1
|
Avanessian C, Wang Y, Yarkony DR. Floquet-Engineered Photodissociation Simulated Using Coupled Potential Energy and Dipole Matrices. J Phys Chem Lett 2024; 15:9905-9911. [PMID: 39303099 DOI: 10.1021/acs.jpclett.4c02312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
We simulate the nonadiabatic molecular dynamics of ammonia photodissociation in the presence of an external laser field by using an approximate Floquet Hamiltonian. The dipole-field interaction gives rise to seams of light-induced conical intersection (LICI), which can significantly change the topography of the coupled potential energy surfaces. We perform quasiclassical trajectories based on recently reported diabatic potential energy matrices (DPEM) and dipole matrices. It is shown that the branching ratio of ground and excited state NH2 is drastically altered by laser-dipole interaction, which is a signature of nonadiabatic effects induced by light.
Collapse
Affiliation(s)
- Chris Avanessian
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Yuchen Wang
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David R Yarkony
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
2
|
Pandey G, Ghosh S, Tiwari AK. Strong Laser Field-Driven Coupled Electron-Nuclear Dynamics: Quantum vs Classical Description. J Phys Chem A 2023; 127:9206-9219. [PMID: 37890168 DOI: 10.1021/acs.jpca.3c05047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
We have performed a coupled electron-nuclear dynamics study of H2+ molecular ions under the influence of an intense few-cycle 4.5 fs laser pulse with an intensity of 4 × 1014 W/cm2 and a central wavelength of 750 nm. Both quantum and classical dynamical methods are employed in the exact similar initial conditions with the aim of head-to-head comparison of two methodologies. A competition between ionization and dissociation channel is explained under the framework of quantum and classical dynamics. The origin of the electron localization phenomena is elucidated by observing the molecular and electronic wave packet evolution pattern. By probing with different carrier envelope phase (CEP) values of the ultrashort pulse, the possibility of electron localization on either of the two nuclei is investigated. The effects of initial vibrational states on final dissociation and ionization probabilities for several CEP values are studied in detail. Finally, asymmetries in the dissociation probabilities are calculated and mutually compared for both quantum and classical dynamical methodologies, whereas Franck-Condon averaging over the initial vibrational states is carried out in order to mimic the existing experimental conditions.
Collapse
Affiliation(s)
- Gaurav Pandey
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Sandip Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Ashwani K Tiwari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| |
Collapse
|
3
|
Schnappinger T, Jadoun D, Gudem M, Kowalewski M. Time-resolved X-ray and XUV based spectroscopic methods for nonadiabatic processes in photochemistry. Chem Commun (Camb) 2022; 58:12763-12781. [PMID: 36317595 PMCID: PMC9671098 DOI: 10.1039/d2cc04875b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/21/2022] [Indexed: 11/03/2023]
Abstract
The photochemistry of numerous molecular systems is influenced by conical intersections (CIs). These omnipresent nonadiabatic phenomena provide ultra-fast radiationless relaxation channels by creating degeneracies between electronic states and decide over the final photoproducts. In their presence, the Born-Oppenheimer approximation breaks down, and the timescales of the electron and nuclear dynamics become comparable. Due to the ultra-fast dynamics and the complex interplay between nuclear and electronic degrees of freedom, the direct experimental observation of nonadiabatic processes close to CIs remains challenging. In this article, we give a theoretical perspective on novel spectroscopic techniques capable of observing clear signatures of CIs. We discuss methods that are based on ultra-short laser pulses in the extreme ultraviolet and X-ray regime, as their spectral and temporal resolution allow for resolving the ultra-fast dynamics near CIs.
Collapse
Affiliation(s)
- Thomas Schnappinger
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden.
| | - Deependra Jadoun
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden.
| | - Mahesh Gudem
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden.
| | - Markus Kowalewski
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
4
|
Carrasco S, Rogan J, Valdivia JA, Sola IR. Anti-alignment driven dynamics in the excited states of molecules under strong fields. Phys Chem Chem Phys 2021; 23:1936-1942. [PMID: 33459314 DOI: 10.1039/d0cp05692h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We develop two novel models of the H2+ molecule and its isotopes from which we assess quantum-mechanically and semi-classically whether the molecule anti-aligns with the field in the first excited electronic state. The results from both models allow us to predict anti-alignment dynamics even for the HD+ isotope, which possesses a permanent dipole moment. The molecule dissociates at angles perpendicular to the field polarization in both the excited and the ground electronic state, as the population is exchanged through a conical intersection. The quantum mechanical dispersion of the initial state is sufficient to cause full dissociation. We conclude that the stabilization of these molecules in the excited state through bond-hardening under a strong field is highly unlikely.
Collapse
Affiliation(s)
- Sebastián Carrasco
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, 7800024, Santiago, Chile.
| | | | | | | |
Collapse
|
5
|
Kübel M, Spanner M, Dube Z, Naumov AY, Chelkowski S, Bandrauk AD, Vrakking MJJ, Corkum PB, Villeneuve DM, Staudte A. Probing multiphoton light-induced molecular potentials. Nat Commun 2020; 11:2596. [PMID: 32444632 PMCID: PMC7244592 DOI: 10.1038/s41467-020-16422-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 04/30/2020] [Indexed: 11/09/2022] Open
Abstract
The strong coupling between intense laser fields and valence electrons in molecules causes distortions of the potential energy hypersurfaces which determine the motion of the nuclei and influence possible reaction pathways. The coupling strength varies with the angle between the light electric field and valence orbital, and thereby adds another dimension to the effective molecular potential energy surface, leading to the emergence of light-induced conical intersections. Here, we demonstrate that multiphoton couplings can give rise to complex light-induced potential energy surfaces that govern molecular behavior. In the laser-induced dissociation of H2+, the simplest of molecules, we measure a strongly modulated angular distribution of protons which has escaped prior observation. Using two-color Floquet theory, we show that the modulations result from ultrafast dynamics on light-induced molecular potentials. These potentials are shaped by the amplitude, duration and phase of the dressing fields, allowing for manipulating the dissociation dynamics of small molecules.
Collapse
Affiliation(s)
- M Kübel
- Joint Attosecond Science Laboratory, National Research Council and University of Ottawa, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada.
- Department of Physics, Ludwig-Maximilians-Universität Munich, Am Coulombwall 1, D-85748, Garching, Germany.
- Institute for Optics and Quantum Electronics, University of Jena, Max-Wien-Platz 1, D-07743, Jena, Germany.
| | - M Spanner
- Joint Attosecond Science Laboratory, National Research Council and University of Ottawa, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Z Dube
- Joint Attosecond Science Laboratory, National Research Council and University of Ottawa, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - A Yu Naumov
- Joint Attosecond Science Laboratory, National Research Council and University of Ottawa, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - S Chelkowski
- Laboratoire de Chimie Théoretique, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - A D Bandrauk
- Laboratoire de Chimie Théoretique, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - M J J Vrakking
- Max-Born-Institute, Max-Born-Straße 2A, D-12489, Berlin, Germany
| | - P B Corkum
- Joint Attosecond Science Laboratory, National Research Council and University of Ottawa, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - D M Villeneuve
- Joint Attosecond Science Laboratory, National Research Council and University of Ottawa, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - A Staudte
- Joint Attosecond Science Laboratory, National Research Council and University of Ottawa, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada.
| |
Collapse
|
6
|
Sun Z, Wang C, Zhao W, Yang C. Geometric phase effects on photodissociation dynamics of diatomics. J Chem Phys 2018; 149:224307. [PMID: 30553243 DOI: 10.1063/1.5052514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigated the effect of the geometric phase (GP) on photodissociation dynamics at a light-induced conical intersection (LICI) through exact quantum dynamical calculations. By taking the one-photon photodissociation of H 2 + ionic molecules as an example, we explored the conditions wherein the LICI associated GP affects dissociation dynamics. We found that GP leads to a phase shift between the angular distributions of GP included and GP excluded photofragments. This effect is more pronounced when the energy of the initial vibrational level is above the energy of the LICI point.
Collapse
Affiliation(s)
- Zhaopeng Sun
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
| | - Chunyang Wang
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
| | - Wenkai Zhao
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
| | - Chuanlu Yang
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
| |
Collapse
|
7
|
Badankó P, Halász GJ, Cederbaum LS, Vibók Á, Csehi A. Communication: Substantial impact of the orientation of transition dipole moments on the dynamics of diatomics in laser fields. J Chem Phys 2018; 149:181101. [PMID: 30441912 DOI: 10.1063/1.5054775] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The formation of light-induced conical intersections (LICIs) between electronic states of diatomic molecules has been thoroughly investigated over the past decade. In the case of running laser waves, the rotational, vibrational, and electronic motions couple via the LICI giving rise to strong nonadiabatic phenomena. In contrast to natural conical intersections (CIs) which are given by nature and hard to manipulate, the characteristics of LICIs are easily modified by the parameters of the laser field. The internuclear position of the created LICI is determined by the laser energy, while the angular position is given by the orientation of the transition dipole moment (TDM) with respect to the molecular axis. In the present communication, using MgH+ as a showcase example, we exploit the strong impact of the orientation of the TDMs exerted on the light-induced nonadiabatic dynamics. Comparing the photodissociations induced by parallel or perpendicular transitions, a clear signature of the created LICIs is revealed in the angular distribution of the photofragments.
Collapse
Affiliation(s)
- Péter Badankó
- Department of Theoretical Physics, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Gábor J Halász
- Department of Information Technology, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Lorenz S Cederbaum
- Theoretical Chemistry, Institute of Physical Chemistry, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Ágnes Vibók
- Department of Theoretical Physics, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - András Csehi
- Department of Theoretical Physics, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| |
Collapse
|
8
|
Bouakline F. Unambiguous Signature of the Berry Phase in Intense Laser Dissociation of Diatomic Molecules. J Phys Chem Lett 2018; 9:2271-2277. [PMID: 29649364 DOI: 10.1021/acs.jpclett.8b00607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report strong evidence of Berry phase effects in intense laser dissociation of D2+ molecules, manifested as Aharonov-Bohm-like oscillations in the photofragment angular distribution (PAD). Our calculations show that this interference pattern strongly depends on the parity of the diatom initial rotational state, (-1) j. Indeed, the PAD local maxima (minima) observed in one case ( j odd) correspond to local minima (maxima) in the other case ( j even). Using simple topological arguments, we clearly show that such interference conversion is a direct signature of the Berry phase. The sole effect of the latter on the rovibrational wave function is a sign change of the relative phase between two interfering components, which wind in opposite senses around a light-induced conical intersection (LICI). Therefore, encirclement of the LICI leads to constructive ( j odd) or destructive ( j even) self-interference of the initial nuclear wavepacket in the dissociative limit. To corroborate our theoretical findings, we suggest an experiment of strong-field indirect dissociation of D2+ molecules, comparing the PAD of the ortho and para molecular species in directions nearly perpendicular to the laser polarization axis.
Collapse
Affiliation(s)
- Foudhil Bouakline
- Institut für Chemie , Universität Potsdam , Karl-Liebknecht-Str. 24-25 , D-14476 Potsdam-Golm , Germany
| |
Collapse
|
9
|
Videla PE, Markmann A, Batista VS. Floquet Study of Quantum Control of the Cis-Trans Photoisomerization of Rhodopsin. J Chem Theory Comput 2018; 14:1198-1205. [PMID: 29425032 DOI: 10.1021/acs.jctc.7b01217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding how to control reaction dynamics of polyatomic systems by using ultrafast laser technology is a fundamental challenge of great technological interest. Here, we report a Floquet theoretical study of the effect of light-induced potentials on the ultrafast cis-trans photoisomerization dynamics of rhodopsin. The Floquet Hamiltonian involves an empirical 3-state 25-mode model with frequencies and excited-state gradients parametrized to reproduce the rhodopsin electronic vertical excitation energy, the resonance Raman spectrum, and the photoisomerization time and efficiency as probed by ultrafast spectroscopy. We simulate the excited state relaxation dynamics using the time-dependent self-consistent field method, as described by a 3-state 2-mode nuclear wavepacket coupled to a Gaussian ansatz of 23 vibronic modes. We analyze the reaction time and product yield obtained with pulses of various widths and intensity profiles, defining 'dressed states' where the perturbational effect of the pulses is naturally decoupled along the different reaction channels. We find pulses that delay the excited-state photoisomerization for hundreds of femtoseconds, and we gain insights on the underlying control mechanisms. The reported findings provide understanding of quantum control, particularly valuable for the development of ultrafast optical switches based on visual pigments.
Collapse
Affiliation(s)
- Pablo E Videla
- Department of Chemistry , Yale University , P.O. Box 208107, New Haven , Connecticut 06520-8107 , United States.,Energy Sciences Institute , Yale University , P.O. Box 27394, West Haven , Connecticut 06516-7394 , United States
| | - Andreas Markmann
- Department of Chemistry , Yale University , P.O. Box 208107, New Haven , Connecticut 06520-8107 , United States.,Energy Sciences Institute , Yale University , P.O. Box 27394, West Haven , Connecticut 06516-7394 , United States
| | - Victor S Batista
- Department of Chemistry , Yale University , P.O. Box 208107, New Haven , Connecticut 06520-8107 , United States.,Energy Sciences Institute , Yale University , P.O. Box 27394, West Haven , Connecticut 06516-7394 , United States
| |
Collapse
|
10
|
Shu CC, Dong D, Yuan KJ. Single-laser-induced quantum interference in photofragmentation reaction of D + 2. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1297861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Chuan-Cun Shu
- School of Engineering and Information Technology, University of New South Wales , Canberra, ACT, Australia
| | - Daoyi Dong
- School of Engineering and Information Technology, University of New South Wales , Canberra, ACT, Australia
| | - Kai-Jun Yuan
- School of Engineering and Information Technology, University of New South Wales , Canberra, ACT, Australia
- Laboratoire de Chimie Théorique, Faculté des Sciences, Université de Sherbrooke , Sherbrooke, Canada
| |
Collapse
|
11
|
Albert J, Hader K, Engel V. Coupled electron-nuclear quantum dynamics through and around a conical intersection. J Chem Phys 2017; 147:064302. [DOI: 10.1063/1.4989780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Julian Albert
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Emil-Fischer-Str. 42, Campus Nord, 97074 Würzburg, Germany
| | - Kilian Hader
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Emil-Fischer-Str. 42, Campus Nord, 97074 Würzburg, Germany
| | - Volker Engel
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Emil-Fischer-Str. 42, Campus Nord, 97074 Würzburg, Germany
| |
Collapse
|
12
|
Shu CC, Yuan KJ, Dong D, Petersen IR, Bandrauk AD. Identifying Strong-Field Effects in Indirect Photofragmentation Reactions. J Phys Chem Lett 2017; 8:1-6. [PMID: 28052679 DOI: 10.1021/acs.jpclett.6b02613] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Exploring molecular breakup processes induced by light-matter interactions has both fundamental and practical implications. However, it remains a challenge to elucidate the underlying reaction mechanism in the strong field regime, where the potentials of the reactant are modified dramatically. Here we perform a theoretical analysis combined with a time-dependent wavepacket calculation to show how a strong ultrafast laser field affects the photofragment products. As an example, we examine the photochemical reaction of breaking up the molecule NaI into the neutral atoms Na and I, which due to inherent nonadiabatic couplings are indirectly formed in a stepwise fashion via the reaction intermediate NaI*. By analyzing the angular dependencies of fragment distributions, we are able to identify the reaction intermediate NaI* from the weak to the strong field-induced nonadiabatic regimes. Furthermore, the energy levels of NaI* can be extracted from the quantum interference patterns of the transient photofragment momentum distribution.
Collapse
Affiliation(s)
- Chuan-Cun Shu
- School of Engineering and Information Technology, University of New South Wales , Canberra, Australian Capital Territory 2600, Australia
| | - Kai-Jun Yuan
- School of Engineering and Information Technology, University of New South Wales , Canberra, Australian Capital Territory 2600, Australia
- Laboratoire de Chimie Théorique, Faculté des Sciences, Université de Sherbrooke Sherbrooke, Québec J1K 2R1, Canada
| | - Daoyi Dong
- School of Engineering and Information Technology, University of New South Wales , Canberra, Australian Capital Territory 2600, Australia
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Ian R Petersen
- School of Engineering and Information Technology, University of New South Wales , Canberra, Australian Capital Territory 2600, Australia
| | - Andre D Bandrauk
- Laboratoire de Chimie Théorique, Faculté des Sciences, Université de Sherbrooke Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
13
|
Tóth A, Borbély S, Kiss GZ, Halász GJ, Vibók Á. Toward the Full Quantum Dynamical Description of Photon Induced Processes in D 2. J Phys Chem A 2016; 120:9411-9421. [PMID: 27934332 DOI: 10.1021/acs.jpca.6b09623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dissociative ionization (multiphoton regime) of the D2+ ion by ultrashort laser pulses has been studied theoretically using ab initio calculations. The combined ionization and dissociation spectrum was explored for fixed molecular axis orientations. In accordance with previous investigations, the dominant features in the obtained joint energy spectrum were multiphoton peaks. In addition to this, in the present work, photoelectron angular distributions were analyzed as well. By performing a partial wave analysis for each multiphoton peak, we have identified the number of absorbed photons. Moreover, we also found that the angular distribution can significantly change inside a multiphoton peak as a function of electron and nuclear kinetic energy.
Collapse
Affiliation(s)
- A Tóth
- Department of Theoretical Physics, University of Debrecen , PO Box 5, H-4010 Debrecen, Hungary
| | - S Borbély
- Faculty of Physics, Babeş-Bolyai University , Kogălniceanu Street 1, 400084 Cluj Napoca, Romania
| | - G Zs Kiss
- Faculty of Physics, Babeş-Bolyai University , Kogălniceanu Street 1, 400084 Cluj Napoca, Romania
| | - G J Halász
- Department of Information Technology, University of Debrecen , PO Box 12, H-4010 Debrecen, Hungary
| | - Á Vibók
- Department of Theoretical Physics, University of Debrecen , PO Box 5, H-4010 Debrecen, Hungary.,ELI-ALPS, ELI-HU Non-Profit Ltd , Dugonics tér 13, H-6720 Szeged, Hungary
| |
Collapse
|
14
|
Badankó P, Halász GJ, Vibók Á. Molecular vibrational trapping revisited: a case study with D2. Sci Rep 2016; 6:31871. [PMID: 27550642 PMCID: PMC4994031 DOI: 10.1038/srep31871] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/26/2016] [Indexed: 11/24/2022] Open
Abstract
The present theoretical study is concerned with the vibrational trapping or bond hardening, which is a well-known phenomenon predicted by a dressed state representation of small molecules like and in an intense laser field. This phenomenon is associated with a condition where the energy of the light induced, vibrational level coincides with one of the vibrational levels on the field-free potential curve, which at the same time maximizes the wave function overlap between these two levels. One-dimensional numerical simulations were performed to investigate this phenomenon in a more quantitative way than has been done previously by calculating the photodissociation probability of for a wide range of photon energy. The obtained results undoubtedly show that the nodal structure of the field-free vibrational wave functions plays a decisive role in the vibrational trapping, in addition to the current understanding of this phenomenon.
Collapse
Affiliation(s)
- Péter Badankó
- Department of Theoretical Physics, University of Debrecen, PO Box 5, H-4010, Debrecen, Hungary
| | - Gábor J. Halász
- Department of Information Technology, University of Debrecen, PO Box 12, H-4010, Debrecen, Hungary
| | - Ágnes Vibók
- Department of Theoretical Physics, University of Debrecen, PO Box 5, H-4010, Debrecen, Hungary
- ELI-ALPS, ELI-HU Non-Profit Ltd, Dugonics ter 13, H-6720, Szeged, Hungary
| |
Collapse
|
15
|
Csehi A, Halász GJ, Cederbaum LS, Vibók Á. Tracking the photodissociation probability of D2+ induced by linearly chirped laser pulses. J Chem Phys 2016; 144:074309. [DOI: 10.1063/1.4941847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Halász GJ, Csehi A, Vibók Á. Photodissociation dynamics of the $$\hbox {D}_{2}^{+}$$ D 2 + ion initiated by several different laser pulses. Theor Chem Acc 2015. [DOI: 10.1007/s00214-015-1745-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Meisner J, Vacher M, Bearpark MJ, Robb MA. Geometric Rotation of the Nuclear Gradient at a Conical Intersection: Extension to Complex Rotation of Diabatic States. J Chem Theory Comput 2015; 11:3115-22. [PMID: 26575748 DOI: 10.1021/acs.jctc.5b00364] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonadiabatic dynamics in the vicinity of conical intersections is of essential importance in photochemistry. It is well known that if the branching space is represented in polar coordinates, then for a geometry represented by angle θ, the corresponding adiabatic states are obtained from the diabatic states with the mixing angle θ/2. In an equivalent way, one can study the relation between the real rotation of diabatic states and the resulting nuclear gradient. In this work, we extend the concept to allow a complex rotation of diabatic states to form a nonstationary superposition of electronic states. Our main result is that this leads to an elliptical transformation of the effective potential energy surfaces; i.e., the magnitude of the initial nuclear gradient changes as well as its direction. We fully explore gradient changes that result from varying both θ and ϕ (the complex rotation angle) as a way of electronically controlling nuclear motion, through Ehrenfest dynamics simulations for benzene cation.
Collapse
Affiliation(s)
- Jan Meisner
- Computational Chemistry Group, Institute of Theoretical Chemistry, University of Stuttgart , Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Morgane Vacher
- Department of Chemistry, Imperial College London , London SW7 2AZ, United Kingdom
| | - Michael J Bearpark
- Department of Chemistry, Imperial College London , London SW7 2AZ, United Kingdom
| | - Michael A Robb
- Department of Chemistry, Imperial College London , London SW7 2AZ, United Kingdom
| |
Collapse
|
18
|
Csehi A, Halász GJ, Cederbaum LS, Vibók Á. Photodissociation of D2+ induced by linearly chirped laser pulses. J Chem Phys 2015; 143:014305. [PMID: 26156481 DOI: 10.1063/1.4923441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- András Csehi
- Department of Theoretical Physics, University of Debrecen, P.O. Box 5, H-4010 Debrecen, Hungary
| | - Gábor J Halász
- Department of Information Technology, University of Debrecen, P.O. Box 12, H-4010 Debrecen, Hungary
| | - Lorenz S Cederbaum
- Theoretische Chemie, Physikalish-Chemisches Institut, Universität Heidelberg, H-69120 Heidelberg, Germany
| | - Ágnes Vibók
- Department of Theoretical Physics, University of Debrecen, P.O. Box 5, H-4010 Debrecen, Hungary
| |
Collapse
|
19
|
Halász GJ, Vibók Á, Cederbaum LS. Direct Signature of Light-Induced Conical Intersections in Diatomics. J Phys Chem Lett 2015; 6:348-54. [PMID: 26261946 DOI: 10.1021/jz502468d] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nonadiabatic effects are ubiquitous in physics, chemistry, and biology. They are strongly amplified by conical intersections (CIs), which are degeneracies between electronic states of triatomic or larger molecules. A few years ago it was revealed that CIs in molecular systems can be formed by laser light, even in diatomics. Because of the prevailing strong nonadiabatic couplings, the existence of such laser-induced conical intersections (LICIs) may considerably change the dynamical behavior of molecular systems. By analyzing the photodissociation process of the D2+ molecule carefully, we found a robust effect in the angular distribution of the photofragments that serves as a direct signature of the LICI, providing undoubted evidence of its existence.
Collapse
Affiliation(s)
- G J Halász
- †Department of Information Technology, University of Debrecen, P.O. Box 12, H-4010 Debrecen, Hungary
| | - Á Vibók
- ‡Department of Theoretical Physics, University of Debrecen, P.O. Box 5, H-4010 Debrecen, Hungary
| | - L S Cederbaum
- §Theoretische Chemie, Physikalish-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| |
Collapse
|
20
|
Halász GJ, Csehi A, Vibók Á, Cederbaum LS. Influence of Light-Induced Conical Intersection on the Photodissociation Dynamics of D2+ Starting from Individual Vibrational Levels. J Phys Chem A 2014; 118:11908-15. [DOI: 10.1021/jp504889e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gábor J. Halász
- Department
of Information Technology, University of Debrecen, P.O. Box 12, H-4010 Debrecen, Hungary
| | - András Csehi
- Department
of Theoretical Physics, University of Debrecen, P.O. Box 5, H-4010 Debrecen, Hungary
| | - Ágnes Vibók
- Department
of Theoretical Physics, University of Debrecen, P.O. Box 5, H-4010 Debrecen, Hungary
| | - Lorenz S. Cederbaum
- Theoretische
Chemie, Physikalish-Chemisches Institut, Universität Heidelberg, H-69120 Heidelberg, Germany
| |
Collapse
|