1
|
Seidler CA, Liedl KR. CDR L3 Loop Rearrangement Switches Multispecific SPE-7 IgE Antibody From Hapten to Protein Binding. J Mol Recognit 2024; 37:e3107. [PMID: 39375932 DOI: 10.1002/jmr.3107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/11/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024]
Abstract
The monoclonal IgE antibody SPE-7 was originally raised against a 2,4-dinitrophenyl (DNP) target. Through its ability to adopt multiple conformations, the antibody is capable of binding to a diverse range of small haptens and large proteins. The present study examines a dataset of experimentally determined crystal structures of the SPE-7 antibody to gain insight into the mechanisms that contribute to its multispecificity. With the emergence of more and more therapeutic antibodies against a huge repertoire of different targets, our research could be of great interest for future drug development. We are able to discriminate between the different paratope-binding states in the conformational ensembles obtained by enhanced sampling molecular dynamics simulations, and to calculate their transition timescales and state probabilities. Furthermore, we describe the key residues responsible for discriminating between the different binding capacities and identify a tryptophan in a central position of the CDR L3 loop as the residue of greatest interest. The overall dynamics of the paratope appear to be mainly influenced by the CDR L3 and CDR L1 loops.
Collapse
Affiliation(s)
- Clarissa A Seidler
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Klaus R Liedl
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Li D, Pucci F, Rooman M. Prediction of Paratope-Epitope Pairs Using Convolutional Neural Networks. Int J Mol Sci 2024; 25:5434. [PMID: 38791470 PMCID: PMC11121317 DOI: 10.3390/ijms25105434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Antibodies play a central role in the adaptive immune response of vertebrates through the specific recognition of exogenous or endogenous antigens. The rational design of antibodies has a wide range of biotechnological and medical applications, such as in disease diagnosis and treatment. However, there are currently no reliable methods for predicting the antibodies that recognize a specific antigen region (or epitope) and, conversely, epitopes that recognize the binding region of a given antibody (or paratope). To fill this gap, we developed ImaPEp, a machine learning-based tool for predicting the binding probability of paratope-epitope pairs, where the epitope and paratope patches were simplified into interacting two-dimensional patches, which were colored according to the values of selected features, and pixelated. The specific recognition of an epitope image by a paratope image was achieved by using a convolutional neural network-based model, which was trained on a set of two-dimensional paratope-epitope images derived from experimental structures of antibody-antigen complexes. Our method achieves good performances in terms of cross-validation with a balanced accuracy of 0.8. Finally, we showcase examples of application of ImaPep, including extensive screening of large libraries to identify paratope candidates that bind to a selected epitope, and rescoring and refining antibody-antigen docking poses.
Collapse
Affiliation(s)
- Dong Li
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 1050 Brussels, Belgium; (D.L.); (F.P.)
- Interuniversity Institute of Bioinformatics in Brussels, 1050 Brussels, Belgium
| | - Fabrizio Pucci
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 1050 Brussels, Belgium; (D.L.); (F.P.)
- Interuniversity Institute of Bioinformatics in Brussels, 1050 Brussels, Belgium
| | - Marianne Rooman
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 1050 Brussels, Belgium; (D.L.); (F.P.)
- Interuniversity Institute of Bioinformatics in Brussels, 1050 Brussels, Belgium
| |
Collapse
|
3
|
Gupta MN, Uversky VN. Protein structure-function continuum model: Emerging nexuses between specificity, evolution, and structure. Protein Sci 2024; 33:e4968. [PMID: 38532700 DOI: 10.1002/pro.4968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
The rationale for replacing the old binary of structure-function with the trinity of structure, disorder, and function has gained considerable ground in recent years. A continuum model based on the expanded form of the existing paradigm can now subsume importance of both conformational flexibility and intrinsic disorder in protein function. The disorder is actually critical for understanding the protein-protein interactions in many regulatory processes, formation of membrane-less organelles, and our revised notions of specificity as amply illustrated by moonlighting proteins. While its importance in formation of amyloids and function of prions is often discussed, the roles of intrinsic disorder in infectious diseases and protein function under extreme conditions are also becoming clear. This review is an attempt to discuss how our current understanding of protein function, specificity, and evolution fit better with the continuum model. This integration of structure and disorder under a single model may bring greater clarity in our continuing quest for understanding proteins and molecular mechanisms of their functionality.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
4
|
Fernández-Quintero ML, Pomarici ND, Fischer ALM, Hoerschinger VJ, Kroell KB, Riccabona JR, Kamenik AS, Loeffler JR, Ferguson JA, Perrett HR, Liedl KR, Han J, Ward AB. Structure and Dynamics Guiding Design of Antibody Therapeutics and Vaccines. Antibodies (Basel) 2023; 12:67. [PMID: 37873864 PMCID: PMC10594513 DOI: 10.3390/antib12040067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
Antibodies and other new antibody-like formats have emerged as one of the most rapidly growing classes of biotherapeutic proteins. Understanding the structural features that drive antibody function and, consequently, their molecular recognition is critical for engineering antibodies. Here, we present the structural architecture of conventional IgG antibodies alongside other formats. We emphasize the importance of considering antibodies as conformational ensembles in solution instead of focusing on single-static structures because their functions and properties are strongly governed by their dynamic nature. Thus, in this review, we provide an overview of the unique structural and dynamic characteristics of antibodies with respect to their antigen recognition, biophysical properties, and effector functions. We highlight the numerous technical advances in antibody structure prediction and design, enabled by the vast number of experimentally determined high-quality structures recorded with cryo-EM, NMR, and X-ray crystallography. Lastly, we assess antibody and vaccine design strategies in the context of structure and dynamics.
Collapse
Affiliation(s)
- Monica L. Fernández-Quintero
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nancy D. Pomarici
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Anna-Lena M. Fischer
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Valentin J. Hoerschinger
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Katharina B. Kroell
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Jakob R. Riccabona
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Anna S. Kamenik
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Johannes R. Loeffler
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James A. Ferguson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hailee R. Perrett
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Chang Y, Hawkins BA, Du JJ, Groundwater PW, Hibbs DE, Lai F. A Guide to In Silico Drug Design. Pharmaceutics 2022; 15:pharmaceutics15010049. [PMID: 36678678 PMCID: PMC9867171 DOI: 10.3390/pharmaceutics15010049] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
The drug discovery process is a rocky path that is full of challenges, with the result that very few candidates progress from hit compound to a commercially available product, often due to factors, such as poor binding affinity, off-target effects, or physicochemical properties, such as solubility or stability. This process is further complicated by high research and development costs and time requirements. It is thus important to optimise every step of the process in order to maximise the chances of success. As a result of the recent advancements in computer power and technology, computer-aided drug design (CADD) has become an integral part of modern drug discovery to guide and accelerate the process. In this review, we present an overview of the important CADD methods and applications, such as in silico structure prediction, refinement, modelling and target validation, that are commonly used in this area.
Collapse
Affiliation(s)
- Yiqun Chang
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Bryson A. Hawkins
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Jonathan J. Du
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Paul W. Groundwater
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - David E. Hibbs
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Felcia Lai
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Correspondence:
| |
Collapse
|
6
|
Jiang Y, Chen HF. Performance evaluation of the balanced force field ff03CMAP for intrinsically disordered and ordered proteins. Phys Chem Chem Phys 2022; 24:29870-29881. [PMID: 36468450 DOI: 10.1039/d2cp04501j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Intrinsically disordered proteins (IDPs) have been found to be closely associated with various human diseases. Because IDPs have no fixed tertiary structure under physiological conditions, current experimental methods, such as X-ray spectroscopy, NMR, and CryoEM, cannot capture all the dynamic conformations. Molecular dynamics simulation is an useful tool that is widely used to study the conformer distributions of IDPs and has become an important complementary tool for experimental methods. However, the accuracy of MD simulations directly depends on utilizing a precise force field. Recently a CMAP optimized force field based on the Amber ff03 force field (termed ff03CMAP herein) was developed for a balanced sampling of IDPs and folded proteins. In order to further evaluate the performance, more types of disordered and ordered proteins were used to test the ability for conformer sampling. The results showed that simulated chemical shifts, J-coupling, and Rg distribution with the ff03CMAP force field were in better agreement with NMR measurements and were more accurate than those with the ff03 force field. The sampling conformations by ff03CMAP were more diverse than those of ff03. At the same time, ff03CMAP could stabilize the conformers of the ordered proteins. These findings indicate that ff03CMAP can be widely used to sample diverse conformers for proteins, including the intrinsically disordered regions.
Collapse
Affiliation(s)
- Yuxin Jiang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Shanghai Center for Bioinformation Technology, 200240, Shanghai, China
| |
Collapse
|
7
|
Blackler RJ, Müller-Loennies S, Pokorny-Lehrer B, Legg MSG, Brade L, Brade H, Kosma P, Evans SV. Antigen binding by conformational selection in near-germline antibodies. J Biol Chem 2022; 298:101901. [PMID: 35395245 PMCID: PMC9112003 DOI: 10.1016/j.jbc.2022.101901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/20/2023] Open
Abstract
Conformational flexibility in antibody-combining sites has been hypothesized to facilitate polyspecificity toward multiple unique epitopes and enable the limited germline repertoire to match an overwhelming diversity of potential antigens; however, elucidating the mechanisms of antigen recognition by flexible antibodies has been understandably challenging. Here, multiple liganded and unliganded crystal structures of the near-germline anticarbohydrate antibodies S25–2 and S25–39 are reported, which reveal an unprecedented diversity of complementarity-determining region H3 conformations in apparent equilibrium. These structures demonstrate that at least some germline or near-germline antibodies are flexible entities sensitive to their chemical environments, with conformational selection available as an evolved mechanism that preserves the inherited ability to recognize common pathogens while remaining adaptable to new threats.
Collapse
Affiliation(s)
- Ryan J Blackler
- Department of Biochemistry and Microbiology, University of Victoria, Victoria BC, Canada
| | | | - Barbara Pokorny-Lehrer
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Max S G Legg
- Department of Biochemistry and Microbiology, University of Victoria, Victoria BC, Canada
| | - Lore Brade
- Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Helmut Brade
- Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Paul Kosma
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Stephen V Evans
- Department of Biochemistry and Microbiology, University of Victoria, Victoria BC, Canada.
| |
Collapse
|
8
|
Faruk NF, Peng X, Freed KF, Roux B, Sosnick TR. Challenges and Advantages of Accounting for Backbone Flexibility in Prediction of Protein-Protein Complexes. J Chem Theory Comput 2022; 18:2016-2032. [PMID: 35213808 DOI: 10.1021/acs.jctc.1c01255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Predicting protein binding is a core problem of computational biophysics. That this objective can be partly achieved with some amount of success using docking algorithms based on rigid protein models is remarkable, although going further requires allowing for protein flexibility. However, accurately capturing the conformational changes upon binding remains an enduring challenge for docking algorithms. Here, we adapt our Upside folding model, where side chains are represented as multi-position beads, to explore how flexibility may impact predictions of protein-protein complexes. Specifically, the Upside model is used to investigate where backbone flexibility helps, which types of interactions are important, and what is the impact of coarse graining. These efforts also shed light on the relative challenges posed by folding and docking. After training the Upside energy function for docking, the model is competitive with the established all-atom methods. However, allowing for backbone flexibility during docking is generally detrimental, as the presence of comparatively minor (3-5 Å) deviations relative to the docked structure has a large negative effect on performance. While this issue appears to be inherent to current forcefield-guided flexible docking methods, systems involving the co-folding of flexible loops such as antibody-antigen complexes represent an interesting exception. In this case, binding is improved when backbone flexibility is allowed using the Upside model.
Collapse
Affiliation(s)
- Nabil F Faruk
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, Illinois 60637, United States
| | - Xiangda Peng
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, United States
| | - Karl F Freed
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Tobin R Sosnick
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, United States.,Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
9
|
A stepwise docking molecular dynamics approach for simulating antibody recognition with substantial conformational changes. Comput Struct Biotechnol J 2022; 20:710-720. [PMID: 35198128 PMCID: PMC8816672 DOI: 10.1016/j.csbj.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/24/2021] [Accepted: 01/13/2022] [Indexed: 11/23/2022] Open
Abstract
Conformational changes or rearrangements are common events during inter-biomolecular recognition. Tracking these changes are essential for exploring the allosteric mechanism and it is usually achieved by molecular dynamics simulation in silico. We previously identified a broad-neutralizing antibody against H5 influenza virus, 13D4, and solved the crystal structures of the free 13D4 Fab and its complex with hemagglutinin (HA). Structural comparison of the unbound and bound 13D4 Fabs showed that the heavy chain complementarity-determining region 3 (HCDR3) undergoes a substantial conformational rearrangement when it recognizes the receptor-binding site (RBS). Here, we used molecular dynamics (MD) to simulate the conformational changes that occur during antibody recognition. We showed that neither conventional MD nor steered MD could recapitulate the loop fitting of the RBS structure contour. Consequently, to simulate these challenging conformational changes, we engaged a stepwise docking MD method that allowed for the gradual docking of the ligand to receptor. This new method recapitulates the bound shape of the HCDR3 and provides the best approximation of the shape rendered by the co-crystal structure, with an RMSD of 0.926 Å. This strategy affords a flexible MD approach for simulating complicated conformational changes that occur during molecular recognition, and helps to provide an understanding of the involved allosteric mechanism.
Collapse
|
10
|
Tian X, Liu H, Chen HF. Catalytic mechanism of butane anaerobic oxidation for alkyl-coenzyme M reductase. Chem Biol Drug Des 2021; 98:701-712. [PMID: 34328701 DOI: 10.1111/cbdd.13931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/02/2021] [Accepted: 07/24/2021] [Indexed: 12/18/2022]
Abstract
Methane is among the most potent of the greenhouse gases, which plays a key role in global climate change. As an excellent carbon and energy source, methane can be utilized by anaerobic methane oxidizing archaea and aerobic methane oxidizing bacteria. The previous work shows that an anaerobic thermophilic enrichment culture composed of dense consortia of archaea and bacteria apparently uses partly similar pathways to oxidize the C4 hydrocarbon butane. However, the catalytic mechanism of butane anaerobic oxidation for alkyl-coenzyme M reductase is still unknown. Therefore, molecular dynamics (MD) simulation was used to investigate the dynamics differences of catalytic mechanism between methane coenzyme M reductase (MCR) and alkyl-coenzyme M reductase (ACR). At first, the binding pocket of ACR is larger than that of MCR. Then, the complex of butane and ACR is more stable than that of methane and ACR. Protein conformation cloud suggests that the position of methane is dynamics and methane escapes from the binding pocket of ACR during most of the simulation time, while butane tightly binds in the pocket of ACR. The hydrophobic interactions between butane and ACR are more and stronger than those between methane and ACR. At the same time, the binding free energy between butane and ACR is significantly lower than that between methane and ACR. The dynamics correlation network indicates that the transformation of information flow for ACR-butane is smoother than that for ACR-methane. The shortest pathway for ACR-butane is from Gln144, Ala141, Hie135, Ile133, Ala160, Arg206, Asp97, Met94, Tyr347 to Phe345 with synergistic effect for two butane molecules. This study can insight into the catalytic mechanism for butane/ACR complex.
Collapse
Affiliation(s)
- Xiaopian Tian
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Liu
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Center for Bioinformation Technology, Shanghai, China
| |
Collapse
|
11
|
Goetschius DJ, Hartmann SR, Organtini LJ, Callaway H, Huang K, Bator CM, Ashley RE, Makhov AM, Conway JF, Parrish CR, Hafenstein SL. High-resolution asymmetric structure of a Fab-virus complex reveals overlap with the receptor binding site. Proc Natl Acad Sci U S A 2021; 118:e2025452118. [PMID: 34074770 PMCID: PMC8201801 DOI: 10.1073/pnas.2025452118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Canine parvovirus is an important pathogen causing severe diseases in dogs, including acute hemorrhagic enteritis, myocarditis, and cerebellar disease. Overlap on the surface of parvovirus capsids between the antigenic epitope and the receptor binding site has contributed to cross-species transmission, giving rise to closely related variants. It has been shown that Mab 14 strongly binds and neutralizes canine but not feline parvovirus, suggesting this antigenic site also controls species-specific receptor binding. To visualize the conformational epitope at high resolution, we solved the cryogenic electron microscopy (cryo-EM) structure of the Fab-virus complex. We also created custom software, Icosahedral Subparticle Extraction and Correlated Classification, to solve a Fab-virus complex with only a few Fab bound per capsid and visualize local structures of the Fab-bound and -unbound antigenic sites extracted from the same complex map. Our results identified the antigenic epitope that had significant overlap with the receptor binding site, and the structures revealed that binding of Fab induced conformational changes to the virus. We were also able to assign the order and position of attached Fabs to allow assessment of complementarity between the Fabs bound to different positions. This approach therefore provides a method for using cryo-EM to investigate complementarity of antibody binding.
Collapse
Affiliation(s)
- Daniel J Goetschius
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Samantha R Hartmann
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Lindsey J Organtini
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Heather Callaway
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Kai Huang
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Carol M Bator
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Robert E Ashley
- Department of Medicine, Penn State University College of Medicine, The Pennsylvania State University, Hershey, PA 17033
| | - Alexander M Makhov
- Department of Structural Biology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Susan L Hafenstein
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802;
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Department of Medicine, Penn State University College of Medicine, The Pennsylvania State University, Hershey, PA 17033
| |
Collapse
|
12
|
Cui X, Liu H, Rehman AU, Chen HF. Extensive evaluation of environment-specific force field for ordered and disordered proteins. Phys Chem Chem Phys 2021; 23:12127-12136. [PMID: 34032235 DOI: 10.1039/d1cp01385h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intrinsically disordered proteins (IDPs) have no fixed tertiary structure under physiological conditions and are associated with many human diseases. Because IDPs have the characteristic of possessing diverse conformations, current experimental methods cannot capture all the conformations of IDPs. However, molecular dynamics simulation can sample these atomistically diverse conformations as a valuable complement to experimental data. To accurately describe the properties of IDPs, the environment-specific precise force field (ESFF1) was successfully released to reproduce the conformer character of ordered and disordered proteins. Here, three typical IDPs and thirteen folded proteins were used to further evaluate the performance of this force field. The results indicate that the NMR observables of ESFF1 better approach experimental data than do those of ff14SB for IDPs. The sampling conformations by ESFF1 are more diverse than those of ff14SB. For folded proteins, these force fields have comparable performances for reproducing conformers. Therefore, ESFF1 can be used to reveal the model of sequence-disorder-function for IDPs.
Collapse
Affiliation(s)
- Xiaochen Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Hao Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Ashfaq Ur Rehman
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China. and Shanghai Center for Bioinformation Technology, Shanghai, 200235, China
| |
Collapse
|
13
|
Fernández-Quintero ML, Georges G, Varga JM, Liedl KR. Ensembles in solution as a new paradigm for antibody structure prediction and design. MAbs 2021; 13:1923122. [PMID: 34030577 PMCID: PMC8158028 DOI: 10.1080/19420862.2021.1923122] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The rise of antibodies as a promising and rapidly growing class of biotherapeutic proteins has motivated numerous studies to characterize and understand antibody structures. In the past decades, the number of antibody crystal structures increased substantially, which revolutionized the atomistic understanding of antibody functions. Even though numerous static structures are known, various biophysical properties of antibodies (i.e., specificity, hydrophobicity and stability) are governed by their dynamic character. Additionally, the importance of high-quality structures in structure–function relationship studies has substantially increased. These structure–function relationship studies have also created a demand for precise homology models of antibody structures, which allow rational antibody design and engineering when no crystal structure is available. Here, we discuss various aspects and challenges in antibody design and extend the paradigm of describing antibodies with only a single static structure to characterizing them as dynamic ensembles in solution.
Collapse
Affiliation(s)
- Monica L Fernández-Quintero
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Guy Georges
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Janos M Varga
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Klaus R Liedl
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Kapcan E, Lake B, Yang Z, Zhang A, Miller MS, Rullo AF. Covalent Stabilization of Antibody Recruitment Enhances Immune Recognition of Cancer Targets. Biochemistry 2021; 60:1447-1458. [PMID: 33930269 DOI: 10.1021/acs.biochem.1c00127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antibody recruiting molecules (ARMs) represent an important class of "proximity-inducing" chemical tools with therapeutic potential. ARMs function by simultaneously binding to a hapten-specific serum antibody (Ab) (e.g., anti-dinitrophenyl (DNP)) and a cancer cell surface protein, enforcing their proximity. ARM anticancer efficacy depends on the formation of ARM:Ab complexes on the cancer cell surface, which activate immune cell recognition and elimination of the cancer cell. Problematically, ARM function in human patients may be limited by conditions that drive the dissociation of ARM:Ab complexes, namely, intrinsically low binding affinity and/or low concentrations of anti-hapten antibodies in human serum. To address this potential limitation, we previously developed a covalent ARM (cARM) chemical tool that eliminates the ARM:antibody equilibrium through a covalent linkage. In the current study, we set out to determine to what extent maximizing the stability of ARM:antibody complexes via cARMs enhances target immune recognition. We observe cARMs significantly increase target immune recognition relative to ARMs across a range of therapeutically relevant antibody concentrations. These results demonstrate that ARM therapeutic function can be dramatically enhanced by increasing the kinetic stability of ARM:antibody complexes localized on cancer cells. Our findings suggest that a) high titres/concentrations of target antibody in human serum are not neccessary and b) saturative antibody recruitment to cancer cells not sufficient, to achieve maximal ARM therapeutic function.
Collapse
|
15
|
Al Qaraghuli MM, Kubiak-Ossowska K, Ferro VA, Mulheran PA. Structural Analysis of Anti-Hapten Antibodies to Identify Long-Range Structural Movements Induced by Hapten Binding. Front Mol Biosci 2021; 8:633526. [PMID: 33869281 PMCID: PMC8044860 DOI: 10.3389/fmolb.2021.633526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/17/2021] [Indexed: 11/21/2022] Open
Abstract
Antibodies are well known for their high specificity that has enabled them to be of significant use in both therapeutic and diagnostic applications. Antibodies can recognize different antigens, including proteins, carbohydrates, peptides, nucleic acids, lipids, and small molecular weight haptens that are abundantly available as hormones, pharmaceuticals, and pesticides. Here we focus on a structural analysis of hapten-antibody couples and identify potential structural movements originating from the hapten binding by comparison with unbound antibody, utilizing 40 crystal structures from the Protein Data Bank. Our analysis reveals three binding surface trends; S1 where a pocket forms to accommodate the hapten, S2 where a pocket is removed when the hapten binds, and S3 where no pockets changes are found. S1 and S2 are expected for induced-fit binding, whereas S3 indicates that a pre-existing population of optimal binding antibody conformation exists. The structural analysis reveals four classifications of structural reorganization, some of which correlate to S2 but not to the other binding surface changes. These observations demonstrate the complexity of the antibody-antigen interaction, where structural changes can be restricted to the binding sites, or extend through the constant domains to propagate structural changes. This highlights the importance of structural analysis to ensure successful and compatible transformation of small antibody fragments at the early discovery stage into full antibodies during the subsequent development stages, where long-range structural changes are required for an Fc effector response.
Collapse
Affiliation(s)
- Mohammed M Al Qaraghuli
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, United Kingdom.,SiMologics Ltd., The Enterprise Hub, Glasgow, United Kingdom
| | - Karina Kubiak-Ossowska
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, United Kingdom.,Department of Physics, University of Strathclyde, Glasgow, United Kingdom
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Paul A Mulheran
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
16
|
Fernández-Quintero ML, Seidler CA, Liedl KR. T-Cell Receptor Variable β Domains Rigidify During Affinity Maturation. Sci Rep 2020; 10:4472. [PMID: 32161287 PMCID: PMC7066139 DOI: 10.1038/s41598-020-61433-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/30/2020] [Indexed: 11/17/2022] Open
Abstract
We investigated T-cell receptor variable β chains binding to the superantigen staphylococcal enterotoxin C3 (SEC 3) with structure information in different stages of affinity maturation. Metadynamics in combination with molecular dynamics simulations allow to access the micro-to-millisecond timescale and reveal a strong effect of energetically significant mutations on the flexibility of the antigen-binding site. The observed changes in dynamics of the complementarity determining region (CDR) loops, especially the CDR 2, and HV 4 loop on this specific pathway of affinity maturation are reflected in their structural diversity, thermodynamics of conformations and kinetics of structural transitions. In addition, this affinity maturation pathway follows the concept of conformational selection, because even without the presence of the antigen the binding competent state is present in this pre-existing ensemble of conformations. In all stages of this affinity maturation process we observe a link between specificity and reduced flexibility.
Collapse
Affiliation(s)
- Monica L Fernández-Quintero
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Clarissa A Seidler
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Klaus R Liedl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria.
| |
Collapse
|
17
|
Khandokar Y, Srivastava P, Raidal S, Sarker S, Forwood JK. Structural basis for disulphide-CoA inhibition of a butyryl-CoA hexameric thioesterase. J Struct Biol 2020; 210:107477. [PMID: 32027968 DOI: 10.1016/j.jsb.2020.107477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 10/25/2022]
Abstract
Acyl-coenzyme A thioesterases (ACTs) catalyse the hydrolysis of thioester bonds between fatty-acyl chains and coenzyme A (CoA), producing a free fatty-acyl chain and CoA. These enzymes are expressed ubiquitously across prokaryotes and eukaryotes, and play important roles in lipid metabolism. There are 25 thioesterase families, subdivided based on their active site configuration, protein oligomerization, and substrate specificity. Understanding the mechanism of regulation within these families is important due to their roles in controlling the cell concentration of a range of fatty acids and CoA-bound compounds. Here we report a structural basis for a novel mode of inhibition of an ACT from Staphylococcus aureus. The enzyme displays a hotdog fold composed of five β-strands wrapping around a central α-helix, and an additional 30 residue α-helix located at its C-terminus. We show that the enzyme is a hexamer and has specificity towards butyryl-CoA. Structural analysis revealed putative catalytic residues, and we show through site directed mutagenesis that Asn28, Asp43, and Thr60 are critical for activity. Additionally, we show that the Asn28Ala destabilises the enzyme oligomeric state into two distinct populations. Co-crystallization of the enzyme with the substrate butyryl-CoA produced a crystal with three CoA ligands bound in the enzyme active sites: CoA, butyryl-CoA, and disulphide-CoA, the latter of which inhibits enzyme activity. Our study provides new insights into the structure and specificity of hexameric thioesterases, inhibitory feedback mechanisms, and possible biotechnological applications in short-chain fatty acid production such as biofuels, pharmaceuticals, and industrial compounds.
Collapse
Affiliation(s)
- Yogesh Khandokar
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3052 Australia; School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Parul Srivastava
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Shane Raidal
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Subir Sarker
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
18
|
Mutual population-shift driven antibody-peptide binding elucidated by molecular dynamics simulations. Sci Rep 2020; 10:1406. [PMID: 31996730 PMCID: PMC6989527 DOI: 10.1038/s41598-020-58320-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/14/2020] [Indexed: 11/08/2022] Open
Abstract
Antibody based bio-molecular drugs are an exciting, new avenue of drug development as an alternative to the more traditional small chemical compounds. However, the binding mechanism and the effect on the conformational ensembles of a therapeutic antibody to its peptide or protein antigen have not yet been well studied. We have utilized dynamic docking and path sampling simulations based on all-atom molecular dynamics to study the binding mechanism between the antibody solanezumab and the peptide amyloid-β (Aβ). Our docking simulations reproduced the experimental structure and gave us representative binding pathways, from which we accurately estimated the binding free energy. Not only do our results show why solanezumab has an explicit preference to bind to the monomeric form of Aβ, but that upon binding, both molecules are stabilized towards a specific conformation, suggesting that their complex formation follows a novel, mutual population-shift model, where upon binding, both molecules impact the dynamics of their reciprocal one.
Collapse
|
19
|
Yin N, Yang Z, Cai D. Carbon Nanotube Facilitated Interface Formation for Enhanced Protein Sensing in Electrosynthesized Molecular Imprinting. ACS APPLIED BIO MATERIALS 2019; 2:4604-4611. [DOI: 10.1021/acsabm.9b00692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Na Yin
- Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Zhen Yang
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, Texas 77004, United States
| | - Dong Cai
- Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, Texas 77004, United States
| |
Collapse
|
20
|
Adhikary R, Zimmermann J, Stanfield RL, Wilson IA, Yu W, Oda M, Romesberg FE. Structure and Dynamics of Stacking Interactions in an Antibody Binding Site. Biochemistry 2019; 58:2987-2995. [PMID: 31243995 DOI: 10.1021/acs.biochem.9b00119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
For years, antibodies (Abs) have been used as a paradigm for understanding how protein structure contributes to molecular recognition. However, with the ability to evolve Abs that recognize specific chromophores, they also have great potential as models for how protein dynamics contribute to molecular recognition. We previously raised murine Abs to different chromophores and, with the use of three-pulse photon echo peak shift spectroscopy, demonstrated that the immune system is capable of producing Abs with widely varying flexibility. We now report the characterization of the complexes formed between two Abs, 5D11 and 10A6, and the chromophoric ligand that they were evolved to recognize, 8-methoxypyrene-1,3,6-trisulfonic acid (MPTS). The sequences of the Ab genes indicate that they evolved from a common precursor. We also used a variety of spectroscopic methods to probe the photophysics and dynamics of the Ab-MPTS complexes and found that they are similar to each other but distinct from previously characterized anti-MPTS Abs. Structural studies revealed that this difference likely results from a unique mode of binding in which MPTS is sandwiched between the side chain of PheH98, which interacts with the chromophore via T-stacking, and the side chain of TrpL91, which interacts with the chromophore via parallel stacking. The T-stacking interaction appears to mediate relaxation on the picosecond time scale, while the parallel stacking appears to mediate relaxation on an ultrafast, femtosecond time scale, which dominates the response. The anti-MPTS Abs thus not only demonstrate the simultaneous use of the two limiting modes of stacking for molecular recognition, but also provide a unique opportunity to characterize how dynamics might contribute to molecular recognition. Both types of stacking are common in proteins and protein complexes where they may similarly contribute to dynamics and molecular recognition.
Collapse
Affiliation(s)
| | | | | | | | | | - Masayuki Oda
- Graduate School of Life and Environmental Sciences , Kyoto Prefectural University , 1-5, Hangi-cho , Shimogamo, Sakyo-ku, Kyoto 606-8522 , Japan
| | | |
Collapse
|
21
|
Fernández-Quintero ML, Kraml J, Georges G, Liedl KR. CDR-H3 loop ensemble in solution - conformational selection upon antibody binding. MAbs 2019; 11:1077-1088. [PMID: 31148507 PMCID: PMC6748594 DOI: 10.1080/19420862.2019.1618676] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We analyzed pairs of protein-binding, peptide-binding and hapten-binding antibodies crystallized as complex and in the absence of the antigen with and without conformational differences upon binding in the complementarity-determining region (CDR)-H3 loop. Here, we introduce a molecular dynamics-based approach to capture a diverse conformational ensemble of the CDR-H3 loop in solution. The results clearly indicate that the inherently flexible CDR-H3 loop indeed needs to be characterized as a conformational ensemble. The conformational changes of the CDR-H3 loop in all antibodies investigated follow the paradigm of conformation selection, because we observe the experimentally determined binding competent conformation without the presence of the antigen within the ensemble of pre-existing conformational states in solution before binding. We also demonstrate for several examples that the conformation observed in the antibody crystal structure without antigen present is actually selected to bind the carboxyterminal tail region of the antigen-binding fragment (Fab). Thus, special care must be taken when characterizing antibody CDR-H3 loops by Fab X-ray structures, and the possibility that pre-existing conformations are present should always be considered.
Collapse
Affiliation(s)
- Monica L Fernández-Quintero
- a Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck , Innsbruck , Austria
| | - Johannes Kraml
- a Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck , Innsbruck , Austria
| | - Guy Georges
- b Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg , Germany
| | - Klaus R Liedl
- a Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
22
|
Abstract
Immunoglobulin (Ig) molecules are composed of Fab and Fc portions tethered by a hinge region that enables them to rotate and flex, relative to each other. Variable (V) and constant (C) domains of the Fab are connected by a flexible elbow region that is responsible for the movements of the V and C heterodimers. Significant movements of Fc domains have also been documented. The Ig portion's rotational freedom greatly enhances its ability to react with antigens and cell receptors, often simultaneously. The antigen-combining site also displays a dynamic structure. The ability of its various parts to change position greatly facilitates their complexation with various antigenic compounds.
Collapse
Affiliation(s)
- Roald Nezlin
- Department of Immunology, The Weizmann Institute of Science , Rehovot , Israel
| |
Collapse
|
23
|
Garcia NK, Deperalta G, Wecksler AT. Current Trends in Biotherapeutic Higher Order Structure Characterization by Irreversible Covalent Footprinting Mass Spectrometry. Protein Pept Lett 2019; 26:35-43. [PMID: 30484396 DOI: 10.2174/0929866526666181128141953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/01/2018] [Accepted: 10/29/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Biotherapeutics, particularly monoclonal antibodies (mAbs), are a maturing class of drugs capable of treating a wide range of diseases. Therapeutic function and solutionstability are linked to the proper three-dimensional organization of the primary sequence into Higher Order Structure (HOS) as well as the timescales of protein motions (dynamics). Methods that directly monitor protein HOS and dynamics are important for mapping therapeutically relevant protein-protein interactions and assessing properly folded structures. Irreversible covalent protein footprinting Mass Spectrometry (MS) tools, such as site-specific amino acid labeling and hydroxyl radical footprinting are analytical techniques capable of monitoring the side chain solvent accessibility influenced by tertiary and quaternary structure. Here we discuss the methodology, examples of biotherapeutic applications, and the future directions of irreversible covalent protein footprinting MS in biotherapeutic research and development. CONCLUSION Bottom-up mass spectrometry using irreversible labeling techniques provide valuable information for characterizing solution-phase protein structure. Examples range from epitope mapping and protein-ligand interactions, to probing challenging structures of membrane proteins. By paring these techniques with hydrogen-deuterium exchange, spectroscopic analysis, or static-phase structural data such as crystallography or electron microscopy, a comprehensive understanding of protein structure can be obtained.
Collapse
Affiliation(s)
- Natalie K Garcia
- Department of Protein Analytical Chemistry, Genentech Inc., South San Francisco, CA 94080, United States
| | - Galahad Deperalta
- Department of Protein Analytical Chemistry, Genentech Inc., South San Francisco, CA 94080, United States
| | - Aaron T Wecksler
- Department of Protein Analytical Chemistry, Genentech Inc., South San Francisco, CA 94080, United States
| |
Collapse
|
24
|
Kundert K, Kortemme T. Computational design of structured loops for new protein functions. Biol Chem 2019; 400:275-288. [PMID: 30676995 PMCID: PMC6530579 DOI: 10.1515/hsz-2018-0348] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/18/2018] [Indexed: 12/20/2022]
Abstract
The ability to engineer the precise geometries, fine-tuned energetics and subtle dynamics that are characteristic of functional proteins is a major unsolved challenge in the field of computational protein design. In natural proteins, functional sites exhibiting these properties often feature structured loops. However, unlike the elements of secondary structures that comprise idealized protein folds, structured loops have been difficult to design computationally. Addressing this shortcoming in a general way is a necessary first step towards the routine design of protein function. In this perspective, we will describe the progress that has been made on this problem and discuss how recent advances in the field of loop structure prediction can be harnessed and applied to the inverse problem of computational loop design.
Collapse
Affiliation(s)
- Kale Kundert
- Graduate Group in Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Tanja Kortemme
- Graduate Group in Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, 499 Illinois St, San Francisco, CA 94158, USA
| |
Collapse
|
25
|
Fernández-Quintero ML, Loeffler JR, Kraml J, Kahler U, Kamenik AS, Liedl KR. Characterizing the Diversity of the CDR-H3 Loop Conformational Ensembles in Relationship to Antibody Binding Properties. Front Immunol 2019; 9:3065. [PMID: 30666252 PMCID: PMC6330313 DOI: 10.3389/fimmu.2018.03065] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/11/2018] [Indexed: 11/23/2022] Open
Abstract
We present an approach to assess antibody CDR-H3 loops according to their dynamic properties using molecular dynamics simulations. We selected six antibodies in three pairs differing substantially in their individual promiscuity respectively specificity. For two pairs of antibodies crystal structures are available in different states of maturation and used as starting structures for the analyses. For a third pair we chose two antibody CDR sequences obtained from a synthetic library and predicted the respective structures. For all three pairs of antibodies we performed metadynamics simulations to overcome the limitations in conformational sampling imposed by high energy barriers. Additionally, we used classic molecular dynamics simulations to describe nano- to microsecond flexibility and to estimate up to millisecond kinetics of captured conformational transitions. The methodology represents the antibodies as conformational ensembles and allows comprehensive analysis of structural diversity, thermodynamics of conformations and kinetics of structural transitions. Referring to the concept of conformational selection we investigated the link between promiscuity and flexibility of the antibodies' binding interfaces. The obtained detailed characterization of the binding interface clearly indicates a link between structural flexibility and binding promiscuity for this set of antibodies.
Collapse
Affiliation(s)
- Monica L Fernández-Quintero
- Center for Molecular Biosciences Innsbruck (CMBI), Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Johannes R Loeffler
- Center for Molecular Biosciences Innsbruck (CMBI), Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Johannes Kraml
- Center for Molecular Biosciences Innsbruck (CMBI), Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Ursula Kahler
- Center for Molecular Biosciences Innsbruck (CMBI), Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Anna S Kamenik
- Center for Molecular Biosciences Innsbruck (CMBI), Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Klaus R Liedl
- Center for Molecular Biosciences Innsbruck (CMBI), Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
26
|
Richter F, Zettlitz KA, Seifert O, Herrmann A, Scheurich P, Pfizenmaier K, Kontermann RE. Monovalent TNF receptor 1-selective antibody with improved affinity and neutralizing activity. MAbs 2019; 11:166-177. [PMID: 30252601 PMCID: PMC6343807 DOI: 10.1080/19420862.2018.1524664] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/29/2018] [Accepted: 09/10/2018] [Indexed: 01/08/2023] Open
Abstract
Selective inhibition of tumor necrosis factor (TNF) signaling through the proinflammatory axis of TNF-receptor 1 (TNFR1) while leaving pro-survival and regeneration-promoting signals via TNFR2 unaffected is a promising strategy to circumvent limitations of complete inhibition of TNF action by the approved anti-TNF drugs. A previously developed humanized antagonistic TNFR1-specific antibody, ATROSAB, showed potent inhibition of TNFR1-mediated cellular responses. Because the parental mouse antibody H398 possesses even stronger inhibitory potential, we scrutinized the specific binding parameters of the two molecules and revealed a faster dissociation of ATROSAB compared to H398. Applying affinity maturation and re-engineering of humanized variable domains, we generated a monovalent Fab derivative (13.7) of ATROSAB that exhibited increased binding to TNFR1 and superior inhibition of TNF-mediated TNFR1 activation, while lacking any agonistic activity even in the presence of cross-linking antibodies. In order to improve its pharmacokinetic properties, several Fab13.7-derived molecules were generated, including a PEGylated Fab, a mouse serum albumin fusion protein, a half-IgG with a dimerization-deficient Fc, and a newly designed Fv-Fc format, employing the knobs-into-holes technology. Among these derivatives, the Fv13.7-Fc displayed the best combination of improved pharmacokinetic properties and antagonistic activity, thus representing a promising candidate for further clinical development.
Collapse
Affiliation(s)
- Fabian Richter
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Kirstin A. Zettlitz
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Oliver Seifert
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | | | - Peter Scheurich
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Roland E. Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
27
|
Jeliazkov JR, Sljoka A, Kuroda D, Tsuchimura N, Katoh N, Tsumoto K, Gray JJ. Repertoire Analysis of Antibody CDR-H3 Loops Suggests Affinity Maturation Does Not Typically Result in Rigidification. Front Immunol 2018; 9:413. [PMID: 29545810 PMCID: PMC5840193 DOI: 10.3389/fimmu.2018.00413] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/14/2018] [Indexed: 12/18/2022] Open
Abstract
Antibodies can rapidly evolve in specific response to antigens. Affinity maturation drives this evolution through cycles of mutation and selection leading to enhanced antibody specificity and affinity. Elucidating the biophysical mechanisms that underlie affinity maturation is fundamental to understanding B-cell immunity. An emergent hypothesis is that affinity maturation reduces the conformational flexibility of the antibody's antigen-binding paratope to minimize entropic losses incurred upon binding. In recent years, computational and experimental approaches have tested this hypothesis on a small number of antibodies, often observing a decrease in the flexibility of the complementarity determining region (CDR) loops that typically comprise the paratope and in particular the CDR-H3 loop, which contributes a plurality of antigen contacts. However, there were a few exceptions and previous studies were limited to a small handful of cases. Here, we determined the structural flexibility of the CDR-H3 loop for thousands of recent homology models of the human peripheral blood cell antibody repertoire using rigidity theory. We found no clear delineation in the flexibility of naïve and antigen-experienced antibodies. To account for possible sources of error, we additionally analyzed hundreds of human and mouse antibodies in the Protein Data Bank through both rigidity theory and B-factor analysis. By both metrics, we observed only a slight decrease in the CDR-H3 loop flexibility when comparing affinity matured antibodies to naïve antibodies, and the decrease was not as drastic as previously reported. Further analysis, incorporating molecular dynamics simulations, revealed a spectrum of changes in flexibility. Our results suggest that rigidification may be just one of many biophysical mechanisms for increasing affinity.
Collapse
Affiliation(s)
- Jeliazko R Jeliazkov
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, United States
| | - Adnan Sljoka
- Department of Informatics, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Daisuke Kuroda
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan.,Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Nobuyuki Tsuchimura
- Department of Informatics, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Naoki Katoh
- Department of Informatics, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan.,Laboratory of Medical Proteomics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jeffrey J Gray
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, United States.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, United States.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
28
|
Chen J, Wang J, Zhu W. Zinc ion-induced conformational changes in new Delphi metallo-β-lactamase 1 probed by molecular dynamics simulations and umbrella sampling. Phys Chem Chem Phys 2018; 19:3067-3075. [PMID: 28079218 DOI: 10.1039/c6cp08105c] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The hydrolysis of a β-lactam core ring caused by new Delphi metallo-β-lactamase 1 (NDM-1) with the help of two zinc cofactors induces significant resistance toward β-lactam antibiotics. Molecular dynamics (MD) simulations and the umbrella sampling method are integrated to study the conformational change mechanism of NDM-1 mediated by zinc ion binding. The statistical analyses of interaction contacts of the antibiotic ampicillin (AMP) with residues based on MD trajectories suggest that two Zn ions are essential for maintaining the binding of AMP with NDM-1. Umbrella sampling simulations further reveal that double-Zn coordination exerts strong restriction on the motions of loop L10 relative to loops L3 and L4. Principal component (PC) analysis also demonstrates that zinc ion binding totally inhibits the motion extent of NDM-1 and changes internal motion modes in NDM-1. We expect that the current study can provide significant dynamical information involving conformational changes of NDM-1 for the development of efficient inhibitors to decrease drug resistance of NDM-1 toward antibiotics.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, 250014, China.
| | - Jinan Wang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| | - Weiliang Zhu
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| |
Collapse
|
29
|
Abstract
Whereas protein-ligand binding affinities have long-established prominence, binding rate constants and binding mechanisms have gained increasing attention in recent years. Both new computational methods and new experimental techniques have been developed to characterize the latter properties. It is now realized that binding mechanisms, like binding rate constants, can and should be quantitatively determined. In this review, we summarize studies and synthesize ideas on several topics in the hope of providing a coherent picture of and physical insight into binding kinetics. The topics include microscopic formulation of the kinetic problem and its reduction to simple rate equations; computation of binding rate constants; quantitative determination of binding mechanisms; and elucidation of physical factors that control binding rate constants and mechanisms.
Collapse
Affiliation(s)
- Xiaodong Pang
- Department of Physics, Florida State University, Tallahassee, Florida 32306; .,Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306
| | - Huan-Xiang Zhou
- Department of Physics, Florida State University, Tallahassee, Florida 32306; .,Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306
| |
Collapse
|
30
|
Ozgur B, Ozdemir ES, Gursoy A, Keskin O. Relation between Protein Intrinsic Normal Mode Weights and Pre-Existing Conformer Populations. J Phys Chem B 2017; 121:3686-3700. [DOI: 10.1021/acs.jpcb.6b10401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Beytullah Ozgur
- Center for Computational Biology and Bioinformatics, ‡Chemical and Biological
Engineering, and §Computer Engineering,
College of Engineering, Koc University, 34450 Istanbul, Turkey
| | - E. Sila Ozdemir
- Center for Computational Biology and Bioinformatics, ‡Chemical and Biological
Engineering, and §Computer Engineering,
College of Engineering, Koc University, 34450 Istanbul, Turkey
| | - Attila Gursoy
- Center for Computational Biology and Bioinformatics, ‡Chemical and Biological
Engineering, and §Computer Engineering,
College of Engineering, Koc University, 34450 Istanbul, Turkey
| | - Ozlem Keskin
- Center for Computational Biology and Bioinformatics, ‡Chemical and Biological
Engineering, and §Computer Engineering,
College of Engineering, Koc University, 34450 Istanbul, Turkey
| |
Collapse
|
31
|
Molecular Mechanism and Energy Basis of Conformational Diversity of Antibody SPE7 Revealed by Molecular Dynamics Simulation and Principal Component Analysis. Sci Rep 2016; 6:36900. [PMID: 27830740 PMCID: PMC5103278 DOI: 10.1038/srep36900] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/21/2016] [Indexed: 01/12/2023] Open
Abstract
More and more researchers are interested in and focused on how a limited repertoire of antibodies can bind and correspondingly protect against an almost limitless diversity of invading antigens. In this work, a series of 200-ns molecular dynamics (MD) simulations followed by principal component (PC) analysis and free energy calculations were performed to probe potential mechanism of conformational diversity of antibody SPE7. The results show that the motion direction of loops H3 and L3 is different relative to each other, implying that a big structural difference exists between these two loops. The calculated energy landscapes suggest that the changes in the backbone angles ψ and φ of H-Y101 and H-Y105 provide significant contributions to the conformational diversity of SPE7. The dihedral angle analyses based on MD trajectories show that the side-chain conformational changes of several key residues H-W33, H-Y105, L-Y34 and L-W93 around binding site of SPE7 play a key role in the conformational diversity of SPE7, which gives a reasonable explanation for potential mechanism of cross-reactivity of single antibody toward multiple antigens.
Collapse
|
32
|
Haji-Ghassemi O, Müller-Loennies S, Rodriguez T, Brade L, Grimmecke HD, Brade H, Evans SV. The Combining Sites of Anti-lipid A Antibodies Reveal a Widely Utilized Motif Specific for Negatively Charged Groups. J Biol Chem 2016; 291:10104-18. [PMID: 26933033 DOI: 10.1074/jbc.m115.712448] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Indexed: 01/29/2023] Open
Abstract
Lipopolysaccharide dispersed in the blood by Gram-negative bacteria can be a potent inducer of septic shock. One research focus has been based on antibody sequestration of lipid A (the endotoxic principle of LPS); however, none have been successfully developed into a clinical treatment. Comparison of a panel of anti-lipid A antibodies reveals highly specific antibodies produced through distinct germ line precursors. The structures of antigen-binding fragments for two homologous mAbs specific for lipid A, S55-3 and S55-5, have been determined both in complex with lipid A disaccharide backbone and unliganded. These high resolution structures reveal a conserved positively charged pocket formed within the complementarity determining region H2 loops that binds the terminal phosphates of lipid A. Significantly, this motif occurs in unrelated antibodies where it mediates binding to negatively charged moieties through a range of epitopes, including phosphorylated peptides used in diagnostics and therapeutics. S55-3 and S55-5 have combining sites distinct from anti-lipid A antibodies previously described (as a result of their separate germ line origin), which are nevertheless complementary both in shape and charge to the antigen. S55-3 and S55-5 display similar avidity toward lipid A despite possessing a number of different amino acid residues in their combining sites. Binding of lipid A occurs independent of the acyl chains, although the GlcN-O6 attachment point for the core oligosaccharide is buried in the combining site, which explains their inability to recognize LPS. Despite their lack of therapeutic potential, the observed motif may have significant immunological implications as a tool for engineering recombinant antibodies.
Collapse
Affiliation(s)
- Omid Haji-Ghassemi
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 3P6, Canada and
| | - Sven Müller-Loennies
- the Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 22, Borstel D-23845, Germany
| | - Teresa Rodriguez
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 3P6, Canada and
| | - Lore Brade
- the Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 22, Borstel D-23845, Germany
| | - Hans-Dieter Grimmecke
- the Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 22, Borstel D-23845, Germany
| | - Helmut Brade
- the Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 22, Borstel D-23845, Germany
| | - Stephen V Evans
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 3P6, Canada and
| |
Collapse
|
33
|
Rigidity Emerges during Antibody Evolution in Three Distinct Antibody Systems: Evidence from QSFR Analysis of Fab Fragments. PLoS Comput Biol 2015; 11:e1004327. [PMID: 26132144 PMCID: PMC4489365 DOI: 10.1371/journal.pcbi.1004327] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/14/2015] [Indexed: 11/21/2022] Open
Abstract
The effects of somatic mutations that transform polyspecific germline (GL) antibodies to affinity mature (AM) antibodies with monospecificity are compared among three GL-AM Fab pairs. In particular, changes in conformational flexibility are assessed using a Distance Constraint Model (DCM). We have previously established that the DCM can be robustly applied across a series of antibody fragments (VL to Fab), and subsequently, the DCM was combined with molecular dynamics (MD) simulations to similarly characterize five thermostabilizing scFv mutants. The DCM is an ensemble based statistical mechanical approach that accounts for enthalpy/entropy compensation due to network rigidity, which has been quite successful in elucidating conformational flexibility and Quantitative Stability/Flexibility Relationships (QSFR) in proteins. Applied to three disparate antibody systems changes in QSFR quantities indicate that the VH domain is typically rigidified, whereas the VL domain and CDR L2 loop become more flexible during affinity maturation. The increase in CDR H3 loop rigidity is consistent with other studies in the literature. The redistribution of conformational flexibility is largely controlled by nonspecific changes in the H-bond network, although certain Arg to Asp salt bridges create highly localized rigidity increases. Taken together, these results reveal an intricate flexibility/rigidity response that accompanies affinity maturation. Antibodies are protective proteins used by the immune system to recognize and neutralize foreign objects through interactions with a specific part of the target, called an antigen. Antibody structures are Y-shaped, contain multiple protein chains, and include two antigen-binding sites. The binding sites are located at the end of the Fab fragments, which are the upward facing arms of the Y-structure. The Fab fragments maintain binding affinity by themselves, and are thus often used as surrogates to student antibody-antigen interactions. High affinity antibodies are produced during the course of an immune response by successive mutations to germline gene-encoded antibodies. Germline antibodies are more likely to be polyspecific, whereas the affinity maturation process yields monoclonal antibodies that bind specifically to the target antigen. In this work, we use a computational Distance Constraint Model to characterize how mechanical properties change as three disparate germline antibodies are converted to affinity mature. Our results reveal a rich set of mechanical responses throughout the Fab structure. Nevertheless, increased rigidity in the VH domain is consistently observed, which is consistent with the transition from polyspecificity to monospecificity. That is, flexible antibody structures are able to recognize multiple antigens, while increased affinity and specificity is achieved—in part—by structural rigidification.
Collapse
|
34
|
Li W, Meng W, Tian P. Impact of stable protein-protein interaction on protein conformational space. Chem Res Chin Univ 2015. [DOI: 10.1007/s40242-015-3402-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|