1
|
Bairwa M, Verma RK, Bharadwaj KC. Domino Sequence of Ketimization and Electrophilic Amination for an Inverse Aza Intramolecular Morita-Baylis-Hillman Adduct. J Org Chem 2024; 89:14811-14817. [PMID: 39361826 DOI: 10.1021/acs.joc.4c01542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Morita-Baylis-Hillman (MBH) reaction, typically catalyzed by a Lewis base, is a popular and useful method for C-C bond formation. Unfortunately, it is limited by a slow reaction rate and has sensitivity toward steric and electronic parameters. Despite tremendous efforts, the versatility of the reaction keeps the quest open for new mechanistic and catalytic pathways. Here, we have reported a Bro̷nsted acid-catalyzed, electrophilic amination (Umpolung of imine) as a method for an inverse Aza Intramolecular MBH adduct in the form of 2-acylindole. Umpolung of imine with nitrogen acting as an electrophilic center has been achieved. Interestingly, the reaction was also shown to occur under catalyst-free conditions also. The expected products of ketimine formation, 6π electrocyclization, or quinoline formation were least/not observed. A large number of examples have demonstrated the reaction strength. β-aryl-substituted acrylate and acrylamide (cinnamates and cinnamides), which are extremely sluggish in conventional MBH chemistry, are the highlights of the developed methodology. The annulated product exhibited keto-enol tautomerism, which was proven by 1H NMR integrals. As an application, another tandem reaction in the form of Michael addition on a highly complex amine was carried out to provide spiro-annulated indole.
Collapse
Affiliation(s)
- Mansingh Bairwa
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rakesh Kumar Verma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
2
|
Leung MHM, Addicoat MA, Lincoln SF, Metha GF, Kee TW. Time-resolved keto-enol tautomerization of the medicinal pigment curcumin. Phys Chem Chem Phys 2024; 26:14970-14979. [PMID: 38739372 DOI: 10.1039/d4cp01006j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Curcumin is a medicinal agent that exhibits anti-cancer and anti-Alzheimer's disease properties. It has a keto-enol moiety that gives rise to many of its chemical properties including metal complexation and acid-base equilibria. A previous study has shown that keto-enol tautomerization at this moiety is implicated in the anti-Alzheimer's disease effect of curcumin, highlighting the importance of this process. In this study, tautomerization of curcumin in methanol, acetone and acetonitrile was investigated using time-resolved 1H nuclear magnetic resonance spectroscopy. Curcumin undergoes hydrogen-deuterium exchange with the solvents and the proton resonance peak corresponding to the hydrogen at the α-carbon position (Cα) decays as a function of time, signifying deuteration at this position. Because tautomerization is the rate limiting step in the deuteration of curcumin at the Cα position, the rate of tautomerization is inferred from the rate of deuteration. The rate constant of tautomerization of curcumin shows a temperature dependence and analysis using the Arrhenius equation revealed activation energies (Ea) of tautomerization of (80.1 ± 5.9), (64.1 ± 1.0) and (68.3 ± 5.5) kJ mol-1 in methanol, D2O/acetone and D2O/acetonitrile, respectively. Insight into the role of water in tautomerization of curcumin was further offered by density functional theory studies. The transition state of tautomerization was optimized in the presence of water molecules. The results show a hydrogen-bonded solvent bridge between the diketo moiety and Cα of curcumin. The Ea of tautomerization of curcumin shows a strong dependence on the number of water molecules in the solvent bridge, indicating the critical role played by the solvent bridge in catalyzing tautomerization of curcumin.
Collapse
Affiliation(s)
- Mandy H M Leung
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| | - Matthew A Addicoat
- School of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Stephen F Lincoln
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| | - Gregory F Metha
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| | - Tak W Kee
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| |
Collapse
|
3
|
Li X, Zhang FG, Ma JA, Liu Y. Computational insights into the binding modes, keto-enol tautomerization and stereo-electronically controlled decarboxylation of oxaloacetate in the active site of macrophomate synthase. Phys Chem Chem Phys 2024; 26:12331-12344. [PMID: 38598177 DOI: 10.1039/d4cp00716f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Oxaloacetic acid (OAA) is a β-ketocarboxylic acid, which plays an important role as an intermediate in some metabolic pathways, including the tricarboxylic acid cycle, gluconeogenesis and fatty acid biosynthesis. Animal studies have indicated that supplementing oxaloacetic acid shows an increase of lifespan and other substantial health benefits including mitochondrial DNA protection, and protection of retinal, neural and pancreatic tissues. Most of the chemical transformations of OAA in the metabolic pathways have been extensively studied; however, the understanding of decarboxylation of OAA at the atomic level is relatively lacking. Here, we carried out MD simulations and combined quantum mechanical/molecular mechanical (QM/MM) calculations as an example to systematically elucidate the binding modes, keto-enol tautomerization and decarboxylation of OAA in the active site of macrophomate synthase (MPS), which is a Mg(II)-dependent bifunctional enzyme that catalyzes both the decarboxylation of OAA and [4+2] cycloaddition of 2-pyrone with the decarboxylated intermediate of OAA (pyruvate enolate). On the basis of our calculations, it was found that the Mg2+-coordinated oxaloacetate may exist in enol forms and keto forms. The four keto forms can be transformed into each other by simply rotating the C2-C3 single bond, nevertheless, the keto-enol tautomerization strictly requires the assistance of pocket water molecules. In addition, the decarboxylation is stereo-electronically controlled, i.e., it is the relative orientation of the terminal carboxyl anion that determines the rate of decarboxylation. As such, the chemistry of oxaloacetate in the active site of MPS is complex. On one hand, the most stable binding mode (K-I) may undergo enol-keto tautomerization to isomerize to the enol form, which may further react with the second substrate; on the other hand, K-I may isomerize to another binding mode K-II to proceed decarboxylation to generate pyruvate enolate and CO2. Starting from K-I, the enol-keto tautomerization corresponds to a barrier of 16.2 kcal mol-1, whereas the decarboxylation is associated with an overall barrier of 19.7 kcal mol-1. These findings may provide useful information for understanding the chemistry of OAA and the catalysis of related enzymes, and they are basically in agreement with the available experimental kinetic data.
Collapse
Affiliation(s)
- Xinyi Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
4
|
Pem B, Toma M, Vrček V, Vinković Vrček I. Combined NMR and Computational Study of Cysteine Oxidation during Nucleation of Metallic Clusters in Biological Systems. Inorg Chem 2021; 60:4144-4161. [PMID: 33657797 DOI: 10.1021/acs.inorgchem.1c00321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The widespread biomedical applications of silver and gold nanoparticles (AgNPs and AuNPs, respectively) prompt the need for mechanistic evaluation of their interaction with biomolecules. In biological media, metallic NPs are known to transform by various pathways, especially in the presence of thiols. The interplay between metallic NPs and thiols may lead to unpredictable consequences for the health status of an organism. This study explored the potential events occurring during biotransformation, dissolution, and reformation of NPs in the thiol-rich biological media. The study employed a model system evaluating the interaction of cysteine with small-sized AgNPs and AuNPs. The interplay of cysteine on transformation and reformation pathways of these NPs was experimentally investigated by nuclear magnetic resonance (NMR) spectroscopy and supported by light scattering techniques and transmission electron microscopy (TEM). As the main outcome, Ag- or Au-catalyzed oxidation of cysteine to cystine was found to occur through generation of reactive oxygen species (ROS). Computational simulations confirmed this mechanism and the role of ROS in the oxidative dimerization of biothiol during NPs reformation. The obtained results represent valuable mechanistic data about the complex events during the transport of metallic NPs in thiol-rich biological systems that should be considered for the future biomedical applications of metal-based nanomaterials.
Collapse
Affiliation(s)
- Barbara Pem
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Mateja Toma
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Valerije Vrček
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Ivana Vinković Vrček
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Jana K, Ganguly B. DFT Study To Explore the Importance of Ring Size and Effect of Solvents on the Keto-Enol Tautomerization Process of α- and β-Cyclodiones. ACS OMEGA 2018; 3:8429-8439. [PMID: 31458971 PMCID: PMC6644555 DOI: 10.1021/acsomega.8b01008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/18/2018] [Indexed: 06/01/2023]
Abstract
We have explored the effect of ring size on keto-enol tautomerization of α- and β-cyclodiones using the M062X-SMDaq/6-31+G(d,p)//M062X/6-31+G(d,p) level of theory. The calculated results show that the activation free energy barrier for the keto-enol tautomerization process of α-cyclopropanedione (1) is 54.9 kcal/mol, which is lower compared to that of the other cyclic diketo systems studied here. The four-membered α- and β-cyclobutanedione (2 and 6) do not favor keto-enol tautomerization unlike other studied cyclic systems because of the ring strain developed in the transition-state geometries and their corresponding products. Water-assisted keto-enol tautomerization with one molecule reveals that the free energy activation barriers reduce almost half compared to those for the uncatalyzed systems. The two-water-assisted process is favorable as the activation free energy barriers lowered by ∼10 kcal/mol compared to those of the one-water-assisted process. The ion-pair formation seems to govern the lowering of activation barriers of α- and β-cyclodiones with two water molecules during the keto-enol tautomerization process, which however also overcomes the favorable aromatization in the three-membered ring system. The free energy activation barriers calculated with the M062X-SMDaq/6-31+G(d,p) level predicted that the keto-enol tautomerization process for the α-cyclodiones follows the following trend: 2 > 3 > 4 > 5 > 1. Water-assisted tautomerization of α-cyclodiones also predicted 1-W and 1-2W as the most favored processes; however, 5-W and 5-2W were found to be disfavored in this case. The β-cyclodione systems also showed similar trends as obtained with α-diketone systems. The influence of bulk solvent on the keto-enol tautomerization process favors the formation of the enol form in a more polar solvent medium even under mixed solvent conditions in acetonitrile and hexane at M062X-SMDacetonitrile/6-31+G(d,p) and M062X-SMDhexane/6-31+G(d,p) levels of theory.
Collapse
Affiliation(s)
- Kalyanashis Jana
- Computation
and Simulation Unit (Analytical Discipline and Centralized
Instrument Facility) and Academy of Scientific and Innovative Research, CSIR—Central Salt and Marine Chemicals Research
Institute, Bhavnagar 364002, India
| | - Bishwajit Ganguly
- Computation
and Simulation Unit (Analytical Discipline and Centralized
Instrument Facility) and Academy of Scientific and Innovative Research, CSIR—Central Salt and Marine Chemicals Research
Institute, Bhavnagar 364002, India
| |
Collapse
|
6
|
Healy EF, Cervantes L, Nabona B, Williams J. A unified mechanism for plant polyketide biosynthesis derived from in silico modeling. Biochem Biophys Res Commun 2018; 497:1123-1128. [PMID: 29496450 DOI: 10.1016/j.bbrc.2018.02.190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 02/25/2018] [Indexed: 01/24/2023]
Abstract
The polyketide synthases found in a variety of plants and fungi provide a varied source of biologically active compounds of pharmacological and medicinal interest. Stilbene synthase and chalcone synthase catalyze the formation of a common tetraketide intermediate, but use different cyclization mechanisms to produce distinct and separate natural products. While key structural differences have been identified to explain this functional diversity, a fuller explication of the factors responsible for this mechanistic disparity is required. Based on the energetics of our models of the bound tetraketides, and our structural analysis of the active sites we propose that a key tautomeric conversion provides a mechanistic framework common to both cyclizations. A previously unidentified active water molecule facilitates cyclization in chalcone synthase through a Claisen mechanism. Such a "Claisen switch" is comparable to the previously characterized "aldol switch" mechanism proposed for the biosynthesis of resveratrol in stilbene synthase.
Collapse
Affiliation(s)
- Eamonn F Healy
- Department of Chemistry, St. Edward's University, Austin, TX 78704, USA.
| | - Luis Cervantes
- Department of Chemistry, St. Edward's University, Austin, TX 78704, USA
| | - Barret Nabona
- Department of Chemistry, St. Edward's University, Austin, TX 78704, USA
| | - Jacob Williams
- Department of Chemistry, St. Edward's University, Austin, TX 78704, USA
| |
Collapse
|
7
|
James OO, Sauter W, Schröder U. Electrochemistry for the Generation of Renewable Chemicals: One-Pot Electrochemical Deoxygenation of Xylose to δ-Valerolactone. CHEMSUSCHEM 2017; 10:2015-2022. [PMID: 28332296 DOI: 10.1002/cssc.201700209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/10/2017] [Indexed: 06/06/2023]
Abstract
In this study, the electrochemical conversion of xylose to δ-valerolactone via carbonyl intermediates is demonstrated. The conversion was achieved in aqueous media and at ambient conditions. This study also demonstrates that the feedstock for production of renewable chemicals and biofuels through electrochemistry can be extended to primary carbohydrate molecules. This is the first report on a one-pot electrochemical deoxygenation of xylose to δ-valerolactone.
Collapse
Affiliation(s)
- Olusola O James
- Institute of Environmental and Sustainable Chemistry, Technical University Braunschweig, Hangenring 30, 38106, Braunschweig, Germany
- Chemistry Unit, Kwara State University, Malete, P.M.B., 1530, Ilorin, Nigeria
| | - Waldemer Sauter
- Institute of Environmental and Sustainable Chemistry, Technical University Braunschweig, Hangenring 30, 38106, Braunschweig, Germany
| | - Uwe Schröder
- Institute of Environmental and Sustainable Chemistry, Technical University Braunschweig, Hangenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
8
|
Hossein Bagi A, Khaledi Y, Ghari H, Arndt S, Hashmi ASK, Yates BF, Ariafard A. A Mechanistic Investigation of the Gold(III)-Catalyzed Hydrofurylation of C–C Multiple Bonds. J Am Chem Soc 2016; 138:14599-14608. [DOI: 10.1021/jacs.6b05742] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amin Hossein Bagi
- Department
of Chemistry, Faculty of Science, Central Tehran Branch, Islamic Azad University, Shahrak Gharb, Tehran 1467686831, Iran
| | - Yousef Khaledi
- Department
of Chemistry, Faculty of Science, Central Tehran Branch, Islamic Azad University, Shahrak Gharb, Tehran 1467686831, Iran
| | - Hossein Ghari
- Department
of Chemistry, Faculty of Science, Central Tehran Branch, Islamic Azad University, Shahrak Gharb, Tehran 1467686831, Iran
| | - Sebastian Arndt
- Organisch-Chemisches
Institut, Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches
Institut, Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Brian F. Yates
- School
of Physical Sciences (Chemistry), University of Tasmania, Private
Bag 75, Hobart, Tasmania 7001, Australia
| | - Alireza Ariafard
- Department
of Chemistry, Faculty of Science, Central Tehran Branch, Islamic Azad University, Shahrak Gharb, Tehran 1467686831, Iran
- School
of Physical Sciences (Chemistry), University of Tasmania, Private
Bag 75, Hobart, Tasmania 7001, Australia
| |
Collapse
|
9
|
Morozov AN, Chatfield DC. How the Proximal Pocket May Influence the Enantiospecificities of Chloroperoxidase-Catalyzed Epoxidations of Olefins. Int J Mol Sci 2016; 17:E1297. [PMID: 27517911 PMCID: PMC5000694 DOI: 10.3390/ijms17081297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/28/2016] [Accepted: 08/01/2016] [Indexed: 11/16/2022] Open
Abstract
Chloroperoxidase-catalyzed enantiospecific epoxidations of olefins are of significant biotechnological interest. Typical enantiomeric excesses are in the range of 66%-97% and translate into free energy differences on the order of 1 kcal/mol. These differences are generally attributed to the effect of the distal pocket. In this paper, we show that the influence of the proximal pocket on the electron transfer mechanism in the rate-limiting event may be just as significant for a quantitatively accurate account of the experimentally-measured enantiospecificities.
Collapse
Affiliation(s)
- Alexander N Morozov
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA.
| | - David C Chatfield
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA.
| |
Collapse
|
10
|
Spectroscopic and QM/MM investigations of Chloroperoxidase catalyzed degradation of orange G. Arch Biochem Biophys 2016; 596:1-9. [DOI: 10.1016/j.abb.2016.02.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/05/2016] [Accepted: 02/24/2016] [Indexed: 11/30/2022]
|
11
|
Šakić D, Hanževački M, Smith DM, Vrček V. A computational study of the chlorination and hydroxylation of amines by hypochlorous acid. Org Biomol Chem 2015; 13:11740-52. [PMID: 26486691 DOI: 10.1039/c5ob01823d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The reactions of hypochlorous acid (HOCl) with ammonia, (di)methylamine, and heterocyclic amines have been studied computationally using double-hybrid DFT methods (B2PLYP-D and BK-PLYP) and a G3B3 composite scheme. In the gas phase the calculated energy barriers for N- and/or C-hydroxylation are ca. 100 kJ mol(-1) lower than the barrier for N-chlorination of amines. In the model solvent, however, the latter process becomes kinetically more favored. The explicit solvent effects are crucial for determination of the reaction mechanism. The N-chlorination is extremely susceptible to the presence of explicit water molecules, while no beneficial solvation effect has been found for the N- or C-hydroxylation of amines. The origin of the observed solvent effects arises from differential solvation of the respective transition states for chlorine- and oxygen-transfers, respectively. The nature of solvation of the transition state structures has been explored in more detail by classical molecular dynamics (MD) simulation. In agreement with the quantum mechanical approach, the most stable structural motif, which includes the amine, HOCl, and two reactive waters, has been identified during the MD simulation. The inclusion of 5 or 6 explicit water molecules is required to reproduce the experimental barriers for HOCl-induced formation of N-chloramines in an aqueous environment.
Collapse
Affiliation(s)
- Davor Šakić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia.
| | | | | | | |
Collapse
|
12
|
Bandyopadhyay B, Biswas P. External control over tautomeric distribution and inter-conversion: new insights into the realm of catalyzed tautomerization. RSC Adv 2015. [DOI: 10.1039/c5ra03233d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Relative stabilities of tautomers and tautomeric barriers are extensively modulated by use of carboxylic acids and amine bases.
Collapse
Affiliation(s)
- B. Bandyopadhyay
- Department of Basic Science & Humanities
- Institute of Engineering and Management
- Kolkata 700091
- India
| | - P. Biswas
- Department of Chemistry
- Scottish Church College
- Kolkata-700006
- India
| |
Collapse
|
13
|
Nagy PI. Competing intramolecular vs. intermolecular hydrogen bonds in solution. Int J Mol Sci 2014; 15:19562-633. [PMID: 25353178 PMCID: PMC4264129 DOI: 10.3390/ijms151119562] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/17/2014] [Accepted: 10/13/2014] [Indexed: 11/17/2022] Open
Abstract
A hydrogen bond for a local-minimum-energy structure can be identified according to the definition of the International Union of Pure and Applied Chemistry (IUPAC recommendation 2011) or by finding a special bond critical point on the density map of the structure in the framework of the atoms-in-molecules theory. Nonetheless, a given structural conformation may be simply favored by electrostatic interactions. The present review surveys the in-solution competition of the conformations with intramolecular vs. intermolecular hydrogen bonds for different types of small organic molecules. In their most stable gas-phase structure, an intramolecular hydrogen bond is possible. In a protic solution, the intramolecular hydrogen bond may disrupt in favor of two solute-solvent intermolecular hydrogen bonds. The balance of the increased internal energy and the stabilizing effect of the solute-solvent interactions regulates the new conformer composition in the liquid phase. The review additionally considers the solvent effects on the stability of simple dimeric systems as revealed from molecular dynamics simulations or on the basis of the calculated potential of mean force curves. Finally, studies of the solvent effects on the type of the intermolecular hydrogen bond (neutral or ionic) in acid-base complexes have been surveyed.
Collapse
Affiliation(s)
- Peter I Nagy
- Center for Drug Design and Development, the University of Toledo, Toledo, OH 43606-3390, USA.
| |
Collapse
|
14
|
Young JD, Staniforth M, Chatterley AS, Paterson MJ, Roberts GM, Stavros VG. Relaxation dynamics of photoexcited resorcinol: internal conversion versus H atom tunnelling. Phys Chem Chem Phys 2014; 16:550-62. [DOI: 10.1039/c3cp53726a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|