1
|
Ruzzi V, Buzzaccaro S, Piazza R. Thermal Lens Measurements of Thermal Expansivity in Thermosensitive Polymer Solutions. Polymers (Basel) 2023; 15:polym15051283. [PMID: 36904524 PMCID: PMC10007145 DOI: 10.3390/polym15051283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The weak absorption of a laser beam generates in a fluid an inhomogeneous refractive index profile acting as a negative lens. This self-effect on beam propagation, known as Thermal Lensing (TL), is extensively exploited in sensitive spectroscopic techniques, and in several all-optical methods for the assessment of thermo-optical properties of simple and complex fluids. Using the Lorentz-Lorenz equation, we show that the TL signal is directly proportional to the sample thermal expansivity α, a feature allowing minute density changes to be detected with high sensitivity in a tiny sample volume, using a simple optical scheme. We took advantage of this key result to investigate the compaction of PniPAM microgels occurring around their volume phase transition temperature, and the temperature-driven formation of poloxamer micelles. For both these different kinds of structural transitions, we observed a significant peak in the solute contribution to α, indicating a decrease in the overall solution density-rather counterintuitive evidence that can nevertheless be attributed to the dehydration of the polymer chains. Finally, we compare the novel method we propose with other techniques currently used to obtain specific volume changes.
Collapse
|
2
|
|
3
|
Skvarnavičius G, Toleikis Z, Michailovienė V, Roumestand C, Matulis D, Petrauskas V. Protein-Ligand Binding Volume Determined from a Single 2D NMR Spectrum with Increasing Pressure. J Phys Chem B 2021; 125:5823-5831. [PMID: 34032445 PMCID: PMC8279561 DOI: 10.1021/acs.jpcb.1c02917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Proteins
undergo changes in their partial volumes in numerous biological
processes such as enzymatic catalysis, unfolding–refolding,
and ligand binding. The change in the protein volume upon ligand binding—a
parameter termed the protein–ligand binding volume—can
be extensively studied by high-pressure NMR spectroscopy. In this
study, we developed a method to determine the protein–ligand
binding volume from a single two-dimensional (2D) 1H–15N heteronuclear single quantum coherence (HSQC) spectrum
at different pressures, if the exchange between ligand-free and ligand-bound
states of a protein is slow in the NMR time-scale. This approach required
a significantly lower amount of protein and NMR time to determine
the protein–ligand binding volume of two carbonic anhydrase
isozymes upon binding their ligands. The proposed method can be used
in other protein–ligand systems and expand the knowledge about
protein volume changes upon small-molecule binding.
Collapse
Affiliation(s)
- Gediminas Skvarnavičius
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257 Vilnius, Lithuania
| | - Zigmantas Toleikis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257 Vilnius, Lithuania.,Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006 Riga, Latvia
| | - Vilma Michailovienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257 Vilnius, Lithuania
| | - Christian Roumestand
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université s de Montpellier, 34000 Montpellier, France
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257 Vilnius, Lithuania
| | - Vytautas Petrauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257 Vilnius, Lithuania
| |
Collapse
|
4
|
Ruggeri FS, Mannini B, Schmid R, Vendruscolo M, Knowles TPJ. Single molecule secondary structure determination of proteins through infrared absorption nanospectroscopy. Nat Commun 2020; 11:2945. [PMID: 32522983 PMCID: PMC7287102 DOI: 10.1038/s41467-020-16728-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
The chemical and structural properties of biomolecules determine their interactions, and thus their functions, in a wide variety of biochemical processes. Innovative imaging methods have been developed to characterise biomolecular structures down to the angstrom level. However, acquiring vibrational absorption spectra at the single molecule level, a benchmark for bulk sample characterization, has remained elusive. Here, we introduce off-resonance, low power and short pulse infrared nanospectroscopy (ORS-nanoIR) to allow the acquisition of infrared absorption spectra and chemical maps at the single molecule level, at high throughput on a second timescale and with a high signal-to-noise ratio (~10-20). This high sensitivity enables the accurate determination of the secondary structure of single protein molecules with over a million-fold lower mass than conventional bulk vibrational spectroscopy. These results pave the way to probe directly the chemical and structural properties of individual biomolecules, as well as their interactions, in a broad range of chemical and biological systems.
Collapse
Affiliation(s)
| | - Benedetta Mannini
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Roman Schmid
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | | | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK.
| |
Collapse
|
5
|
Anumalla B, Prabhu NP. Chain Compaction and Synergistic Destabilization of Globular Proteins by Mixture of Denaturants. ChemistrySelect 2019. [DOI: 10.1002/slct.201903122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bramhini Anumalla
- Department of Biotechnology and Bioinformatics, School of Life SciencesUniversity of Hyderabad Hyderabad – 500 046 India
| | - N. Prakash Prabhu
- Department of Biotechnology and Bioinformatics, School of Life SciencesUniversity of Hyderabad Hyderabad – 500 046 India
| |
Collapse
|
6
|
Fossat MJ, Pappu RV. q-Canonical Monte Carlo Sampling for Modeling the Linkage between Charge Regulation and Conformational Equilibria of Peptides. J Phys Chem B 2019; 123:6952-6967. [PMID: 31362509 PMCID: PMC10785832 DOI: 10.1021/acs.jpcb.9b05206] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The overall charge content and the patterning of charged residues have a profound impact on the conformational ensembles adopted by intrinsically disordered proteins. These parameters can be altered by charge regulation, which refers to the effects of post-translational modifications, pH-dependent changes to charge, and conformational fluctuations that modify the pKa values of ionizable residues. Although atomistic simulations have played a prominent role in uncovering the major sequence-ensemble relationships of IDPs, most simulations assume fixed charge states for ionizable residues. This may lead to erroneous estimates for conformational equilibria if they are linked to charge regulation. Here, we report the development of a new method we term q-canonical Monte Carlo sampling for modeling the linkage between charge regulation and conformational equilibria. The method, which is designed to be interoperable with the ABSINTH implicit solvation model, operates as follows: For a protein sequence with n ionizable residues, we start with all 2n charge microstates and use a criterion based on model compound pKa values to prune down to a subset of thermodynamically relevant charge microstates. This subset is then grouped into mesostates, where all microstates that belong to a mesostate have the same net charge. Conformational distributions, drawn from a canonical ensemble, are generated for each of the charge microstates that make up a mesostate using a method we designate as proton walk sampling. This method combines Metropolis Monte Carlo sampling in conformational space with an auxiliary Markov process that enables interconversions between charge microstates along a mesostate. Proton walk sampling helps identify the most likely charge microstate per mesostate. We then use thermodynamic integration aided by the multistate Bennett acceptance ratio method to estimate the free energies for converting between mesostates. These free energies are then combined with the per-microstate weights along each mesostate to estimate standard state free energies and pH-dependent free energies for all thermodynamically relevant charge microstates. The results provide quantitative estimates of the probabilities and preferred conformations associated with every thermodynamically accessible charge microstate. We showcase the application of q-canonical sampling using two model systems. The results establish the soundness of the method and the importance of charge regulation in systems characterized by conformational heterogeneity.
Collapse
Affiliation(s)
- Martin J. Fossat
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, MO 63130
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, MO 63130
| |
Collapse
|
7
|
Roche J, Royer CA. Lessons from pressure denaturation of proteins. J R Soc Interface 2018; 15:rsif.2018.0244. [PMID: 30282759 DOI: 10.1098/rsif.2018.0244] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/13/2018] [Indexed: 12/26/2022] Open
Abstract
Although it is now relatively well understood how sequence defines and impacts global protein stability in specific structural contexts, the question of how sequence modulates the configurational landscape of proteins remains to be defined. Protein configurational equilibria are generally characterized by using various chemical denaturants or by changing temperature or pH. Another thermodynamic parameter which is less often used in such studies is high hydrostatic pressure. This review discusses the basis for pressure effects on protein structure and stability, and describes how the unique mechanisms of pressure-induced unfolding can provide unique insights into protein conformational landscapes.
Collapse
Affiliation(s)
- Julien Roche
- Department of Biochemistry, Biophysics and Molecular Biology Iowa State University, Ames, IA 50011, USA
| | - Catherine A Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
8
|
Caro JA, Wand AJ. Practical aspects of high-pressure NMR spectroscopy and its applications in protein biophysics and structural biology. Methods 2018; 148:67-80. [PMID: 29964175 PMCID: PMC6133745 DOI: 10.1016/j.ymeth.2018.06.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 01/15/2023] Open
Abstract
Pressure and temperature are the two fundamental variables of thermodynamics. Temperature and chemical perturbation are central experimental tools for the exploration of macromolecular structure and dynamics. Though it has long been recognized that hydrostatic pressure offers a complementary and often unique view of macromolecular structure, stability and dynamics, it has not been employed nearly as much. For solution NMR applications the limited use of high-pressure is undoubtedly traced to difficulties of employing pressure in the context of modern multinuclear and multidimensional NMR. Limitations in pressure tolerant NMR sample cells have been overcome and enable detailed studies of macromolecular energy landscapes, hydration, dynamics and function. Here we review the practical considerations for studies of biological macromolecules at elevated pressure, with a particular emphasis on applications in protein biophysics and structural biology.
Collapse
Affiliation(s)
- José A Caro
- Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6509, United States
| | - A Joshua Wand
- Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6509, United States.
| |
Collapse
|
9
|
de Oliveira GA, Silva JL. The push-and-pull hypothesis in protein unfolding, misfolding and aggregation. Biophys Chem 2017; 231:20-26. [DOI: 10.1016/j.bpc.2017.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 01/17/2023]
|
10
|
Chen CR, Makhatadze GI. Molecular Determinants of Temperature Dependence of Protein Volume Change upon Unfolding. J Phys Chem B 2017; 121:8300-8310. [PMID: 28795561 DOI: 10.1021/acs.jpcb.7b05831] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Pressure is a well-known environmental stressor that can either stabilize or destabilize proteins. The volumetric change upon protein unfolding determines the effect of pressure on protein stability, where negative volume changes destabilized proteins at high pressures. High temperature often accompanies high pressure, for example, in the ocean depths near hydrothermal vents or near faults, so it is important to study the effect of temperature on the volumetric change upon unfolding. We previously detailed the magnitude and sign of the molecular determinants of volumetric change, allowing us to quantitatively predict the volumetric change upon protein unfolding. Here, we present a comprehensive analysis of the temperature dependence of the volumetric components of proteins, showing that hydration volume is the primary component that defines expansivities of the native and unfolded states and void volume only contributes slightly to the folded state expansivity.
Collapse
Affiliation(s)
- Calvin R Chen
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , 110 8th Street, Troy, New York 12180, United States
| | - George I Makhatadze
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , 110 8th Street, Troy, New York 12180, United States
| |
Collapse
|
11
|
Jones HBL, Wells SA, Prentice EJ, Kwok A, Liang LL, Arcus VL, Pudney CR. A complete thermodynamic analysis of enzyme turnover links the free energy landscape to enzyme catalysis. FEBS J 2017. [PMID: 28650586 DOI: 10.1111/febs.14152] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Our understanding of how enzymes work is coloured by static structure depictions where the enzyme scaffold is presented as either immobile, or in equilibrium between well-defined static conformations. Proteins, however, exhibit a large degree of motion over a broad range of timescales and magnitudes and this is defined thermodynamically by the enzyme free energy landscape (FEL). The role and importance of enzyme motion is extremely contentious. Much of the challenge is in the experimental detection of so called 'conformational sampling' involved in enzyme turnover. Herein we apply combined pressure and temperature kinetics studies to elucidate the full suite of thermodynamic parameters defining an enzyme FEL as it relates to enzyme turnover. We find that the key thermodynamic parameters governing vibrational modes related to enzyme turnover are the isobaric expansivity term and the change in heat capacity for enzyme catalysis. Variation in the enzyme FEL affects these terms. Our analysis is supported by a range of biophysical and computational approaches that specifically capture information on protein vibrational modes and the FEL (all atom flexibility calculations, red edge excitation shift spectroscopy and viscosity studies) that provide independent evidence for our findings. Our data suggest that restricting the enzyme FEL may be a powerful strategy when attempting to rationally engineer enzymes, particularly to alter thermal activity. Moreover, we demonstrate how rational predictions can be made with a rapid computational approach.
Collapse
Affiliation(s)
- Hannah B L Jones
- Department of Biology and Biochemistry, Faculty of Science, University of Bath, UK
| | - Stephen A Wells
- Department of Chemical Engineering, Faculty of Science, University of Bath, UK
| | - Erica J Prentice
- School of Science, Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | - Anthony Kwok
- Department of Biology and Biochemistry, Faculty of Science, University of Bath, UK
| | - Liyin L Liang
- School of Science, Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | - Vickery L Arcus
- School of Science, Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | - Christopher R Pudney
- Department of Biology and Biochemistry, Faculty of Science, University of Bath, UK
| |
Collapse
|
12
|
Fossat MJ, Dao TP, Jenkins K, Dellarole M, Yang Y, McCallum SA, Garcia AE, Barrick D, Roumestand C, Royer CA. High-Resolution Mapping of a Repeat Protein Folding Free Energy Landscape. Biophys J 2017; 111:2368-2376. [PMID: 27926838 DOI: 10.1016/j.bpj.2016.08.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/31/2016] [Accepted: 08/26/2016] [Indexed: 12/19/2022] Open
Abstract
A complete description of the pathways and mechanisms of protein folding requires a detailed structural and energetic characterization of the conformational ensemble along the entire folding reaction coordinate. Simulations can provide this level of insight for small proteins. In contrast, with the exception of hydrogen exchange, which does not monitor folding directly, experimental studies of protein folding have not yielded such structural and energetic detail. NMR can provide residue specific atomic level structural information, but its implementation in protein folding studies using chemical or temperature perturbation is problematic. Here we present a highly detailed structural and energetic map of the entire folding landscape of the leucine-rich repeat protein, pp32 (Anp32), obtained by combining pressure-dependent site-specific 1H-15N HSQC data with coarse-grained molecular dynamics simulations. The results obtained using this equilibrium approach demonstrate that the main barrier to folding of pp32 is quite broad and lies near the unfolded state, with structure apparent only in the C-terminal region. Significant deviation from two-state unfolding under pressure reveals an intermediate on the folded side of the main barrier in which the N-terminal region is disordered. A nonlinear temperature dependence of the population of this intermediate suggests a large heat capacity change associated with its formation. The combination of pressure, which favors the population of folding intermediates relative to chemical denaturants; NMR, which allows their observation; and constrained structure-based simulations yield unparalleled insight into protein folding mechanisms.
Collapse
Affiliation(s)
- Martin J Fossat
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York
| | - Thuy P Dao
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Kelly Jenkins
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York
| | - Mariano Dellarole
- Unité de Virologie Structurale, Centre National de la Recherche Scientifique UMR 3569, Institut Pasteur, Paris, France
| | - Yinshan Yang
- Centre de Biochimie Structurale, Centre National de la Recherche Scientifique UMR 5048, Institut National de la Santé et de la Recherche Médicale, Université de Montpellier, France
| | - Scott A McCallum
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Angel E Garcia
- Department of Physics, Rensselaer Polytechnic Institute, Troy, New York
| | - Doug Barrick
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Christian Roumestand
- Centre de Biochimie Structurale, Centre National de la Recherche Scientifique UMR 5048, Institut National de la Santé et de la Recherche Médicale, Université de Montpellier, France
| | - Catherine A Royer
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York.
| |
Collapse
|
13
|
Sirotkin VA, Kuchierskaya AA. α-chymotrypsin in water-acetone and water-dimethyl sulfoxide mixtures: Effect of preferential solvation and hydration. Proteins 2017; 85:1808-1819. [PMID: 28612358 DOI: 10.1002/prot.25334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/02/2017] [Accepted: 06/07/2017] [Indexed: 11/10/2022]
Abstract
We investigated water/organic solvent sorption and residual enzyme activity to simultaneously monitor preferential solvation/hydration of protein macromolecules in the entire range of water content at 25°C. We applied this approach to estimate protein destabilization/stabilization due to the preferential interactions of bovine pancreatic α-chymotrypsin with water-acetone (moderate-strength H-bond acceptor) and water-DMSO (strong H-bond acceptor) mixtures. There are three concentration regimes for the dried α-chymotrypsin. α-Chymotrypsin is preferentially hydrated at high water content. The residual enzyme activity values are close to 100%. At intermediate water content, the dehydrated α-chymotrypsin has a higher affinity for acetone/DMSO than for water. Residual enzyme activity is minimal in this concentration range. The acetone/DMSO molecules are preferentially excluded from the protein surface at the lowest water content, resulting in preferential hydration. The residual catalytic activity in the water-poor acetone is ∼80%, compared with that observed after incubation in pure water. This effect is very small for the water-poor DMSO. Two different schemes are operative for the hydrated enzyme. At high and intermediate water content, α-chymotrypsin exhibits preferential hydration. However, at intermediate water content, in contrast to the dried enzyme, the initially hydrated α-chymotrypsin possesses increased preferential hydration parameters. At low water content, no residual enzyme activity was observed. Preferential binding of DMSO/acetone to α-chymotrypsin was detected. Our data clearly demonstrate that the hydrogen bond accepting ability of organic solvents and the protein hydration level constitute key factors in determining the stability of protein-water-organic solvent systems.
Collapse
Affiliation(s)
- Vladimir A Sirotkin
- Department of Physical Chemistry, Kazan Federal University, A.M. Butlerov Institute of Chemistry, Kazan, 420008, Russia
| | - Alexandra A Kuchierskaya
- Department of Physical Chemistry, Kazan Federal University, A.M. Butlerov Institute of Chemistry, Kazan, 420008, Russia
| |
Collapse
|
14
|
Nakamura S, Saotome T, Nakazawa A, Fukuda M, Kuroda Y, Kidokoro SI. Thermodynamics of the Thermal Denaturation of Acid Molten Globule State of Cytochrome c Indicate a Reversible High-Temperature Oligomerization Process. Biochemistry 2017; 56:2372-2378. [DOI: 10.1021/acs.biochem.6b01225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shigeyoshi Nakamura
- Department
of General Education, National Institute of Technology, Ube College, 2-14-1 Tokiwadai, Ube 755-8555, Japan
- Department
of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188, Japan
| | - Tomonori Saotome
- Department
of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-15 Nakamachi, Koganei 184-8588, Japan
| | - Akiko Nakazawa
- Department
of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188, Japan
| | - Masao Fukuda
- Department
of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188, Japan
| | - Yutaka Kuroda
- Department
of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-15 Nakamachi, Koganei 184-8588, Japan
| | - Shun-ichi Kidokoro
- Department
of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188, Japan
| |
Collapse
|
15
|
Krobath H, Chen T, Chan HS. Volumetric Physics of Polypeptide Coil–Helix Transitions. Biochemistry 2016; 55:6269-6281. [DOI: 10.1021/acs.biochem.6b00802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Heinrich Krobath
- Departments of Biochemistry
and Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tao Chen
- Departments of Biochemistry
and Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hue Sun Chan
- Departments of Biochemistry
and Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
16
|
Toleikis Z, Sirotkin VA, Skvarnavičius G, Smirnovienė J, Roumestand C, Matulis D, Petrauskas V. Volume of Hsp90 Protein–Ligand Binding Determined by Fluorescent Pressure Shift Assay, Densitometry, and NMR. J Phys Chem B 2016; 120:9903-12. [DOI: 10.1021/acs.jpcb.6b06863] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Zigmantas Toleikis
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Vladimir A. Sirotkin
- A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya Street 18, Kazan 420008, Russia
| | - Gediminas Skvarnavičius
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Joana Smirnovienė
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Christian Roumestand
- Centre
de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Universités de Montpellier, 34000 Montpellier, France
| | - Daumantas Matulis
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Vytautas Petrauskas
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
17
|
Ortore MG, Macedo JNA, Araujo APU, Ferrero C, Mariani P, Spinozzi F, Itri R. Structural and Thermodynamic Properties of Septin 3 Investigated by Small-Angle X-Ray Scattering. Biophys J 2016; 108:2896-902. [PMID: 26083929 DOI: 10.1016/j.bpj.2015.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/30/2015] [Accepted: 05/11/2015] [Indexed: 01/22/2023] Open
Abstract
Septins comprise a family of proteins involved in a variety of cellular processes and related to several human pathologies. They are constituted by three structural domains: the N- and C-terminal domains, highly variable in length and composition, and the central domain, involved in the guanine nucleotide (GTP) binding. Thirteen different human septins are known to form heterogeneous complexes or homofilaments, which are stabilized by specific interactions between the different interfaces present in the domains. In this work, we have investigated by in-solution small-angle x-ray scattering the structural and thermodynamic properties of a human septin 3 construct, SEPT3-GC, which contains both of both interfaces (G and NC) responsible for septin-septin interactions. In order to shed light on the role of these interactions, small-angle x-ray scattering measurements were performed in a wide range of temperatures, from 2 up to 56°C, both with and without a nonhydrolysable form of GTP (GTPγS). The acquired data show a temperature-dependent coexistence of monomers, dimers, and higher-order aggregates that were analyzed using a global fitting approach, taking into account the crystallographic structure of the recently reported SEPT3 dimer, PDB:3SOP. As a result, the enthalpy, entropy, and heat capacity variations that control the dimer-monomer dissociation equilibrium in solution were derived and GTPγS was detected to increase the enthalpic stability of the dimeric species. Moreover, a temperature increase was observed to induce dissociation of SEPT3-GC dimers into monomers just preceding their reassembling into amyloid aggregates, as revealed by the Thioflavin-T fluorescence assays.
Collapse
Affiliation(s)
- Maria Grazia Ortore
- Dipartimento di Scienze della Vita e dell'Ambiente and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Università Politecnica delle Marche, Ancona, Italy
| | - Joci N A Macedo
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Ana Paula U Araujo
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | | | - Paolo Mariani
- Dipartimento di Scienze della Vita e dell'Ambiente and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Spinozzi
- Dipartimento di Scienze della Vita e dell'Ambiente and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Università Politecnica delle Marche, Ancona, Italy.
| | - Rosangela Itri
- Instituto de Física da Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
18
|
Sundby S, Kristiansen T. The Principles of Buoyancy in Marine Fish Eggs and Their Vertical Distributions across the World Oceans. PLoS One 2015; 10:e0138821. [PMID: 26465149 PMCID: PMC4605736 DOI: 10.1371/journal.pone.0138821] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/03/2015] [Indexed: 11/22/2022] Open
Abstract
Buoyancy acting on plankton, i.e. the difference in specific gravity between plankton and the ambient water, is a function of salinity and temperature. From specific gravity measurements of marine fish eggs salinity appears to be the only determinant of the buoyancy indicating that the thermal expansions of the fish egg and the ambient seawater are equal. We analyze the mechanisms behind thermal expansion in fish eggs in order to determine to what extent it can be justified to neglect the effects of temperature on buoyancy. Our results confirm the earlier assumptions that salinity is the basic determinant on buoyancy in marine fish eggs that, in turn, influence the vertical distributions and, consequently, the dispersal of fish eggs from the spawning areas. Fish populations have adapted accordingly by producing egg specific gravities that tune the egg buoyancy to create specific vertical distributions for each local population. A wide variety of buoyancy adaptations are found among fish populations. The ambient physical conditions at the spawning sites form a basic constraint for adaptation. In coastal regions where salinity increases with depth, and where the major fraction of the fish stocks spawns, pelagic and mesopelagic egg distributions dominate. However, in the larger part of worlds’ oceans salinity decreases with depth resulting in different egg distributions. Here, the principles of vertical distributions of fish eggs in the world oceans are presented in an overarching framework presenting the basic differences between regions, mainly coastal, where salinity increases with depth and the major part of the world oceans where salinity decreases with depth. We show that under these latter conditions, steady-state vertical distribution of mesopelagic fish eggs cannot exist as it does in most coastal regions. In fact, a critical spawning depth must exist where spawning below this depth threshold results in eggs sinking out of the water column and become lost for recruitment to the population. An example of adaptation to such conditions is Cape hake spawning above the critical layer in the Northern Benguela upwelling ecosystem. The eggs rise slowly in the onshore subsurface current below the Ekman layer, hence being advected inshore where the hatched larvae concentrate with optimal feeding conditions.
Collapse
Affiliation(s)
- Svein Sundby
- Institute of Marine Research and Hjort Centre for Marine Ecosystem Dynamics, P.O. Box 1870 Nordnes, 5817, Bergen, Norway
| | - Trond Kristiansen
- Institute of Marine Research and Hjort Centre for Marine Ecosystem Dynamics, P.O. Box 1870 Nordnes, 5817, Bergen, Norway
| |
Collapse
|
19
|
Oda K, Kinoshita M. Physicochemical origin of high correlation between thermal stability of a protein and its packing efficiency: a theoretical study for staphylococcal nuclease mutants. Biophys Physicobiol 2015; 12:1-12. [PMID: 27493849 PMCID: PMC4736840 DOI: 10.2142/biophysico.12.0_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/18/2015] [Indexed: 12/01/2022] Open
Abstract
There is an empirical rule that the thermal stability of a protein is related to the packing efficiency or core volume of the folded state and the protein tends to exhibit higher stability as the backbone and side chains are more closely packed. Previously, the wild type and its nine mutants of staphylococcal nuclease were compared by examining their folded structures. The results obtained were as follows: The stability was not correlated with the number of intramolecular hydrogen bonds, intramolecular electrostatic interaction energy, or degree of burial of the hydrophobic surface; though the empirical rule mentioned above held, it was not the proximate cause of higher stability; and the number of van der Waals contacts N vdW, or equivalently, the intramolecular van der Waals interaction energy was an important factor governing the stability. Here we revisit the wild type and its nine mutants of staphylococcal nuclease using our statistical-mechanical theory for hydration of a protein. A molecular model is employed for water. We show that the pivotal factor is the magnitude of the water-entropy gain upon folding. The gain originates from an increase in the total volume available to the translational displacement of water molecules coexisting with the protein in the system. The magnitude is highly correlated with the denaturation temperature T m. Moreover, the apparent correlation between N vdW and T m as well as the empirical rule is interpretable (i.e., their physicochemical meanings can be clarified) on the basis of the water-entropy effect.
Collapse
Affiliation(s)
- Koji Oda
- Taisho Pharmaceutical Co., Ltd., Yoshino-cho 1-403, Kita-ku, Saitama 331-9530, Japan
| | - Masahiro Kinoshita
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
20
|
Dellarole M, Caro JA, Roche J, Fossat M, Barthe P, García-Moreno E B, Royer CA, Roumestand C. Evolutionarily Conserved Pattern of Interactions in a Protein Revealed by Local Thermal Expansion Properties. J Am Chem Soc 2015; 137:9354-62. [PMID: 26135981 DOI: 10.1021/jacs.5b04320] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The way in which the network of intramolecular interactions determines the cooperative folding and conformational dynamics of a protein remains poorly understood. High-pressure NMR spectroscopy is uniquely suited to examine this problem because it combines the site-specific resolution of the NMR experiments with the local character of pressure perturbations. Here we report on the temperature dependence of the site-specific volumetric properties of various forms of staphylococcal nuclease (SNase), including three variants with engineered internal cavities, as measured with high-pressure NMR spectroscopy. The strong temperature dependence of pressure-induced unfolding arises from poorly understood differences in thermal expansion between the folded and unfolded states. A significant inverse correlation was observed between the global thermal expansion of the folded proteins and the number of strong intramolecular hydrogen bonds, as determined by the temperature coefficient of the backbone amide chemical shifts. Comparison of the identity of these strong H-bonds with the co-evolution of pairs of residues in the SNase protein family suggests that the architecture of the interactions detected in the NMR experiments could be linked to a functional aspect of the protein. Moreover, the temperature dependence of the residue-specific volume changes of unfolding yielded residue-specific differences in expansivity and revealed how mutations impact intramolecular interaction patterns. These results show that intramolecular interactions in the folded states of proteins impose constraints against thermal expansion and that, hence, knowledge of site-specific thermal expansivity offers insight into the patterns of strong intramolecular interactions and other local determinants of protein stability, cooperativity, and potentially also of function.
Collapse
Affiliation(s)
- Mariano Dellarole
- †Centre de Biochimie Structurale, CNRS UMR5048, INSERM U554, Université Montpellier 1, 29 rue de Navacelles, Montpellier, France 34090
| | - Jose A Caro
- ‡T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St.. Baltimore, Maryland 21218, United States
| | - Julien Roche
- †Centre de Biochimie Structurale, CNRS UMR5048, INSERM U554, Université Montpellier 1, 29 rue de Navacelles, Montpellier, France 34090
| | - Martin Fossat
- †Centre de Biochimie Structurale, CNRS UMR5048, INSERM U554, Université Montpellier 1, 29 rue de Navacelles, Montpellier, France 34090
| | - Philippe Barthe
- †Centre de Biochimie Structurale, CNRS UMR5048, INSERM U554, Université Montpellier 1, 29 rue de Navacelles, Montpellier, France 34090
| | - Bertrand García-Moreno E
- ‡T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St.. Baltimore, Maryland 21218, United States
| | - Catherine A Royer
- †Centre de Biochimie Structurale, CNRS UMR5048, INSERM U554, Université Montpellier 1, 29 rue de Navacelles, Montpellier, France 34090
| | - Christian Roumestand
- †Centre de Biochimie Structurale, CNRS UMR5048, INSERM U554, Université Montpellier 1, 29 rue de Navacelles, Montpellier, France 34090
| |
Collapse
|
21
|
Saxton MJ. Wanted: scalable tracers for diffusion measurements. J Phys Chem B 2014; 118:12805-17. [PMID: 25319586 PMCID: PMC4234437 DOI: 10.1021/jp5059885] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/03/2014] [Indexed: 12/02/2022]
Abstract
Scalable tracers are potentially a useful tool to examine diffusion mechanisms and to predict diffusion coefficients, particularly for hindered diffusion in complex, heterogeneous, or crowded systems. Scalable tracers are defined as a series of tracers varying in size but with the same shape, structure, surface chemistry, deformability, and diffusion mechanism. Both chemical homology and constant dynamics are required. In particular, branching must not vary with size, and there must be no transition between ordinary diffusion and reptation. Measurements using scalable tracers yield the mean diffusion coefficient as a function of size alone; measurements using nonscalable tracers yield the variation due to differences in the other properties. Candidate scalable tracers are discussed for two-dimensional (2D) diffusion in membranes and three-dimensional diffusion in aqueous solutions. Correlations to predict the mean diffusion coefficient of globular biomolecules from molecular mass are reviewed briefly. Specific suggestions for the 3D case include the use of synthetic dendrimers or random hyperbranched polymers instead of dextran and the use of core-shell quantum dots. Another useful tool would be a series of scalable tracers varying in deformability alone, prepared by varying the density of crosslinking in a polymer to make say "reinforced Ficoll" or "reinforced hyperbranched polyglycerol."
Collapse
Affiliation(s)
- Michael J. Saxton
- Department of Biochemistry
and Molecular Medicine, University of California, One Shields Ave., Davis, California 95616, United States
| |
Collapse
|
22
|
Suladze S, Kahse M, Erwin N, Tomazic D, Winter R. Probing volumetric properties of biomolecular systems by pressure perturbation calorimetry (PPC)--the effects of hydration, cosolvents and crowding. Methods 2014; 76:67-77. [PMID: 25168090 DOI: 10.1016/j.ymeth.2014.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/09/2014] [Accepted: 08/11/2014] [Indexed: 11/16/2022] Open
Abstract
Pressure perturbation calorimetry (PPC) is an efficient technique to study the volumetric properties of biomolecules in solution. In PPC, the coefficient of thermal expansion of the partial volume of the biomolecule is deduced from the heat consumed or produced after small isothermal pressure-jumps. The expansion coefficient strongly depends on the interaction of the biomolecule with the solvent or cosolvent as well as on its packing and internal dynamic properties. This technique, complemented with molecular acoustics and densimetry, provides valuable insights into the basic thermodynamic properties of solvation and volume effects accompanying interactions, reactions and phase transitions of biomolecular systems. After outlining the principles of the technique, we present representative examples on protein folding, including effects of cosolvents and crowding, together with a discussion of the interpretation, and further applications.
Collapse
Affiliation(s)
- Saba Suladze
- TU Dortmund University, Department of Chemistry and Chemical Biology, Physical Chemistry - Biophysical Chemistry, Otto-Hahn Str. 6, D-44227 Dortmund, Germany
| | - Marie Kahse
- TU Dortmund University, Department of Chemistry and Chemical Biology, Physical Chemistry - Biophysical Chemistry, Otto-Hahn Str. 6, D-44227 Dortmund, Germany
| | - Nelli Erwin
- TU Dortmund University, Department of Chemistry and Chemical Biology, Physical Chemistry - Biophysical Chemistry, Otto-Hahn Str. 6, D-44227 Dortmund, Germany
| | - Daniel Tomazic
- TU Dortmund University, Department of Chemistry and Chemical Biology, Physical Chemistry - Biophysical Chemistry, Otto-Hahn Str. 6, D-44227 Dortmund, Germany
| | - Roland Winter
- TU Dortmund University, Department of Chemistry and Chemical Biology, Physical Chemistry - Biophysical Chemistry, Otto-Hahn Str. 6, D-44227 Dortmund, Germany.
| |
Collapse
|
23
|
Vasilchuk D, Pandharipande PP, Suladze S, Sanchez-Ruiz JM, Makhatadze GI. Molecular Determinants of Expansivity of Native Globular Proteins: A Pressure Perturbation Calorimetry Study. J Phys Chem B 2014; 118:6117-22. [DOI: 10.1021/jp5028838] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - Jose M. Sanchez-Ruiz
- Facultad
de Ciencias, Departamento de Quimica Fisica, Universidad de Granada, 18071 Granada, Spain
| | | |
Collapse
|