i.e., without copper) species, including the structural and reactivity influences of electron-donating trans-axial ligands and Lewis acid-promoted H-bonding.
Collapse
Affiliation(s)
- Sanjib Panda
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hai Phan
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kenneth D Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
2
|
Liu Q, Gao J, Zhang Y, Liu X, Zhang X, Lin Q, Zeng W, Zhou Z. A trans-ortho asymmetrically di-strapped metalloporphyrin integrating three key structural features of ligand in heme. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
3
|
Giraudon--Colas G, Devineau S, Marichal L, Barruet E, Zitolo A, Renault JP, Pin S. How Nanoparticles Modify Adsorbed Proteins: Impact of Silica Nanoparticles on the Hemoglobin Active Site. Int J Mol Sci 2023; 24:3659. [PMID: 36835069 PMCID: PMC9967434 DOI: 10.3390/ijms24043659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The adsorption of proteins on surfaces has been studied for a long time, but the relationship between the structural and functional properties of the adsorbed protein and the adsorption mechanism remains unclear. Using hemoglobin adsorbed on silica nanoparticles, we have previously shown that hemoglobin's affinity towards oxygen increases with adsorption. Nevertheless, it was also shown that there were no significant changes in the quaternary and secondary structures. In order to understand the change in activity, we decided in this work to focus on the active sites of hemoglobin, the heme and its iron. After measuring adsorption isotherms of porcine hemoglobin on Ludox silica nanoparticles, we analyzed the structural modifications of adsorbed hemoglobin by X-ray absorption spectroscopy and circular dichroism spectra in the Soret region. It was found that upon adsorption, there were modifications in the heme pocket environment due to changes in the angles of the heme vinyl functions. These alterations can explain the greater affinity observed.
Collapse
Affiliation(s)
| | - Stéphanie Devineau
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France
| | - Laurent Marichal
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - Elodie Barruet
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - Andrea Zitolo
- Synchrotron SOLEIL, L’Orme des Merisiers, BP 48 Saint Aubin, 91192 Gif-sur-Yvette, France
| | | | - Serge Pin
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| |
Collapse
|
4
|
Fateminasab F, de la Lande A, Omidyan R. Insights into the effect of distal histidine and water hydrogen bonding on NO ligation to ferrous and ferric heme: a DFT study. RSC Adv 2022; 12:4703-4713. [PMID: 35425484 PMCID: PMC8981399 DOI: 10.1039/d1ra08398h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/30/2022] [Indexed: 11/29/2022] Open
Abstract
The effect of distal histidine on ligation of NO to ferrous and ferric-heme, has been investigated with the high-level density functional theoretical (DFT) method. It has been predicted that the distal histidine significantly stabilizes the interaction of NO ferrous-heme (by −2.70 kcal mol−1). Also, water hydrogen bonding is quite effective in strengthening the Fe–NO bond in ferrous heme. In contrast in ferric heme, due to the large distance between the H2O and O(NO) and lack of hydrogen bonding, the distal histidine exhibits only a slight effect on the binding of NO to the ferric analogue. Concerning the bond nature of FeII–NO and FeIII–NO in heme, a QTAIM analysis predicts a partially covalent and ionic bond nature in both systems. The effect of distal histidine on ligation of NO to ferrous and ferric-heme, has been investigated with the high-level density functional theoretical (DFT) method.![]()
Collapse
Affiliation(s)
- Fatemeh Fateminasab
- Department of Chemistry, University of Isfahan 81746-73441 Isfahan Iran +98 31 3668 9732
| | - Aurelien de la Lande
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000 91405 Orsay France
| | - Reza Omidyan
- Department of Chemistry, University of Isfahan 81746-73441 Isfahan Iran +98 31 3668 9732
| |
Collapse
|
5
|
Fateminasab F, Aarabi M, de la Lande A, Omidyan R. Theoretical insights on the effect of environments on binding of CO to the Heme :Ferrous and Ferric systems. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Nemykin VN, Nevonen DE, Osterloh WR, Ferch LS, Harrison LA, Marx BS, Kadish KM. Application of Lever's EL Parameter Scale toward Fe(II)/Fe(III) versus Pc(2-)/Pc(1-) Oxidation Process Crossover Point in Axially Coordinated Iron(II) Phthalocyanine Complexes. Inorg Chem 2021; 60:16626-16644. [PMID: 34644056 DOI: 10.1021/acs.inorgchem.1c02520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electronic structures and, particularly, the nature of the HOMO in a series of PcFeL2, PcFeL'L″, and [PcFeX2]2- complexes (Pc = phthalocyaninato(2-) ligand; L = NH3, n-BuNH2, imidazole (Im), pyridine (Py), PMe3, PBu3, t-BuNC, P(OBu)3, and DMSO; L' = CO; L″ = NH3 or n-BuNH2; X = NCO-, NCS-, CN-, imidazolate (Im-), or 1,2,4-triazolate(Tz-)) were probed by electrochemical, spectroelectrochemical, and chemical oxidation as well as theoretical (density functional theory, DFT) studies. In general, energies of the metal-centered occupied orbitals in various six-coordinate iron phthalocyanine complexes correlate well with Lever Electrochemical Parameter EL and intercross the phthalocyanine-centered a1u orbital in several compounds with moderate-to-strong π-accepting axial ligands. In these cases, an oxidation of the phthalocyanine macrocycle (Pc(2-)/Pc(1-)) rather than the central metal ion (Fe(II)/Fe(III)) was theoretically predicted and experimentally confirmed.
Collapse
Affiliation(s)
- Victor N Nemykin
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States.,Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Dustin E Nevonen
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - W Ryan Osterloh
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Laura S Ferch
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Laurel A Harrison
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Benjamin S Marx
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Karl M Kadish
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
7
|
Belosludov RV, Nevonen DE, Nemykin VN. Accurate Prediction of the Excited States in the Fully Conjugated Porphyrin Tapes across the Full Spectral Range: A Story of the Interplay between π-π* and Intramolecular Charge-Transfer Transitions in Soft Chromophores. J Phys Chem A 2021; 125:2480-2491. [PMID: 33734683 DOI: 10.1021/acs.jpca.1c00217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ability of density functional theory (DFT) and time-dependent DFT (TDDFT) methods for the accurate prediction of the energies and oscillator strengths of the excited states in a series of fully conjugated meso-meso β-β β-β triple-linked porphyrin oligomers (porphyrin tapes 2-12) was probed in the gas phase and solution using several exchange-correlation functionals. It was demonstrated that the use of the hybrid B3LYP functional provides a good compromise for the accurate prediction of the localized π-π* and intramolecular charge-transfer transitions, thus allowing confident interpretation of the UV-vis-NIR spectra of porphyrin oligomers. The TDDFT-based sum-over-state (SOS) calculations for the porphyrin tape dimer 2 and trimer 3 as well as parent monomer 1 correctly predicted the signs and shapes of the magnetic circular dichroism (MCD) signals in the low-energy region of the spectra.
Collapse
Affiliation(s)
- Rodion V Belosludov
- Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Dustin E Nevonen
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Victor N Nemykin
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.,Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
8
|
Nemykin VN, Nevonen DE, Ferch LS, Shepit M, Herbert DE, van Lierop J. Accurate Prediction of Mössbauer Hyperfine Parameters in Bis-Axially Coordinated Iron(II) Phthalocyanines Using Density Functional Theory Calculations: A Story of a Single Orbital Revealed by Natural Bond Orbital Analysis. Inorg Chem 2021; 60:3690-3706. [PMID: 33651595 DOI: 10.1021/acs.inorgchem.0c03373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Density Functional Theory (DFT) calculations coupled with several exchange-correlation functionals were used for the prediction of Mössbauer hyperfine parameters of 36 bis-axially coordinated iron(II) phthalocyanine complexes with the general formulas PcFeL2, PcFeL'L″, and [PcFeX2]2-, including four new compounds. Both gas-phase and PCM calculations using BPW91 and MN12L exchange-correlation functionals were found to accurately predict both Mössbauer quadrupole splittings and the correct trends in experimentally observed isomer shifts. In comparison, hybrid exchange-correlation functionals underestimated quadrupole splittings, while still accurately predicted isomer shifts. Out of ∼40 exchange-correlation functionals tested, only MN12L was found to correctly reproduce quadrupole splitting trends in the PcFeL2 complexes coordinated with phosphorus-donor axial ligands (i.e., P(OnBu)3 ≈ P(OEt)3 < PMe3 < P[(CH2O)2CH2]-p-C6H4NO2 < PEt3 ≈ PnBu3). Natural Bond Orbital (NBO) analysis was successfully used to explain the general trends in the observed quadrupole splitting for all compounds of interest. In particular, the general trends in the quadrupole splitting correlate well with the axial ligand dependent, NBO-predicted population of the 3dz2 orbital of the Fe ion and are reflective of the hypothesis proposed by Ohya and co-workers ( Inorg. Chem., 1984, 23, 1303) on the adaptability of the phthalocyanine's π-system toward Fe-Lax interactions. The first X-ray crystal structure of a PcFeL2 complex with axial phosphine ligands is also reported.
Collapse
Affiliation(s)
- Victor N Nemykin
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Dustin E Nevonen
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Laura S Ferch
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Michael Shepit
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - David E Herbert
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Johan van Lierop
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
9
|
Liu Y, Chen Z, Shao Z, Guo R. Single gold nanoparticle-driven heme cofactor nanozyme as an unprecedented oxidase mimetic. Chem Commun (Camb) 2021; 57:3399-3402. [PMID: 33686388 DOI: 10.1039/d1cc00279a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The catalytic diversity of heme enzymes is a perpetuating pursuit for biomimetic chemistry, but heme nanozymes exhibit catalytic activity only reminiscent of peroxidases. Miraculously, the oxidase-like catalytic function of a heme cofactor is elicited with the help of gold nanoparticles (AuNPs) by maintaining heme with a low-valence state (ferrous) in a confined configuration.
Collapse
Affiliation(s)
- Yan Liu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | | | | | | |
Collapse
|
10
|
Moltved KA, Kepp KP. Dioxygen Binding to all 3d, 4d, and 5d Transition Metals from Coupled-Cluster Theory. Chemphyschem 2020; 21:2173-2186. [PMID: 32757346 DOI: 10.1002/cphc.202000529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/04/2020] [Indexed: 11/11/2022]
Abstract
Understanding how transition metals bind and activate dioxygen (O2 ) is limited by experimental and theoretical uncertainties, making accurate quantum mechanical descriptors of interest. Here we report coupled-cluster CCSD(T) energies with large basis sets and vibrational and relativistic corrections for 160 3d, 4d, and 5d metal-O2 systems. We define four reaction energies (120 in total for the 30 metals) that quantify O-O activation and reveal linear relationships between metal-oxygen and O-O binding energies. The CCSD(T) data can be combined with thermochemical cycles to estimate chemisorption and physisorption energies for each metal from metal oxide embedding energies, in good correlation with atomization enthalpies (R2 =0.75). Spin-geometry variations can break the linearities, of interest to circumventing the Sabatier principle. Pt, Pd, Co, and Fe form a distinct group with the weakest O2 binding. R2 up to 0.84 between surface adsorption energies and our energies for MO2 systems indicate relevance also to real catalytic systems.
Collapse
Affiliation(s)
- Klaus A Moltved
- Technical University of Denmark DTU Chemistry, Building 206, 2800, Kgs. Lyngby, Denmark
| | - Kasper P Kepp
- Technical University of Denmark DTU Chemistry, Building 206, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
11
|
Tang Z, Jiang Z, Chen H, Su P, Wu W. Energy decomposition analysis based on broken symmetry unrestricted density functional theory. J Chem Phys 2020; 151:244106. [PMID: 31893870 DOI: 10.1063/1.5114611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In this paper, the generalized Kohn-Sham energy decomposition analysis (GKS-EDA) scheme is extended to molecular interactions in open shell singlet states, which is a challenge for many popular EDA methods due to the multireference character. Based on broken symmetry (BS) unrestricted density functional theory with a spin projection approximation, the extension scheme, named GKS-EDA(BS) in this paper, divides the total interaction energy into electrostatic, exchange-repulsion, polarization, correlation, and dispersion terms. Test examples include the pancake bond in the phenalenyl dimer, the ligand interactions in the Fe(ii)-porphyrin complexes, and the radical interactions in dehydrogenated guanine-cytosine base pairs and show that GKS-EDA(BS) is a practical EDA tool for open shell singlet systems.
Collapse
Affiliation(s)
- Zhen Tang
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhen Jiang
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Hongjiang Chen
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Peifeng Su
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Wei Wu
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
12
|
Han Du WG, Götz AW, Noodleman L. DFT Fe a3-O/O-O Vibrational Frequency Calculations over Catalytic Reaction Cycle States in the Dinuclear Center of Cytochrome c Oxidase. Inorg Chem 2019; 58:13933-13944. [PMID: 31566371 PMCID: PMC6839913 DOI: 10.1021/acs.inorgchem.9b01840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Density functional vibrational frequency calculations have been performed on eight geometry optimized cytochrome c oxidase (CcO) dinuclear center (DNC) reaction cycle intermediates and on the oxymyoglobin (oxyMb) active site. The calculated Fe-O and O-O stretching modes and their frequency shifts along the reaction cycle have been compared with the available resonance Raman (rR) measurements. The calculations support the proposal that in state A[Fea33+-O2-•···CuB+] of CcO, O2 binds with Fea32+ in a similar bent end-on geometry to that in oxyMb. The calculations show that the observed 20 cm-1 shift of the Fea3-O stretching mode from the PR to F state is caused by the protonation of the OH- ligand on CuB2+ (PR[Fea34+═O2-···HO--CuB2+] → F[Fea34+═O2-···H2O-CuB2+]), and that the H2O ligand is still on the CuB2+ site in the rR identified F[Fea34+═O2-···H2O-CuB2+] state. Further, the observed rR band at 356 cm-1 between states PR and F is likely an O-Fea3-porphyrin bending mode. The observed 450 cm-1 low Fea3-O frequency mode for the OH active oxidized state has been reproduced by our calculations on a nearly symmetrically bridged Fea33+-OH-CuB2+ structure with a relatively long Fea3-O distance near 2 Å. Based on Badger's rule, the calculated Fea3-O distances correlate well with the calculated νFe-O-2/3 (νFe-O is the Fea3-O stretching frequency) with correlation coefficient R = 0.973.
Collapse
Affiliation(s)
- Wen-Ge Han Du
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Andreas W. Götz
- San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Drive MC0505, La Jolla, CA 92093
| | - Louis Noodleman
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
13
|
Li R, Dai X, Feng Z, Li Y, Zhao M, Liu J, Li H, Chen Y, Ma Y, Tang Y. Effect of toxic ligands on O 2 binding to heme and their toxicity mechanism. Phys Chem Chem Phys 2019; 21:14957-14963. [PMID: 31236551 DOI: 10.1039/c9cp02583a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heme, as the cofactor and active site of Hb, enables Hb to carry out the necessary function required for O2 management for life, that is, reversible O2 binding for transport. In this paper, the microscopic mechanism of heme-associated poisoning has been elucidated from the perspective of electronic interaction by performing first-principles calculations. The results show that the functional groups (-CHO, -COOH, -NO2, -NH2) and CN exhibit a stronger affinity for heme than O2 and are more likely to occupy the O2 binding site, which results in the loss of the ability of heme to carry O2. Moreover, the addition of functional groups, CO and CN to heme at the side site can cause a pronounced enhancement toward the O2 binding characteristics of heme, which prevents heme from releasing O2 to oxygen-consuming tissues as the blood circulates. The reversible O2 binding function of heme is disrupted by the presence of these toxic ligands in the heme binding pocket, which greatly affects O2 transport in the blood. The inability of tissues to obtain O2 leads to tissue hypoxia, which is the main cause of poisoning. Based on the energy, geometry and electronic properties, the hypoxia mechanism proposed by us coincides well with experiment, and the research has the potential to provide a theoretical reference for the relevant areas of bioscience.
Collapse
Affiliation(s)
- Renyi Li
- College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Xianqi Dai
- College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Zhen Feng
- College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Yi Li
- College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Mingyu Zhao
- College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Jing Liu
- College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Huiting Li
- College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Yang Chen
- College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Yaqiang Ma
- College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Yanan Tang
- Quantum Materials Research Center, College of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou 450044, China.
| |
Collapse
|
14
|
Schaefer AW, Ehudin MA, Quist DA, Tang JA, Karlin KD, Solomon EI. Spin Interconversion of Heme-Peroxo-Copper Complexes Facilitated by Intramolecular Hydrogen-Bonding Interactions. J Am Chem Soc 2019; 141:4936-4951. [PMID: 30836005 PMCID: PMC6457345 DOI: 10.1021/jacs.9b00118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Synthetic peroxo-bridged high-spin (HS) heme-(μ-η2:η1-O22-)-Cu(L) complexes incorporating (as part of the copper ligand) intramolecular hydrogen-bond (H-bond) capabilities and/or steric effects are herein demonstrated to affect the complex's electronic and geometric structure, notably impacting the spin state. An H-bonding interaction with the peroxo core favors a low-spin (LS) heme-(μ-η1:η1-O22-)-Cu(L) structure, resulting in a reversible temperature-dependent interconversion of spin state (5 coordinate HS to 6 coordinate LS). The LS state dominates at low temperatures, even in the absence of a strong trans-axial heme ligand. Lewis base addition inhibits the H-bond facilitated spin interconversion by competition for the H-bond donor, illustrating the precise H-bonding interaction required to induce spin-crossover (SCO). Resonance Raman spectroscopy (rR) shows that the H-bonding pendant interacts with the bridging peroxide ligand to stabilize the LS but not the HS state. The H-bond (to the Cu-bound O atom) acts to weaken the O-O bond and strengthen the Fe-O bond, exhibiting ν(M-O) and ν(O-O) values comparable to analogous known LS complexes with a strong donating trans-axial ligand, 1,5-dicyclohexylimidazole, (DCHIm)heme-(μ-η1:η1-O22-)-Cu(L). Variable-temperature (-90 to -130 °C) UV-vis and 2H NMR spectroscopies confirm the SCO process and implicate the involvement of solvent binding. Examining a case of solvent binding without SCO, thermodynamic parameters were obtained from a van't Hoff analysis, accounting for its contribution in SCO. Taken together, these data provide evidence for the H-bond group facilitating a core geometry change and allowing solvent to bind, stabilizing a LS state. The rR data, complemented by DFT analysis, reveal a stronger H-bonding interaction with the peroxo core in the LS compared to the HS complexes, which enthalpically favors the LS state. These insights enhance our fundamental understanding of secondary coordination sphere influences in metalloenzymes.
Collapse
Affiliation(s)
- Andrew W. Schaefer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Melanie A. Ehudin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Joel A. Tang
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
15
|
Resonant inelastic X-ray scattering determination of the electronic structure of oxyhemoglobin and its model complex. Proc Natl Acad Sci U S A 2019; 116:2854-2859. [PMID: 30718404 DOI: 10.1073/pnas.1815981116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hemoglobin and myoglobin are oxygen-binding proteins with S = 0 heme {FeO2}8 active sites. The electronic structure of these sites has been the subject of much debate. This study utilizes Fe K-edge X-ray absorption spectroscopy (XAS) and 1s2p resonant inelastic X-ray scattering (RIXS) to study oxyhemoglobin and a related heme {FeO2}8 model compound, [(pfp)Fe(1-MeIm)(O2)] (pfp = meso-tetra(α,α,α,α-o-pivalamido-phenyl)porphyrin, or TpivPP, 1-MeIm = 1-methylimidazole) (pfpO2), which was previously analyzed using L-edge XAS. The K-edge XAS and RIXS data of pfpO2 and oxyhemoglobin are compared with the data for low-spin FeII and FeIII [Fe(tpp)(Im)2]0/+ (tpp = tetra-phenyl porphyrin) compounds, which serve as heme references. The X-ray data show that pfpO2 is similar to FeII, while oxyhemoglobin is qualitatively similar to FeIII, but with significant quantitative differences. Density-functional theory (DFT) calculations show that the difference between pfpO2 and oxyhemoglobin is due to a distal histidine H bond to O2 and the less hydrophobic environment in the protein, which lead to more backbonding into the O2 A valence bond configuration interaction multiplet model is used to analyze the RIXS data and show that pfpO2 is dominantly FeII with 6-8% FeIII character, while oxyhemoglobin has a very mixed wave function that has 50-77% FeIII character and a partially polarized Fe-O2 π-bond.
Collapse
|
16
|
Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chem Rev 2018; 118:10840-11022. [PMID: 30372042 PMCID: PMC6360144 DOI: 10.1021/acs.chemrev.8b00074] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e- reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme-Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme-O2 and copper-O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme-Cu models, evaluating experimental and computational results, which highlight important fundamental structure-function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.
Collapse
Affiliation(s)
- Suzanne M. Adam
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gayan B. Wijeratne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patrick J. Rogler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Daniel E. Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J. Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
17
|
Moltved KA, Kepp KP. Chemical Bond Energies of 3d Transition Metals Studied by Density Functional Theory. J Chem Theory Comput 2018; 14:3479-3492. [PMID: 29812932 DOI: 10.1021/acs.jctc.8b00143] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite their vast importance to inorganic chemistry, materials science, and catalysis, the accuracy of modeling the formation or cleavage of metal-ligand (M-L) bonds depends greatly on the chosen functional and the type of bond in a way that is not systematically understood. In order to approach a state of high-accuracy DFT for rational prediction of chemistry and catalysis, such system-dependencies need to be resolved. We studied 30 different density functionals applied to a "balanced data set" of 60 experimental diatomic M-L bond energies; this data set has no bias toward any dq configuration, metal, bond type, or ligand as all of these occur to the same extent, and we can therefore identify accuracy bottlenecks. We show that the performance of a functional is very dependent on data set choice, and we dissect these effects into system type. In addition to the use of balanced data sets, we also argue that the precision (rather than just accuracy) of a functional is of interest, measured by standard deviations of the errors. There are distinct system dependencies both in the ligand and metal series: Hydrides are best described by a very large HF exchange percentage, possibly due to self-interaction error, whereas halides are best described by very small (0-10%) HF exchange fractions, and double-bond enforcing oxides and sulfides favor 10-25% HF exchange, as is also average for the full data set. Thus, average HF requirements hide major system-dependent requirements. For late transition metals Co-Zn, HF percentage of 0-10% is favored, whereas for the early transition metals Sc-Fe hybrid functionals with 20% HF exchange or higher are commonly favored. Accordingly, B3LYP is an excellent choice for early d-block but a poor choice for late transition metals. We conclude that DFT intrinsically underestimates the bond strengths of late vs early transition metals, correlating with increased effective nuclear charge. Thus, the revised RPBE, which reduces the overbinding tendency of PBE, is mainly an advantage for the early and mid transition metals and not very much for the late transition metals, i.e. there is a metal-dependent effect of the relative performance of RPBE vs PBE, which are widely used to study adsorption energetics on metal surfaces. Overall, the best performing functionals are PW6B95, the MN15 and MN15-L functionals, and the double hybrid B2PLYP.
Collapse
Affiliation(s)
- Klaus A Moltved
- DTU Chemistry , Technical University of Denmark , Building 206 , DK-2800 Kgs. Lyngby , Denmark
| | - Kasper P Kepp
- DTU Chemistry , Technical University of Denmark , Building 206 , DK-2800 Kgs. Lyngby , Denmark
| |
Collapse
|
18
|
Zhang L, Kepp KP, Ulstrup J, Zhang J. Redox Potentials and Electronic States of Iron Porphyrin IX Adsorbed on Single Crystal Gold Electrode Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3610-3618. [PMID: 29510058 DOI: 10.1021/acs.langmuir.8b00163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Metalloporphyrins are active sites in metalloproteins and synthetic catalysts. They have also been studied extensively by electrochemistry as well as being prominent targets in electrochemical scanning tunneling microscopy (STM). Previous studies of FePPIX adsorbed on graphite and alkylthiol modified Au electrodes showed a pair of reversible Fe(III/II)PPIX peaks at about -0.41 V (vs NHE) at high solution pH. We recently used iron protoporphyrin IX (FePPIX) as an intercalating probe for long-range electrochemical electron transfer through a G-quadruplex oligonucleotide (DNAzyme); this study disclosed two, rather than a single pair of voltammetric peaks with a new and dominating peak, shifted 200 mV positive relative to the ≈-0.4 V peak. Prompted by this unexpected observation, we report here a study of the voltammetry of FePPIX itself on single-crystal Au(111), (100), and (110) and polycrystalline Au electrode surfaces. In all cases the dominating pair of new Fe(III/II)PPIX redox peaks, shifted positively by more than 200 mV compared to those of previous studies appeared. This observation is supported by density functional theory (DFT) which shows that strong dispersion forces in the FePPIX/Au electronic interaction drive the midpoint potential toward positive values. The FePPIX spin states depend on interaction with the Au(111) interface, converting all the Fe(II)/(III)PPIX species into low-spin states. These results support electrochemical evidence for the nature of the electronic coupling between FePPIX and Au-surfaces, and the electronic states of adsorbate molecules, with a bearing also on recent reports of magnetic FePPIX/Au(111) interactions in ultrahigh vacuum (UHV).
Collapse
Affiliation(s)
- Ling Zhang
- Department of Chemistry , Technical University of Denmark , Building 207, Kemitorvet, DK-2800 Kgs. Lyngby , Denmark
| | - Kasper P Kepp
- Department of Chemistry , Technical University of Denmark , Building 207, Kemitorvet, DK-2800 Kgs. Lyngby , Denmark
| | - Jens Ulstrup
- Department of Chemistry , Technical University of Denmark , Building 207, Kemitorvet, DK-2800 Kgs. Lyngby , Denmark
| | - Jingdong Zhang
- Department of Chemistry , Technical University of Denmark , Building 207, Kemitorvet, DK-2800 Kgs. Lyngby , Denmark
| |
Collapse
|
19
|
Kepp KP. Heme isomers substantially affect heme's electronic structure and function. Phys Chem Chem Phys 2018; 19:22355-22362. [PMID: 28805222 DOI: 10.1039/c7cp03285d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inspection of heme protein structures in the protein data bank reveals four isomers of heme characterized by different relative orientations of the vinyl side chains; remarkably, all these have been reported in multiple protein structures. Density functional theory computations explain this as due to similar energy of the isomers but with a sizable (25 kJ mol-1) barrier to interconversion arising from restricted rotation around the conjugated bonds. The four isomers, EE, EZ, ZE, and ZZ, were then investigated as 4-coordinate hemes, as 5-coordinate deoxyhemes, in 6-coordinate O2-adducts of globins and as compound I intermediates typical of heme peroxidases. Substantial differences were observed in electronic properties relevant to heme function: notably, the spin state energy gap of O2-heme adducts, important for fast reversible binding of O2, depends on the isomer state, and O2-binding enthalpies change by up to 16 kJ mol-1; redox potentials change by up to 0.2 V depending on the isomer, and the doublet-quartet energy splitting of compound I, central to "two-state" reactivity, is affected by up to ∼15 kJ mol-1. These effects are consistently seen with three distinct density functionals, i.e. the effects are not method-dependent. Thus, the nature of the isomer state is an important but overlooked feature of heme chemistry and function, and previous and future studies of hemes may be reconsidered in this new context.
Collapse
Affiliation(s)
- Kasper P Kepp
- Technical University of Denmark, DTU Chemistry, Building 206, 2800 Kgs. Lyngby, DK, Denmark.
| |
Collapse
|
20
|
Palluccio TD, Cai X, Majumdar S, Serafim LF, Tomson NC, Wieghardt K, Cazin CSJ, Nolan SP, Rybak-Akimova EV, Fernández-González MÁ, Temprado M, Captain B, Hoff CD. Ligand-Directed Reactivity in Dioxygen and Water Binding to cis-[Pd(NHC) 2(η 2-O 2)]. J Am Chem Soc 2018; 140:264-276. [PMID: 29172489 DOI: 10.1021/jacs.7b09905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Reaction of [Pd(IPr)2] (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) and O2 leads to the surprising discovery that at low temperature the initial reaction product is a highly labile peroxide complex cis-[Pd(IPr)2(η2-O2)]. At temperatures ≳ -40 °C, cis-[Pd(IPr)2(η2-O2)] adds a second O2 to form trans-[Pd(IPr)2(η1-O2)2]. Squid magnetometry and EPR studies yield data that are consistent with a singlet diradical ground state with a thermally accessible triplet state for this unique bis-superoxide complex. In addition to reaction with O2, cis-[Pd(IPr)2(η2-O2)] reacts at low temperature with H2O in methanol/ether solution to form trans-[Pd(IPr)2(OH)(OOH)]. The crystal structure of trans-[Pd(IPr)2(OOH)(OH)] is reported. Neither reaction with O2 nor reaction with H2O occurs under comparable conditions for cis-[Pd(IMes)2(η2-O2)] (IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene). The increased reactivity of cis-[Pd(IPr)2(η2-O2)] is attributed to the enthalpy of binding of O2 to [Pd(IPr)2] (-14.5 ± 1.0 kcal/mol) that is approximately one-half that of [Pd(IMes)2] (-27.9 ± 1.5 kcal/mol). Computational studies identify the cause as interligand repulsion forcing a wider C-Pd-C angle and tilting of the NHC plane in cis-[Pd(IPr)2(η2-O2)]. Arene-arene interactions are more favorable and serve to further stabilize cis-[Pd(IMes)2(η2-O2)]. Inclusion of dispersion effects in DFT calculations leads to improved agreement between experimental and computational enthalpies of O2 binding. A complete reaction diagram is constructed for formation of trans-[Pd(IPr)2(η1-O2)2] and leads to the conclusion that kinetic factors inhibit formation of trans-[Pd(IMes)2(η1-O2)2] at the low temperatures at which it is thermodynamically favored. Failure to detect the predicted T-shaped intermediate trans-[Pd(NHC)2(η1-O2)] for either NHC = IMes or IPr is attributed to dynamic effects. A partial potential energy diagram for initial binding of O2 is constructed. A range of low-energy pathways at different angles of approach are present and blur the distinction between pure "side-on" or "end-on" trajectories for oxygen binding.
Collapse
Affiliation(s)
- Taryn D Palluccio
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Xiaochen Cai
- Department of Chemistry, University of Miami , Coral Gables, Florida 33146, United States
| | - Subhojit Majumdar
- Department of Chemistry, University of Miami , Coral Gables, Florida 33146, United States
| | - Leonardo F Serafim
- Department of Chemistry, University of Miami , Coral Gables, Florida 33146, United States
| | - Neil C Tomson
- Max-Planck Institute for Chemical Energy Conversion , Mülheim an der Ruhr, Germany.,Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Karl Wieghardt
- Max-Planck Institute for Chemical Energy Conversion , Mülheim an der Ruhr, Germany
| | - Catherine S J Cazin
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University , Campus Sterre, Building S-3, Krijgslaan 281, Ghent 9000, Belgium
| | - Steven P Nolan
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University , Campus Sterre, Building S-3, Krijgslaan 281, Ghent 9000, Belgium
| | - Elena V Rybak-Akimova
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Miguel Ángel Fernández-González
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Universidad de Alcalá , Madrid 28871, Spain
| | - Manuel Temprado
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Universidad de Alcalá , Madrid 28871, Spain
| | - Burjor Captain
- Department of Chemistry, University of Miami , Coral Gables, Florida 33146, United States
| | - Carl D Hoff
- Department of Chemistry, University of Miami , Coral Gables, Florida 33146, United States
| |
Collapse
|
21
|
Phung QM, Pierloot K. The dioxygen adducts of iron and manganese porphyrins: electronic structure and binding energy. Phys Chem Chem Phys 2018; 20:17009-17019. [DOI: 10.1039/c8cp03078b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The electronic structures of adducts of O2 and metal porphyrins were thoroughly investigated by highly accurate DMRG-CASPT2.
Collapse
|
22
|
|
23
|
Ohta T, Nagaraju P, Liu JG, Ogura T, Naruta Y. The secondary coordination sphere and axial ligand effects on oxygen reduction reaction by iron porphyrins: a DFT computational study. J Biol Inorg Chem 2016; 21:745-55. [PMID: 27501847 DOI: 10.1007/s00775-016-1380-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/26/2016] [Indexed: 11/25/2022]
Abstract
Oxygen reduction reaction (ORR) catalyzed by a bio-inspired iron porphyrin bearing a hanging carboxylic acid group over the porphyrin ring, and a tethered axial imidazole ligand was studied by DFT calculations. BP86 free energy calculations of the redox potentials and pK a's of reaction components involved in the proton coupled electron transfer (PCET) reactions of the ferric-hydroxo and -superoxo complexes were performed based on Born-Haber thermodynamic cycle in conjunction with a continuum solvation model. The comparison was made with iron porphyrins that lack either in the hanging acid group or axial ligand, suggesting that H-bond interaction between the carboxylic acid and iron-bound hydroxo, aquo, superoxo, and peroxo ligands (de)stabilizes the Fe-O bonding, resulting in the increase in the reduction potential of the ferric complexes. The axial ligand interaction with the imidazole raises the affinity of the iron-bound superoxo and peroxo ligands for proton. In addition, a low-spin end-on ferric-hydroperoxo intermediate, a key precursor for O-O cleavage, can be stabilized in the presence of axial ligation. Thus, selective and efficient ORR of iron porphyrin can be achieved with the aid of the secondary coordination sphere and axial ligand interactions.
Collapse
Affiliation(s)
- Takehiro Ohta
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH LP Center, Hyogo, 679-5148, Japan. .,Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 812-8581, Japan.
| | - Perumandla Nagaraju
- Institute of Science and Technology Research, Chubu University, Kasugai, Aichi, 487-8501, Japan.,Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 812-8581, Japan
| | - Jin-Gang Liu
- Department of Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Takashi Ogura
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH LP Center, Hyogo, 679-5148, Japan
| | - Yoshinori Naruta
- Institute of Science and Technology Research, Chubu University, Kasugai, Aichi, 487-8501, Japan.,Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 812-8581, Japan
| |
Collapse
|
24
|
Nagaraju P, Ohta T, Liu JG, Ogura T, Naruta Y. The secondary coordination sphere controlled reactivity of a ferric-superoxo heme: unexpected conversion to a ferric hydroperoxo intermediate by reaction with a high-spin ferrous heme. Chem Commun (Camb) 2016; 52:7213-6. [PMID: 27105471 DOI: 10.1039/c6cc02162j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A bio-inspired heme complex involving both a proton donor and an axial imidazole ligand reduces the activation energy for the formation of a ferric hydroperoxo intermediate. A high-spin ferrous heme is shown to be capable of reducing its superoxy species to generate a ferric hydroperoxo intermediate for the first time.
Collapse
Affiliation(s)
- Perumandla Nagaraju
- Institute of Science and Technology Research, Chubu University, Kasugai, Aichi 487-8501, Japan.
| | | | | | | | | |
Collapse
|
25
|
Abstract
Iron complexes are important spin crossover (SCO) systems with vital roles in oxidative metabolism and promising technological potential. The SCO tendency depends on the free energy balance of high- and low-spin states, which again depends on physical effects such as dispersion, relativistic effects, and vibrational entropy. This work studied 30 different iron SCO systems with experimentally known thermochemical data, using 12 different density functionals. Remarkably general entropy-enthalpy compensation across SCO systems was identified (R = 0.82, p = 0.002) that should be considered in rational SCO design. Iron(II) complexes displayed higher ΔH and ΔS values than iron(III) complexes and also less steep compensation effects. First-coordination sphere ΔS values computed from numerical frequencies reproduce most of the experimental entropy and should thus be included when modeling spin-state changes in inorganic chemistry (R = 0.52, p = 3.4 × 10(-3); standard error in TΔS ≈ 4.4 kJ/mol at 298 K vs 16 kJ/mol of total TΔS on average). Zero-point energies favored high-spin states by 9 kJ/mol on average. Interestingly, dispersion effects are surprisingly large for the SCO process (average: 9 kJ/mol, but up to 33 kJ/mol) and favor the more compact low-spin state. Relativistic effects favor low-spin by ∼9 kJ/mol on average, but up to 24 kJ/mol. B3LYP*, TPSSh, B2PLYP, and PW6B95 performed best for the typical calculation scheme that includes ZPE. However, if relativistic and dispersion effects are included, only B3LYP* remained accurate. On average, high-spin was favored by LYP by 11-15 kJ/mol relative to other correlation functionals, and by 4.2 kJ/mol per 1% HF exchange in hybrids. 13% HF exchange was optimal without dispersion, and 15% was optimal with all effects included for these systems.
Collapse
Affiliation(s)
- Kasper P Kepp
- DTU Chemistry, Technical University of Denmark , Building 206, Lyngby DK-2800, Denmark
| |
Collapse
|
26
|
Wang L, Wang JM, Zhang R, Liu XG, Song GX, Chen XF, Wang Y, Kong JL. Highly efficient As(v)/Sb(v) removal by magnetic sludge composite: synthesis, characterization, equilibrium, and mechanism studies. RSC Adv 2016. [DOI: 10.1039/c6ra06208c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Magnetic sludge with the unique flexibility, low thermal conductance and plentiful adsorption sites was fabricated for highly efficient As/Sb removal.
Collapse
Affiliation(s)
- Li Wang
- Center of Analysis and Measurement
- Fudan University
- Shanghai 200433
- China
| | - Jing-mei Wang
- Center of Analysis and Measurement
- Fudan University
- Shanghai 200433
- China
| | - Ren Zhang
- Center of Analysis and Measurement
- Fudan University
- Shanghai 200433
- China
| | - Xin-gang Liu
- Center of Analysis and Measurement
- Fudan University
- Shanghai 200433
- China
| | - Guo-xin Song
- Center of Analysis and Measurement
- Fudan University
- Shanghai 200433
- China
| | - Xiao-feng Chen
- Center of Analysis and Measurement
- Fudan University
- Shanghai 200433
- China
| | - Yi Wang
- Center of Analysis and Measurement
- Fudan University
- Shanghai 200433
- China
- Department of Chemistry
| | - Ji-lie Kong
- Department of Chemistry
- Innovative Center of Chemistry for Energy Materials
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
27
|
Radoń M. Role of Spin States in Nitric Oxide Binding to Cobalt(II) and Manganese(II) Porphyrins. Is Tighter Binding Always Stronger? Inorg Chem 2015; 54:5634-45. [PMID: 26000802 DOI: 10.1021/ic503109a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Binding of nitric oxide (NO) to metalloporphyrins and heme groups is important in biochemistry while challenging to describe accurately by density functional theory (DFT) calculations. Here, the structural and thermochemical aspect of NO binding to Co(II) and Mn(II) porphyrins is investigated by DFT and DFT-D (dispersion-corrected) calculations, supported by reliable coupled-cluster methodology (CCSD(T)), and critically correlated with the experimental data. It is argued that whereas the bonding of NO to Co(II) porphyrin is a simple radical recombination, the bonding of NO to Mn(II) porphyrin is accompanied by a crossing of spin states. For this reason, the spin-state conversion energy contributes to the Mn-NO bond energy, and the paradigmatic correlation between bond length and bond energy is violated for the considered nitrosyl complexes: the Mn-NO bond is (structurally) shorter by ∼0.2 Å, albeit (energetically) weaker by a few kcal/mol, compared with the Co-NO bond. Moreover, none of the many tested DFT methods can reproduce the Co-NO and Mn-NO bond energies simultaneously, except for calculations with B3LYP*-D3, TPSSh-D3, and M06-D3 methods supplemented with the proposed spin-state energy correction (to compensate for an error on the calculated spin-state conversion energy). The results of this study are important to appreciate the role of spin-state changes in ligand binding properties of heme-related models. They also highlight the need for accurate calculations for correct interpretation of experimental data, including the qualitative structure-energy relationship.
Collapse
Affiliation(s)
- Mariusz Radoń
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| |
Collapse
|
28
|
Mortensen SR, Kepp KP. Spin Propensities of Octahedral Complexes From Density Functional Theory. J Phys Chem A 2015; 119:4041-50. [DOI: 10.1021/acs.jpca.5b01626] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sara R. Mortensen
- DTU Chemistry, Technical University of Denmark, Building 206, Anker Engelunds Vej 1, 2800 Kongens Lyngby, Denmark
| | - Kasper P. Kepp
- DTU Chemistry, Technical University of Denmark, Building 206, Anker Engelunds Vej 1, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
29
|
Fu H, Cao M, She Y, Sun Z, Yu Y. Electronic effects of the substituent on the dioxygen-activating abilities of substituted iron tetraphenylporphyrins: a theoretical study. J Mol Model 2015; 21:92. [DOI: 10.1007/s00894-015-2619-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 02/15/2015] [Indexed: 10/23/2022]
|
30
|
Tsud N, Bercha S, Acres RG, Vorokhta M, Khalakhan I, Prince KC, Matolín V. Functionalization of nanostructured cerium oxide films with histidine. Phys Chem Chem Phys 2015; 17:2770-7. [PMID: 25500980 DOI: 10.1039/c4cp03780d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The surfaces of polycrystalline cerium oxide films were modified by histidine adsorption under vacuum and characterized by the synchrotron based techniques of core and valence level photoemission, resonant photoemission and near edge X-ray absorption spectroscopy, as well as atomic force microscopy. Histidine is strongly bound to the oxide surface in the anionic form through the deprotonated carboxylate group, and forms a disordered molecular adlayer. The imidazole ring and the amino side group do not form bonds with the substrate but are involved in the intermolecular hydrogen bonding which stabilizes the molecular adlayer. The surface reaction with histidine results in water desorption accompanied by oxide reduction, which is propagated into the bulk of the film. Previously studied, well-characterized surfaces are a guide to the chemistry of the present polycrystalline surface and histidine bonds via the carboxylate group in both cases. In contrast, bonding via the imidazole group occurs on the well-ordered surface but not in the present case. The morphology and structure of the cerium oxide are decisive factors which define the adsorption geometry of the histidine adlayer.
Collapse
Affiliation(s)
- Nataliya Tsud
- Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, Prague, 18000, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
31
|
Kepp KP. Halide binding and inhibition of laccase copper clusters: the role of reorganization energy. Inorg Chem 2014; 54:476-83. [PMID: 25532722 DOI: 10.1021/ic5021466] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Laccase-like proteins are multicopper oxidases involved in several biological and industrial processes. Their application is commonly limited due to inhibition by fluoride and chloride, and as-isolated proteins are often substantially activated by heat, suggesting that multiple redox states can complicate characterization. Understanding these processes at the molecular level is thus desirable but theoretically unexplored. This paper reports systematic calculations of geometries, reorganization energies, and ionization energies for all partly oxidized states of the trinuclear copper clusters in realistic models with ∼200 atoms. Corrections for scalar-relativistic effects, dispersion, and thermal effects were estimated. Fluoride, chloride, hydroxide, or water was bound to the T2 copper site of the oxidized resting state, and the peroxo intermediate was also computed for reference. Antiferromagnetic coupling, assigned oxidation states, and general structures were consistent with known spectroscopic data. The computations show that (i) ligands bound to the T2 site substantially increase the reorganization energy of the second reduction of the resting state and reduce the redox potentials, providing a possible mechanism for inhibition; (ii) the reorganization energy is particularly large for F(-) but also high for Cl(-), consistent with the experimental tendency of inhibition; (iii) reduction leads to release of Cl(-) from the T2 site, suggesting a mechanism for heat/reduction activation of laccases by dissociation of inhibiting halides or hydroxide from T2.
Collapse
Affiliation(s)
- Kasper P Kepp
- DTU Chemistry, Technical University of Denmark , Building 206, 2800 Kgs. Lyngby, DK Denmark
| |
Collapse
|
32
|
Čajan M, Trávníček Z. Impact of solvent models and van der Waals corrections on DFT geometric and 57Fe Mössbauer parameters of trans-[FeCl2(iPrOH)4]. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Kepp KP. Co-C dissociation of adenosylcobalamin (coenzyme B12): role of dispersion, induction effects, solvent polarity, and relativistic and thermal corrections. J Phys Chem A 2014; 118:7104-17. [PMID: 25116644 DOI: 10.1021/jp503607k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quantum-chemical cluster modeling is challenged in the limit of large, soft systems by the effects of dispersion and solvent, and well as other physical interactions. Adenosylcobalamin (AdoCbl, coenzyme B12), as one of the most complex cofactors in life, constitutes such a challenge. The cleavage of its unique organometallic Co-C bond has inspired multiple studies of this cofactor. This paper reports the fully relaxed potential energy surface of Co-C cleavage of AdoCbl, including for the first time all side-chain interactions with the dissociating Ado group. Various methods and corrections for dispersion, relativistic effects, solvent polarity, basis set superposition error, and thermal and vibrational effects were investigated, totaling more than 550 single-point energies for the large model. The results show immense variability depending on method, including solvation, functional type, and dispersion, challenging the conceived accuracy of methods used for such systems. In particular, B3LYP-D3 seems to severely underestimate the Co-C bond strength, consistent with previous results, and BP86 remains accurate for cobalamins when dispersion interactions are accounted for.
Collapse
Affiliation(s)
- Kasper P Kepp
- DTU Chemistry, Technical University of Denmark , Building 206, Kgs. Lyngby, DK-2800, Denmark
| |
Collapse
|
34
|
Harcourt RD. The McClure and Weiss models of Fe–O2 bonding for oxyhemes, and the HbO2 + NO reaction. J Biol Inorg Chem 2013; 19:113-23. [DOI: 10.1007/s00775-013-1066-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 11/06/2013] [Indexed: 10/25/2022]
|
35
|
Kepp KP. O2Binding to Heme is Strongly Facilitated by Near-Degeneracy of Electronic States. Chemphyschem 2013; 14:3551-8. [DOI: 10.1002/cphc.201300658] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Indexed: 11/06/2022]
|