1
|
Middleton DA. NMR studies of amyloid interactions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:63-96. [PMID: 39645351 DOI: 10.1016/j.pnmrs.2024.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 12/09/2024]
Abstract
Amyloid fibrils are insoluble, fibrous nanostructures that accumulate extracellularly in biological tissue during the progression of several human disorders, including Alzheimer's disease (AD) and type 2 diabetes. Fibrils are assembled from protein monomers via the transient formation of soluble, cytotoxic oligomers, and have a common molecular architecture consisting of a spinal core of hydrogen-bonded protein β-strands. For the past 25 years, NMR spectroscopy has been at the forefront of research into the structure and assembly mechanisms of amyloid aggregates. Until the recent boom in fibril structure analysis by cryo-electron microscopy, solid-state NMR was unrivalled in its ability to provide atomic-level models of amyloid fibril architecture. Solution-state NMR has also provided complementary information on the early stages in the amyloid assembly mechanism. Now, both NMR modalities are proving to be valuable in unravelling the complex interactions between amyloid species and a diverse range of physiological metal ions, molecules and surfaces that influence the assembly pathway, kinetics, morphology and clearance in vivo. Here, an overview is presented of the main applications of solid-state and solution-state NMR for studying the interactions between amyloid proteins and biomembranes, glycosaminoglycan polysaccharides, metal ions, polyphenols, synthetic therapeutics and diagnostics. Key NMR methodology is reviewed along with examples of how to overcome the challenges of detecting interactions with aggregating proteins. The review heralds this new role for NMR in providing a comprehensive and pathologically-relevant view of the interactions between protein and non-protein components of amyloid. Coverage of both solid- and solution-state NMR methods and applications herein will be informative and valuable to the broad communities that are interested in amyloid proteins.
Collapse
Affiliation(s)
- David A Middleton
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom.
| |
Collapse
|
2
|
Hacisuleyman A, Erman B. Fine tuning rigid body docking results using the Dreiding force field: A computational study of 36 known nanobody-protein complexes. Proteins 2023; 91:1417-1426. [PMID: 37232507 DOI: 10.1002/prot.26529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
This paper aims to understand the binding strategies of a nanobody-protein pair by studying known complexes. Rigid body protein-ligand docking programs produce several complexes, called decoys, which are good candidates with high scores of shape complementarity, electrostatic interactions, desolvation, buried surface area, and Lennard-Jones potentials. However, the decoy that corresponds to the native structure is not known. We studied 36 nanobody-protein complexes from the single domain antibody database, sd-Ab DB, http://www.sdab-db.ca/. For each structure, a large number of decoys are generated using the Fast Fourier Transform algorithm of the software ZDOCK. The decoys were ranked according to their target protein-nanobody interaction energies, calculated by using the Dreiding Force Field, with rank 1 having the lowest interaction energy. Out of 36 protein data bank (PDB) structures, 25 true structures were predicted as rank 1. Eleven of the remaining structures required Ångstrom size rigid body translations of the nanobody relative to the protein to match the given PDB structure. After the translation, the Dreiding interaction (DI) energies of all complexes decreased and became rank 1. In one case, rigid body rotations as well as translations of the nanobody were required for matching the crystal structure. We used a Monte Carlo algorithm that randomly translates and rotates the nanobody of a decoy and calculates the DI energy. Results show that rigid body translations and the DI energy are sufficient for determining the correct binding location and pose of ZDOCK created decoys. A survey of the sd-Ab DB showed that each nanobody makes at least one salt bridge with its partner protein, indicating that salt bridge formation is an essential strategy in nanobody-protein recognition. Based on the analysis of the 36 crystal structures and evidence from existing literature, we propose a set of principles that could be used in the design of nanobodies.
Collapse
Affiliation(s)
- Aysima Hacisuleyman
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Burak Erman
- Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| |
Collapse
|
3
|
Chen YL, Xie XX, Zheng P, Zhu C, Ma H, Khalid Z, Xie YJ, Dang YZ, Ye Y, Sheng N, Zhong N, Lei WH, Zhang C, Zhang LJ, Jin T, Cao MJ. Selection, identification and crystal structure of shark-derived single-domain antibodies against a green fluorescent protein. Int J Biol Macromol 2023; 247:125852. [PMID: 37460076 DOI: 10.1016/j.ijbiomac.2023.125852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Shark variable domain of new antigen receptors (VNARs) are the smallest naturally occurring binding domains with properties of low complexity, small size, cytoplasmic expression, and ease of engineering. Green fluorescent protein (GFP) molecules have been analyzed in conventional microscopy, but their spectral characteristics preclude their use in techniques offering substantially higher resolution. Besides, the GFP molecules can be quenched in acidic environment, which makes it necessary to develop anti-GFP antibody to solve these problems. In view of the diverse applications of GFP and unique physicochemical features of VNAR, the present study aims to generate VNARs against GFP. Here, we identified 36 VNARs targeting eCGP123, an extremely stable GFP, by phage display from three immunized sharks. These VNARs bound to eCGP123 with affinity constant KD values ranging from 6.76 to 605 nM. Among them, two lead VNARs named aGFP-14 and aGFP-15 with nanomolar eCGP123-binding affinity were selected for in-depth characterization. aGFP-14 and aGFP-15 recognized similar epitopes on eCGP123. X-ray crystallography studies clarified the mechanism by which aGFP14 interacts with eCGP123. aGFP-14 also showed cross-reaction with EGFP, with KD values of 47.2 nM. Finally, immunostaining analyses demonstrated that aGFP-14 was able to bind effectively to the EGFP expressed in both cultured cells and mouse brain tissues, and can be used as a fluorescence amplifier for EGFP. Our research demonstrates a feasible idea for the screening and production of shark-derived VNARs. The two high-affinity VNARs developed in the study contribute to the diversity of GFP sdAbs and may enhance the applications of GFP.
Collapse
Affiliation(s)
- Yu-Lei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xin-Xin Xie
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Peiyi Zheng
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230007, China
| | - Chenchen Zhu
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230007, China
| | - Huan Ma
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230007, China
| | - Zunera Khalid
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230007, China
| | - Yang-Jie Xie
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Yi-Zhao Dang
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Yaxin Ye
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Nengyin Sheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ning Zhong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Wen-Hui Lei
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | | | - Ling-Jing Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Tengchuan Jin
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230007, China.
| | - Min-Jie Cao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| |
Collapse
|
4
|
Li Q, Zhang F, Lu Y, Hu H, Wang J, Guo C, Deng Q, Liao C, Wu Q, Hu T, Chen Z, Lu J. Highly potent multivalent VHH antibodies against Chikungunya isolated from an alpaca naïve phage display library. J Nanobiotechnology 2022; 20:231. [PMID: 35568912 PMCID: PMC9107221 DOI: 10.1186/s12951-022-01417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/07/2022] [Indexed: 11/12/2022] Open
Abstract
Background Chikungunya virus (CHIKV) is a re-emerged mosquito-borne alphavirus that can cause musculoskeletal diseases, imposing a substantial threat to public health globally. High-affinity antibodies are need for diagnosis and treatment of CHIKV infections. As a potential diagnostic and therapeutic agent, the multivalent VHH antibodies is a promising tookit in nanomedicine. Here, we developed potent multivalent VHH antibodies from an alpaca naïve phage display library targeting the E2 glycoprotein of the CHIKV virus. Results In the present study, we generated 20 VHH antibodies using a naïve phage display library for binders to the CHIKV E2 glycoprotein. Of these, multivalent VHH antibodies Nb-2E8 and Nb-3C5 had specific high-affinity binding to E2 protein within the nanomolar range. The equilibrium dissociation constant (KD) was between 2.59–20.7 nM, which was 100-fold stronger than the monovalent antibodies’ affinity. Moreover, epitope mapping showed that Nb-2E8 and Nb-3C5 recognized different linear epitopes located on the E2 glycoprotein domain C and A, respectively. A facile protocol of sandwich ELISA was established using BiNb-2E8 as a capture antibody and HRP-conjugated BiNb-3C5 as a detection antibody. A good linear correlation was achieved between the OD450 value and the E2 protein concentration in the 5–1000 ng/mL range (r = 0.9864, P < 0.0001), indicating its potential for quantitative detection of the E2 protein. Conclusions Compared to monovalent antibodies, multivalent VHH antibodies Nb-2E8 and Nb-3C5 showed high affinity and are potential candidates for diagnostic applications to better detect CHIKV virions in sera. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01417-6.
Collapse
Affiliation(s)
- Qianlin Li
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.,NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Fuqiang Zhang
- Center for Disease Control and Prevention of Southern Theater Command, Guangzhou, 510060, People's Republic of China
| | - Yi Lu
- Health Effects Institute, Boston, 02169, USA
| | - Huan Hu
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.,NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Jin Wang
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.,NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Cheng Guo
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Qiang Deng
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.,NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Conghui Liao
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.,NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Qin Wu
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.,NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Tingsong Hu
- Center for Disease Control and Prevention of Southern Theater Command, Guangzhou, 510060, People's Republic of China.
| | - Zeliang Chen
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China. .,NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China. .,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China.
| | - Jiahai Lu
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China. .,NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China. .,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Yao G, Huang C, Ji F, Ren J, Luo X, Zang B, Jia L. Nanobody as solubilization chaperone for the expression and purification of inclusion-body prone proteins. Chem Commun (Camb) 2022; 58:2898-2901. [DOI: 10.1039/d1cc07105j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report a new protocol for enhancing the soluble expression of inclusion body (IB)-prone proteins in E. coli using nanobody (Nb) as a molecular-specific chaperone. The specific intracellular binding...
Collapse
|
6
|
Single Molecule Characterization of Amyloid Oligomers. Molecules 2021; 26:molecules26040948. [PMID: 33670093 PMCID: PMC7916856 DOI: 10.3390/molecules26040948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
The misfolding and aggregation of polypeptide chains into β-sheet-rich amyloid fibrils is associated with a wide range of neurodegenerative diseases. Growing evidence indicates that the oligomeric intermediates populated in the early stages of amyloid formation rather than the mature fibrils are responsible for the cytotoxicity and pathology and are potentially therapeutic targets. However, due to the low-populated, transient, and heterogeneous nature of amyloid oligomers, they are hard to characterize by conventional bulk methods. The development of single molecule approaches provides a powerful toolkit for investigating these oligomeric intermediates as well as the complex process of amyloid aggregation at molecular resolution. In this review, we present an overview of recent progress in characterizing the oligomerization of amyloid proteins by single molecule fluorescence techniques, including single-molecule Förster resonance energy transfer (smFRET), fluorescence correlation spectroscopy (FCS), single-molecule photobleaching and super-resolution optical imaging. We discuss how these techniques have been applied to investigate the different aspects of amyloid oligomers and facilitate understanding of the mechanism of amyloid aggregation.
Collapse
|
7
|
Hacisuleyman A, Erkip A, Erman B, Erman B. Synchronous and Asynchronous Response in Dynamically Perturbed Proteins. J Phys Chem B 2021; 125:729-739. [PMID: 33464898 DOI: 10.1021/acs.jpcb.0c08409] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We present a dynamic perturbation-response model of proteins based on the Gaussian Network Model, where a residue is perturbed periodically, and the dynamic response of other residues is determined. The model shows that periodic perturbation causes a synchronous response in phase with the perturbation and an asynchronous response that is out of phase. The asynchronous component results from the viscous effects of the solvent and other dispersive factors in the system. The model is based on the solution of the Langevin equation in the presence of solvent, noise, and perturbation. We introduce several novel ideas: The concept of storage and loss compliance of the protein and their dependence on structure and frequency; the amount of work lost and the residues that contribute significantly to the lost work; new dynamic correlations that result from perturbation; causality, that is, the response of j when i is perturbed is not equal to the response of i when j is perturbed. As examples, we study two systems, namely, bovine rhodopsin and the class of nanobodies. The general results obtained are (i) synchronous and asynchronous correlations depend strongly on the frequency of perturbation, their magnitude decreases with increasing frequency, (ii) time-delayed mean-squared fluctuations of residues have only synchronous components. Asynchronicity is present only in cross correlations, that is, correlations between different residues, (iii) perturbation of loop residues leads to a large dissipation of work, (iv) correlations satisfy the hypothesis of pre-existing pathways according to which information transfer by perturbation rides on already existing equilibrium correlations in the system, (v) dynamic perturbation can introduce a selective response in the system, where the perturbation of each residue excites different sets of responding residues, and (vi) it is possible to identify nondissipative residues whose perturbation does not lead to dissipation in the protein. Despite its simplicity, the model explains several features of allosteric manipulation.
Collapse
Affiliation(s)
- Aysima Hacisuleyman
- Department of Chemical and Biological Engineering, Koc University, Sariyer, Istanbul 34450, Turkey
| | - Albert Erkip
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Batu Erman
- Department of Molecular Biology and Genetics, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Burak Erman
- Department of Chemical and Biological Engineering, Koc University, Sariyer, Istanbul 34450, Turkey
| |
Collapse
|
8
|
Uhlemann EME, Yu CH, Patry J, Dolgova N, Lutsenko S, Muyldermans S, Dmitriev OY. Nanobodies against the metal binding domains of ATP7B as tools to study copper transport in the cell. Metallomics 2020; 12:1941-1950. [PMID: 33094790 DOI: 10.1039/d0mt00191k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanobodies are genetically engineered single domain antibodies derived from the unusual heavy-chain only antibodies found in llamas and camels. The small size of the nanobodies and flexible selection schemes make them uniquely versatile tools for protein biochemistry and cell biology. We have developed a panel of nanobodies against the metal binding domains of the human copper transporter ATP7B, a multidomain membrane protein with a complex regulation of enzymatic activity and intracellular localization. To enable the use of the nanobodies as tools to investigate copper transport in the cell, we characterized their binding sites and affinity by isothermal titration calorimetry and NMR. We have identified nanobodies against each of the first four metal binding domains of ATP7B, with a wide affinity range, as evidenced by dissociation constants from below 10-9 to 10-6 M. We found both the inhibitory and activating nanobodies among those tested. The diverse properties of the nanobodies make the panel useful for the structural studies of ATP7B, immunoaffinity purification of the protein, modulation of its activity in the cell, protein dynamics studies, and as mimics of copper chaperone ATOX1, the natural interaction partner of ATP7B.
Collapse
Affiliation(s)
- Eva-Maria E Uhlemann
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.
| | | | | | | | | | | | | |
Collapse
|
9
|
Yu S, Xiong G, Zhao S, Tang Y, Tang H, Wang K, Liu H, Lan K, Bi X, Duan S. Nanobodies targeting immune checkpoint molecules for tumor immunotherapy and immunoimaging (Review). Int J Mol Med 2020; 47:444-454. [PMID: 33416134 PMCID: PMC7797440 DOI: 10.3892/ijmm.2020.4817] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
The immune checkpoint blockade is an effective strategy to enhance the anti-tumor T cell effector activity, thus becoming one of the most promising immunotherapeutic strategies in the history of cancer treatment. Several immune checkpoint inhibitor have been approved by the FDA, such as anti-CTLA-4, anti-PD-1, anti-PD-L1 monoclonal antibodies. Most tumor patients benefitted from these antibodies, but some of the patients did not respond to them. To increase the effectiveness of immunotherapy, including immune checkpoint blockade therapies, miniaturization of antibodies has been introduced. A single-domain antibody, also known as nanobody, is an attractive reagent for immunotherapy and immunoimaging thanks to its unique structural characteristic consisting of a variable region of a single heavy chain antibody. This structure confers to the nanobody a light molecular weight, making it smaller than conventional antibodies, although remaining able to bind to a specific antigen. Therefore, this review summarizes the production of nanobodies targeting immune checkpoint molecules and the application of nanobodies targeting immune checkpoint molecules in immunotherapy and immunoimaging.
Collapse
Affiliation(s)
- Sheng Yu
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Gui Xiong
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Shimei Zhao
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Yanbo Tang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545001, P.R. China
| | - Hua Tang
- Department of Clinical Laboratory, The Second Clinical Medical College of Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545006, P.R. China
| | - Kaili Wang
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Hongjing Liu
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Ke Lan
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Xiongjie Bi
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545001, P.R. China
| | - Siliang Duan
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| |
Collapse
|
10
|
Chaari A, Abdellatif B, Nabi F, Khan RH. Date palm (Phoenix dactylifera L.) fruit's polyphenols as potential inhibitors for human amylin fibril formation and toxicity in type 2 diabetes. Int J Biol Macromol 2020; 164:1794-1808. [PMID: 32795580 DOI: 10.1016/j.ijbiomac.2020.08.080] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/28/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND β-Cell death is the key feature of type 2 diabetes mellitus (T2DM). The misfolding of human Islet Amyloid Polypeptide (hIAPP) is regarded as one of the causative factors of T2DM. Recent studies suggested that a diet based on date fruits presents various health benefits, as these fruits are naturally enriched in plant polyphenols. METHOD In this study, we used a broad biophysical approach, using cell biology techniques and bioinformatic tools, to demonstrate that various polyphenols from date palm (Phoenix dactylifera L.) fruit significantly inhibited hIAPP aggregation and cytotoxicity. RESULT Our results suggest that all of the polyphenols showed inhibitory effects, albeit varied, on the formation of toxic hIAPP amyloids. Correlation between cell viability assay, permeabilization of synthetic phospholipid vesicles tests, and ANS florescence measurements, revealed that both classes of polyphenols protected INS-1E cells from the toxicity of amylin aggregates. Docking results showed that the used polyphenols physically interacted with both hIAPP amyloidogenic region (residues Ser20-Ser29) and the non-amyloidogenic regions via hydrophobic and hydrogen interactions, thus reducing aggregation levels. CONCLUSION These findings highlight the benefits of consuming dates and the great potential of its polyphenols as a potential therapy for the prevention and treatment of T2DM as well as for many other amyloid-related diseases.
Collapse
Affiliation(s)
- Ali Chaari
- Premedical Division, Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar.
| | - Basma Abdellatif
- Premedical Division, Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, India
| |
Collapse
|
11
|
Hacisuleyman A, Erman B. ModiBodies: A computational method for modifying nanobodies in nanobody-antigen complexes to improve binding affinity and specificity. J Biol Phys 2020; 46:189-208. [PMID: 32418062 DOI: 10.1007/s10867-020-09548-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/28/2020] [Indexed: 11/26/2022] Open
Abstract
Nanobodies are special derivatives of antibodies, which consist of single domain fragments. They have become of considerable interest as next-generation biotechnological tools for antigen recognition. They can be easily engineered due to their high stability and compact size. Nanobodies have three complementarity-determining regions, CDRs, which are enlarged to provide a similar binding surface to that of human immunoglobulins. Here, we propose a benchmark testing algorithm that uses 3D structures of already existing protein-nanobody complexes as initial structures followed by successive mutations on the CDR domains. The aim is to find optimum binding amino acids for hypervariable residues of CDRs. We use molecular dynamics simulations to compare the binding energies of the resulting complexes with that of the known complex and accept those that are improved by mutations. We use the MDM4-VH9 complex, (PDB id 2VYR), fructose-bisphosphate aldolase from Trypanosoma congolense (PDB id 5O0W) and human lysozyme (PDB id 4I0C) as benchmark complexes. By using this algorithm, better binding nanobodies can be generated in a short amount of time. We suggest that this method can complement existing immune and synthetic library-based methods, without a need for extensive experimentation or large libraries.
Collapse
Affiliation(s)
- Aysima Hacisuleyman
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey.
| | - Burak Erman
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| |
Collapse
|
12
|
AlBab ND, Hameed MK, Maresova A, Ahmady IM, Arooj M, Han C, Workie B, Chehimi M, Mohamed AA. Inhibition of amyloid fibrillation, enzymatic degradation and cytotoxicity of insulin at carboxyl tailored gold-aryl nanoparticles surface. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Dumoulin M. Reflections on professor Sir Christopher M. Dobson (1949-2019). Biophys Rev 2020; 12:13-18. [PMID: 31981089 DOI: 10.1007/s12551-020-00612-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2020] [Indexed: 12/11/2022] Open
Abstract
I have been invited to summarize my career with an emphasis on the time I spent in the laboratory of Prof Christopher M. Dobson, who sadly passed away on September 8th 2019, and to describe his role as a mentor. I accepted this slightly unusual request as it constitutes a unique way for me to express my deep gratitude and admiration for Chris.
Collapse
Affiliation(s)
- Mireille Dumoulin
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBios, Departement of Life Sciences, University of Liege, Liege, Belgium.
| |
Collapse
|
14
|
Majid N, Siddiqi MK, Khan AN, Shabnam S, Malik S, Alam A, Uversky VN, Khan RH. Biophysical Elucidation of Amyloid Fibrillation Inhibition and Prevention of Secondary Nucleation by Cholic Acid: An Unexplored Function of Cholic Acid. ACS Chem Neurosci 2019; 10:4704-4715. [PMID: 31661243 DOI: 10.1021/acschemneuro.9b00482] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Protein misfolding and its deviant self-assembly to converge into amyloid fibrils is associated with the perturbation of cellular functions and thus with debilitating neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, etc. A great deal of research has already been carried out to discover a potential amyloid inhibitor that can slow down, prevent, or remodel toxic amyloids. In the present study with the help of a combination of biophysical, imaging, and computational techniques, we investigated the mechanism of interaction of cholic acid (CA), a primary bile acid, with human insulin and Aβ-42 and found CA to be effective in inhibiting amyloid formation. From ThT data, we inferred that CA encumbers amyloid fibrillation up to 90% chiefly by targeting elongation of fibrils with an insignificant effect on lag time, while in the case of Aβ-42, CA stabilizes the peptide in its native state preventing its fibrillation. Strikingly upon adding initially at the secondary nucleation stage, CA also detained the progression/growth of insulin fibrils. CA is unable to prevent the conformational changes completely during fibrillation but tends to resist and maintain an α helical structure up to a significant extent at a primary nucleation stage while reducing the β sheet rich content at the secondary nucleation stage. Moreover, CA treated samples exhibited reduced cytotoxicity and different morphology. Furthermore, the results obtained after molecular docking indicated that CA is interacting with insulin via hydrogen bonds. For future research, this study can be considered as preliminary research for the development of CA, a metabolite of our body, as a potential therapeutic agent against Alzheimer's disease without even stimulating the immunological responses.
Collapse
Affiliation(s)
- Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | | | - Asra Nasir Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Shabnam Shabnam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Aftab Alam
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Vladimir N. Uversky
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Moscow 142290, Russia
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
15
|
Scafi M, Valleix S, Benyamine A, Jean E, Harlé JR, Rossi P, Daniel L, Schleinitz N, Granel B. L’amylose à lysozyme. Rev Med Interne 2019; 40:323-329. [DOI: 10.1016/j.revmed.2018.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/29/2018] [Indexed: 11/25/2022]
|
16
|
Abstract
Single-domain antibodies (sdAbs), the autonomous variable domains of heavy chain-only antibodies produced naturally by camelid ungulates and cartilaginous fishes, have evolved to bind antigen using only three complementarity-determining region (CDR) loops rather than the six present in conventional VH:VL antibodies. It has been suggested, based on limited evidence, that sdAbs may adopt paratope structures that predispose them to preferential recognition of recessed protein epitopes, but poor or non-recognition of protuberant epitopes and small molecules. Here, we comprehensively surveyed the evidence in support of this hypothesis. We found some support for a global structural difference in the paratope shapes of sdAbs compared with those of conventional antibodies: sdAb paratopes have smaller molecular surface areas and diameters, more commonly have non-canonical CDR1 and CDR2 structures, and have elongated CDR3 length distributions, but have similar amino acid compositions and are no more extended (interatomic distance measured from CDR base to tip) than conventional antibody paratopes. Comparison of X-ray crystal structures of sdAbs and conventional antibodies in complex with cognate antigens showed that sdAbs and conventional antibodies bury similar solvent-exposed surface areas on proteins and form similar types of non-covalent interactions, although these are more concentrated in the compact sdAb paratope. Thus, sdAbs likely have privileged access to distinct antigenic regions on proteins, but only owing to their small molecular size and not to general differences in molecular recognition mechanism. The evidence surrounding the purported inability of sdAbs to bind small molecules was less clear. The available data provide a structural framework for understanding the evolutionary emergence and function of autonomous heavy chain-only antibodies.
Collapse
Affiliation(s)
- Kevin A Henry
- a Human Health Therapeutics Research Centre , National Research Council Canada , Ottawa , Ontario , Canada
| | - C Roger MacKenzie
- a Human Health Therapeutics Research Centre , National Research Council Canada , Ottawa , Ontario , Canada.,b School of Environmental Sciences , University of Guelph , Guelph , Ontario , Canada
| |
Collapse
|
17
|
Siddiqi MK, Alam P, Iqbal T, Majid N, Malik S, Nusrat S, Alam A, Ajmal MR, Uversky VN, Khan RH. Elucidating the Inhibitory Potential of Designed Peptides Against Amyloid Fibrillation and Amyloid Associated Cytotoxicity. Front Chem 2018; 6:311. [PMID: 30123793 PMCID: PMC6085999 DOI: 10.3389/fchem.2018.00311] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 07/09/2018] [Indexed: 01/09/2023] Open
Abstract
Inhibition of fibrillation process and disaggregation of mature fibrils using small peptide are the promising remedial strategies to combat neurodegenerative diseases. However, designing peptide-based drugs to target β-sheet-rich amyloid has been a major challenge. The current work describes, for the first time, the amyloid inhibitory potential of the two short peptides (selected on the basis of predisposition of their amino acid residues toward β-sheet formation) using combination of biophysical, imaging methods, and docking approaches. Results showed that peptides employed different mechanisms to inhibit the amyloid fibrillation. Furthermore, they were also effective in blocking the amyloid fibrillation pathway. In contrary to the insulin fibrillar mesh, significantly less fibrillar species appeared in the presence of peptides, as confirmed by transmission electron microscopy. Circular dichroism analysis indicated that although peptides did not stabilize the native state of insulin, they inhibited amyloid aggregation by reducing the formation of β-sheet rich structures. Hemolytic assay revealed the non-hemolytic nature of the species formed when insulin was co-incubated with the peptides. Therefore, despite the inherent potential to form β-sheet structure, these peptides inhibited the amyloid formation and potentially can be used as therapeutics for the treatment of amyloid-related diseases.
Collapse
Affiliation(s)
- Mohammad K Siddiqi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Tabish Iqbal
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Saima Nusrat
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Aftab Alam
- Center for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Mohd R Ajmal
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Vladimir N Uversky
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Moscow, Russia.,Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Rizwan H Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
18
|
The structural basis of nanobody unfolding reversibility and thermoresistance. Sci Rep 2018; 8:7934. [PMID: 29784954 PMCID: PMC5962586 DOI: 10.1038/s41598-018-26338-z] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/10/2018] [Indexed: 12/17/2022] Open
Abstract
Nanobodies represent the variable binding domain of camelid heavy-chain antibodies and are employed in a rapidly growing range of applications in biotechnology and biomedicine. Their success is based on unique properties including their reported ability to reversibly refold after heat-induced denaturation. This view, however, is contrasted by studies which involve irreversibly aggregating nanobodies, asking for a quantitative analysis that clearly defines nanobody thermoresistance and reveals the determinants of unfolding reversibility and aggregation propensity. By characterizing nearly 70 nanobodies, we show that irreversible aggregation does occur upon heat denaturation for the large majority of binders, potentially affecting application-relevant parameters like stability and immunogenicity. However, by deriving aggregation propensities from apparent melting temperatures, we show that an optional disulfide bond suppresses nanobody aggregation. This effect is further enhanced by increasing the length of a complementarity determining loop which, although expected to destabilize, contributes to nanobody stability. The effect of such variations depends on environmental conditions, however. Nanobodies with two disulfide bonds, for example, are prone to lose their functionality in the cytosol. Our study suggests strategies to engineer nanobodies that exhibit optimal performance parameters and gives insights into general mechanisms which evolved to prevent protein aggregation.
Collapse
|
19
|
Köhler M, Neff C, Perez C, Brunner C, Pardon E, Steyaert J, Schneider G, Locher KP, Zenobi R. Binding Specificities of Nanobody•Membrane Protein Complexes Obtained from Chemical Cross-Linking and High-Mass MALDI Mass Spectrometry. Anal Chem 2018; 90:5306-5313. [PMID: 29562137 DOI: 10.1021/acs.analchem.8b00236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The application of nanobodies as binding partners for structure stabilization in protein X-ray crystallography is taking an increasingly important role in structural biology. However, the addition of nanobodies to the crystallization matrices might complicate the optimization of the crystallization process, which is why analytical techniques to screen and characterize suitable nanobodies are useful. Here, we show how chemical cross-linking combined with high-mass matrix-assisted laser/desorption ionization mass spectrometry can be employed as a fast screening technique to determine binding specificities of intact nanobody•membrane protein complexes. Titration series were performed to rank the binding affinity of the interacting nanobodies. To validate the mass spectrometry data, microscale thermophoresis was used, which showed binding affinities of the stronger binding nanobodies, in the low μM range. In addition, mass spectrometry provides access to the stoichiometry of the complexes formed, which enables the definition of conditions under which homogeneous complex states are present in solution. Conformational changes of the membrane protein were investigated and competitive binding experiments were used to delimit the interaction sites of the nanobodies, which is in agreement with crystal structures obtained. The results show the diversity of specifically binding nanobodies in terms of binding affinity, stoichiometry, and binding site, which illustrates the need for an analytical screening approach.
Collapse
Affiliation(s)
- Martin Köhler
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 3 , 8093 Zurich , Switzerland
| | - Christoph Neff
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 3 , 8093 Zurich , Switzerland
| | - Camilo Perez
- Institute of Molecular Biology and Biophysics , ETH Zürich , Otto-Stern-Weg 5 , 8093 Zurich , Switzerland
| | - Cyrill Brunner
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 3 , 8093 Zurich , Switzerland
| | | | | | - Gisbert Schneider
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 3 , 8093 Zurich , Switzerland
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics , ETH Zürich , Otto-Stern-Weg 5 , 8093 Zurich , Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 3 , 8093 Zurich , Switzerland
| |
Collapse
|
20
|
Siddiqi MK, Alam P, Chaturvedi SK, Khan MV, Nusrat S, Malik S, Khan RH. Capreomycin inhibits the initiation of amyloid fibrillation and suppresses amyloid induced cell toxicity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:549-557. [PMID: 29496560 DOI: 10.1016/j.bbapap.2018.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/11/2018] [Accepted: 02/23/2018] [Indexed: 12/20/2022]
Abstract
Protein aggregation and amyloid fibrillation are responsible for several serious pathological conditions (like type II diabetes, Alzheimer's and Parkinson's diseases etc.) and protein drugs ineffectiveness. Therefore, a molecule that can inhibit the amyloid fibrillation and potentially clear amyloid fibrils is of great therapeutic value. In this manuscript, we investigated the antiamyloidogenic, fibril disaggregating, as well as cell protective effect of an anti-tuberculosis drug, Capreomycin (CN). Aggregation kinetics data, as monitored by ThT fluorescence, inferred that CN retards the insulin amyloid fibrillation by primarily targeting the fibril elongation step with little effect on lag time. Increasing the dose of CN boosted its inhibitory potency. Strikingly, CN arrested the growth of fibrils when added during the elongation phase, and disaggregated mature insulin fibrils. Our Circular Dichroism (CD) results showed that, although CN is not able to maintain the alpha helical structure of protein during fibrillation, reduces the formation of beta sheet rich structure. Furthermore, Dynamic Light Scattering (DLS) and Transmission Electronic Microscopy (TEM) analysis confirmed that CN treated samples exhibited different size distribution and morphology, respectively. In addition, molecular docking results revealed that CN interacts with insulin through hydrophobic interactions as well as hydrogen bonding, and the Hemolytic assay confirmed the non-hemolytic activity of CN on human RBCs. For future research, this study may assist in the rational designing of molecules against amyloid formation.
Collapse
Affiliation(s)
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Sumit Kumar Chaturvedi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohsin Vahid Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Saima Nusrat
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| |
Collapse
|
21
|
Schumacher D, Helma J, Schneider AFL, Leonhardt H, Hackenberger CPR. Nanobodies: Chemical Functionalization Strategies and Intracellular Applications. Angew Chem Int Ed Engl 2018; 57:2314-2333. [PMID: 28913971 PMCID: PMC5838514 DOI: 10.1002/anie.201708459] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Indexed: 01/12/2023]
Abstract
Nanobodies can be seen as next-generation tools for the recognition and modulation of antigens that are inaccessible to conventional antibodies. Due to their compact structure and high stability, nanobodies see frequent usage in basic research, and their chemical functionalization opens the way towards promising diagnostic and therapeutic applications. In this Review, central aspects of nanobody functionalization are presented, together with selected applications. While early conjugation strategies relied on the random modification of natural amino acids, more recent studies have focused on the site-specific attachment of functional moieties. Such techniques include chemoenzymatic approaches, expressed protein ligation, and amber suppression in combination with bioorthogonal modification strategies. Recent applications range from sophisticated imaging and mass spectrometry to the delivery of nanobodies into living cells for the visualization and manipulation of intracellular antigens.
Collapse
Affiliation(s)
- Dominik Schumacher
- Chemical Biology, Leibniz-Forschungsinstitut für Molekulare, Pharmakologie and Department of ChemistryHumboldt-Universität zu BerlinBerlinGermany
- Department of Biology IILudwig Maximilians Universität München und Center for Integrated Protein Science MunichMartinsriedGermany
| | - Jonas Helma
- Department of Biology IILudwig Maximilians Universität München und Center for Integrated Protein Science MunichMartinsriedGermany
| | - Anselm F. L. Schneider
- Chemical Biology, Leibniz-Forschungsinstitut für Molekulare, Pharmakologie and Department of ChemistryHumboldt-Universität zu BerlinBerlinGermany
| | - Heinrich Leonhardt
- Department of Biology IILudwig Maximilians Universität München und Center for Integrated Protein Science MunichMartinsriedGermany
| | | |
Collapse
|
22
|
Schumacher D, Helma J, Schneider AFL, Leonhardt H, Hackenberger CPR. Nanobodys: Strategien zur chemischen Funktionalisierung und intrazelluläre Anwendungen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201708459] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dominik Schumacher
- Chemische Biologie, Leibniz-Forschungsinstitut für Molekulare Pharmakologie; Institut für Chemie; Humboldt-Universität zu Berlin; Berlin Deutschland
- Department Biologie II; Ludwig Maximilians Universität München und Center for Integrated Protein Science Munich; Martinsried Deutschland
| | - Jonas Helma
- Department Biologie II; Ludwig Maximilians Universität München und Center for Integrated Protein Science Munich; Martinsried Deutschland
| | - Anselm F. L. Schneider
- Chemische Biologie, Leibniz-Forschungsinstitut für Molekulare Pharmakologie; Institut für Chemie; Humboldt-Universität zu Berlin; Berlin Deutschland
| | - Heinrich Leonhardt
- Department Biologie II; Ludwig Maximilians Universität München und Center for Integrated Protein Science Munich; Martinsried Deutschland
| | - Christian P. R. Hackenberger
- Chemische Biologie, Leibniz-Forschungsinstitut für Molekulare Pharmakologie; Institut für Chemie; Humboldt-Universität zu Berlin; Berlin Deutschland
| |
Collapse
|
23
|
Ahn M, Hagan CL, Bernardo-Gancedo A, De Genst E, Newby FN, Christodoulou J, Dhulesia A, Dumoulin M, Robinson CV, Dobson CM, Kumita JR. The Significance of the Location of Mutations for the Native-State Dynamics of Human Lysozyme. Biophys J 2017; 111:2358-2367. [PMID: 27926837 PMCID: PMC5153563 DOI: 10.1016/j.bpj.2016.10.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/09/2016] [Accepted: 10/19/2016] [Indexed: 11/27/2022] Open
Abstract
The conversion of human lysozyme into amyloid fibrils is associated with a rare but fatal hereditary form of nonneuropathic systemic amyloidosis. The accumulation of large amounts of aggregated protein is thought to be initiated by the formation of transient intermediate species of disease-related lysozyme variants, essentially due to the loss of global cooperativity under physiologically relevant conditions. Interestingly, all five naturally occurring, amyloidogenic, single-point mutations are located in the β-domain of lysozyme, the region that is predominantly unfolded during the formation of the transient intermediate species. Given the lack of known naturally occurring, amyloidogenic, single-point mutations in the α-domain, we chose three specific mutations to address the effects that location may have on native-state dynamics, as studied by hydrogen-deuterium (HD) exchange experiments analyzed by NMR spectroscopy, and mass spectrometry. We compared the effect of a destabilizing α-domain mutation (I23A) with that of the well-characterized I59T β-domain variant. We also investigated the effect of a mutation that has minor effects on native-state stability at the domain interface (I56V) and compared it with that of a variant with similar stability within the C-helix (I89V). We show that when variants have similar reduced native-state stabilities, the location of the mutation (I23A versus I59T) is crucial to the native-state dynamics, with the α-domain mutation having a significantly lower ability to populate transient intermediate species under physiologically relevant conditions. Interestingly, the mutation at the interface (I56V) has a greater effect in facilitating the formation of transient intermediate species at elevated temperatures compared with the variants containing α-domain mutations, even though this mutation results in only minor changes to the native-state stability of lysozyme. These findings reveal that the location of specific mutations is an important factor in determining the native-state dynamical properties of human lysozyme in the context of its propensity to populate the aggregation-prone transient intermediate species associated with pathogenic amyloid formation.
Collapse
Affiliation(s)
- Minkoo Ahn
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Christine L Hagan
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Erwin De Genst
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Francisco N Newby
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London, United Kingdom
| | - Anne Dhulesia
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Mireille Dumoulin
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBios, Institute of Chemistry, University of Liege, Liege (Sart Tilman), Belgium
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom
| | | | - Janet R Kumita
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
24
|
Iljina M, Hong L, Horrocks MH, Ludtmann MH, Choi ML, Hughes CD, Ruggeri FS, Guilliams T, Buell AK, Lee JE, Gandhi S, Lee SF, Bryant CE, Vendruscolo M, Knowles TPJ, Dobson CM, De Genst E, Klenerman D. Nanobodies raised against monomeric ɑ-synuclein inhibit fibril formation and destabilize toxic oligomeric species. BMC Biol 2017; 15:57. [PMID: 28673288 PMCID: PMC5496350 DOI: 10.1186/s12915-017-0390-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/06/2017] [Indexed: 11/16/2022] Open
Abstract
Background The aggregation of the protein ɑ-synuclein (ɑS) underlies a range of increasingly common neurodegenerative disorders including Parkinson’s disease. One widely explored therapeutic strategy for these conditions is the use of antibodies to target aggregated ɑS, although a detailed molecular-level mechanism of the action of such species remains elusive. Here, we characterize ɑS aggregation in vitro in the presence of two ɑS-specific single-domain antibodies (nanobodies), NbSyn2 and NbSyn87, which bind to the highly accessible C-terminal region of ɑS. Results We show that both nanobodies inhibit the formation of ɑS fibrils. Furthermore, using single-molecule fluorescence techniques, we demonstrate that nanobody binding promotes a rapid conformational conversion from more stable oligomers to less stable oligomers of ɑS, leading to a dramatic reduction in oligomer-induced cellular toxicity. Conclusions The results indicate a novel mechanism by which diseases associated with protein aggregation can be inhibited, and suggest that NbSyn2 and NbSyn87 could have significant therapeutic potential. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0390-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marija Iljina
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Liu Hong
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.,Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing, 100084, China
| | - Mathew H Horrocks
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.,Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QR, UK
| | - Marthe H Ludtmann
- Department of Molecular Neuroscience, University College London, Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Minee L Choi
- Department of Molecular Neuroscience, University College London, Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Craig D Hughes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Francesco S Ruggeri
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Tim Guilliams
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.,Present address: Healx Ltd., St John's Innovation Centre, Cowley Road, Cambridge, CB4 0WS, UK
| | - Alexander K Buell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.,Present address: Institute of Physical Biology, University of Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Ji-Eun Lee
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Sonia Gandhi
- Department of Molecular Neuroscience, University College London, Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Steven F Lee
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Michele Vendruscolo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Erwin De Genst
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. .,Present address: Astra Zeneca, Innovative Medicines Discovery Sciences Unit 310, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK.
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
25
|
Synthesis of novel muramic acid derivatives and their interaction with lysozyme: Action of lysozyme revisited. J Colloid Interface Sci 2017; 498:395-404. [DOI: 10.1016/j.jcis.2017.03.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 12/16/2022]
|
26
|
Abstract
BACKGROUND Variable domains of camelid heavy-chain antibodies, commonly named nanobodies, have high biotechnological potential. In view of their broad range of applications in research, diagnostics and therapy, engineering their stability is of particular interest. One important aspect is the improvement of thermostability, because it can have immediate effects on conformational stability, protease resistance and aggregation propensity of the protein. METHODS We analyzed the sequences and thermostabilities of 78 purified nanobody binders. From this data, potentially stabilizing amino acid variations were identified and studied experimentally. RESULTS Some mutations improved the stability of nanobodies by up to 6.1°C, with an average of 2.3°C across eight modified nanobodies. The stabilizing mechanism involves an improvement of both conformational stability and aggregation behavior, explaining the variable degree of stabilization in individual molecules. In some instances, variations predicted to be stabilizing actually led to thermal destabilization of the proteins. The reasons for this contradiction between prediction and experiment were investigated. CONCLUSIONS The results reveal a mutational strategy to improve the biophysical behavior of nanobody binders and indicate a species-specificity of nanobody architecture. GENERAL SIGNIFICANCE This study illustrates the potential and limitations of engineering nanobody thermostability by merging sequence information with stability data, an aspect that is becoming increasingly important with the recent development of high-throughput biophysical methods.
Collapse
|
27
|
Alam P, Beg AZ, Siddiqi MK, Chaturvedi SK, Rajpoot RK, Ajmal MR, Zaman M, Abdelhameed AS, Khan RH. Ascorbic acid inhibits human insulin aggregation and protects against amyloid induced cytotoxicity. Arch Biochem Biophys 2017; 621:54-62. [DOI: 10.1016/j.abb.2017.04.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 03/22/2017] [Accepted: 04/10/2017] [Indexed: 12/28/2022]
|
28
|
Lucato CM, Lupton CJ, Halls ML, Ellisdon AM. Amyloidogenicity at a Distance: How Distal Protein Regions Modulate Aggregation in Disease. J Mol Biol 2017; 429:1289-1304. [PMID: 28342736 DOI: 10.1016/j.jmb.2017.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/12/2017] [Accepted: 03/14/2017] [Indexed: 12/14/2022]
Abstract
The misfolding of proteins to form amyloid is a key pathological feature of several progressive, and currently incurable, diseases. A mechanistic understanding of the pathway from soluble, native protein to insoluble amyloid is crucial for therapeutic design, and recent efforts have helped to elucidate the key molecular events that trigger protein misfolding. Generally, either global or local structural perturbations occur early in amyloidogenesis to expose aggregation-prone regions of the protein that can then self-associate to form toxic oligomers. Surprisingly, these initiating structural changes are often caused or influenced by protein regions distal to the classically amyloidogenic sequences. Understanding the importance of these distal regions in the pathogenic process has highlighted many remaining knowledge gaps regarding the precise molecular events that occur in classic aggregation pathways. In this review, we discuss how these distal regions can influence aggregation in disease and the recent technical and conceptual advances that have allowed this insight.
Collapse
Affiliation(s)
- Christina M Lucato
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Christopher J Lupton
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Andrew M Ellisdon
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
29
|
Dmitriev OY, Lutsenko S, Muyldermans S. Nanobodies as Probes for Protein Dynamics in Vitro and in Cells. J Biol Chem 2015; 291:3767-75. [PMID: 26677230 DOI: 10.1074/jbc.r115.679811] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nanobodies are the recombinant antigen-recognizing domains of the minimalistic heavy chain-only antibodies produced by camels and llamas. Nanobodies can be easily generated, effectively optimized, and variously derivatized with standard molecular biology protocols. These properties have triggered the recent explosion in the nanobody use in basic and clinical research. This review focuses on the emerging use of nanobodies for understanding and monitoring protein dynamics on the scales ranging from isolated protein domains to live cells, from nanoseconds to hours. The small size and high solubility make nanobodies uniquely suited for studying protein dynamics by NMR. The ability to produce conformation-sensitive nanobodies in cells enables studies that link structural dynamics of a target protein to its cellular behavior. The link between in vitro and in-cell dynamics, afforded by nanobodies, brings the analysis of such important events as receptor signaling, membrane protein trafficking, and protein interactions to the next level of resolution.
Collapse
Affiliation(s)
- Oleg Y Dmitriev
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada,
| | - Svetlana Lutsenko
- the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and
| | - Serge Muyldermans
- the Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| |
Collapse
|
30
|
De Genst E, Chirgadze DY, Klein FAC, Butler DC, Matak-Vinković D, Trottier Y, Huston JS, Messer A, Dobson CM. Structure of a single-chain Fv bound to the 17 N-terminal residues of huntingtin provides insights into pathogenic amyloid formation and suppression. J Mol Biol 2015; 427:2166-78. [PMID: 25861763 PMCID: PMC4451460 DOI: 10.1016/j.jmb.2015.03.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/17/2015] [Accepted: 03/30/2015] [Indexed: 10/25/2022]
Abstract
Huntington's disease is triggered by misfolding of fragments of mutant forms of the huntingtin protein (mHTT) with aberrant polyglutamine expansions. The C4 single-chain Fv antibody (scFv) binds to the first 17 residues of huntingtin [HTT(1-17)] and generates substantial protection against multiple phenotypic pathologies in situ and in vivo. We show in this paper that C4 scFv inhibits amyloid formation by exon1 fragments of huntingtin in vitro and elucidate the structural basis for this inhibition and protection by determining the crystal structure of the complex of C4 scFv and HTT(1-17). The peptide binds with residues 3-11 forming an amphipathic helix that makes contact with the antibody fragment in such a way that the hydrophobic face of this helix is shielded from the solvent. Residues 12-17 of the peptide are in an extended conformation and interact with the same region of another C4 scFv:HTT(1-17) complex in the asymmetric unit, resulting in a β-sheet interface within a dimeric C4 scFv:HTT(1-17) complex. The nature of this scFv-peptide complex was further explored in solution by high-resolution NMR and physicochemical analysis of species in solution. The results provide insights into the manner in which C4 scFv inhibits the aggregation of HTT, and hence into its therapeutic potential, and suggests a structural basis for the initial interactions that underlie the formation of disease-associated amyloid fibrils by HTT.
Collapse
Affiliation(s)
- Erwin De Genst
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Dimitri Y Chirgadze
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Fabrice A C Klein
- Translational Medicine and Neurogenetics Programme, Institute of Genetics and Molecular and Cellular Biology, 67404 Illkirch Cédex, France
| | - David C Butler
- Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144, USA; Department of Biomedical Sciences, University at Albany, Albany, NY 12208, USA
| | - Dijana Matak-Vinković
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Yvon Trottier
- Translational Medicine and Neurogenetics Programme, Institute of Genetics and Molecular and Cellular Biology, 67404 Illkirch Cédex, France
| | - James S Huston
- James S. Huston, The Antibody Society, Newton, MA 02462, USA
| | - Anne Messer
- Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144, USA; Department of Biomedical Sciences, University at Albany, Albany, NY 12208, USA
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
31
|
Pain C, Dumont J, Dumoulin M. Camelid single-domain antibody fragments: Uses and prospects to investigate protein misfolding and aggregation, and to treat diseases associated with these phenomena. Biochimie 2015; 111:82-106. [DOI: 10.1016/j.biochi.2015.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/23/2015] [Indexed: 12/19/2022]
|
32
|
Rouet R, Dudgeon K, Christie M, Langley D, Christ D. Fully Human VH Single Domains That Rival the Stability and Cleft Recognition of Camelid Antibodies. J Biol Chem 2015; 290:11905-17. [PMID: 25737448 DOI: 10.1074/jbc.m114.614842] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Indexed: 01/01/2023] Open
Abstract
Human VH single domains represent a promising class of antibody fragments with applications as therapeutic modalities. Unfortunately, isolated human VH domains also generally display poor biophysical properties and a propensity to aggregate. This has encouraged the development of non-human antibody domains as alternative means of antigen recognition and, in particular, camelid (VHH) domains. Naturally devoid of light chain partners, these domains are characterized by favorable biophysical properties and propensity for cleft binding, a highly desirable characteristic, allowing the targeting of cryptic epitopes. In contrast, previously reported structures of human VH single domains had failed to recapitulate this property. Here we report the engineering and characterization of phage display libraries of stable human VH domains and the selection of binders against a diverse set of antigens. Unlike "camelized" human domains, the domains do not rely on potentially immunogenic framework mutations and maintain the structure of the VH/VL interface. Structure determination in complex with hen egg white lysozyme revealed an extended VH binding interface, with complementarity-determining region 3 deeply penetrating into the active site cleft, highly reminiscent of what has been observed for camelid domains. Taken together, our results demonstrate that fully human VH domains can be constructed that are not only stable and well expressed but also rival the cleft binding properties of camelid antibodies.
Collapse
Affiliation(s)
- Romain Rouet
- From the Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia and
| | - Kip Dudgeon
- From the Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia and
| | - Mary Christie
- From the Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia and the Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - David Langley
- From the Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia and
| | - Daniel Christ
- From the Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia and the Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, New South Wales 2010, Australia
| |
Collapse
|
33
|
Desmyter A, Spinelli S, Roussel A, Cambillau C. Camelid nanobodies: killing two birds with one stone. Curr Opin Struct Biol 2015; 32:1-8. [PMID: 25614146 DOI: 10.1016/j.sbi.2015.01.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/23/2014] [Accepted: 01/05/2015] [Indexed: 01/09/2023]
Abstract
In recent years, the use of single-domain camelid immunoglobulins, termed vHHs or nanobodies, has seen increasing growth in biotechnology, pharmaceutical applications and structure/function research. The usefulness of nanobodies in structural biology is now firmly established, as they provide access to new epitopes in concave and hinge regions - and stabilize them. These sites are often associated with enzyme inhibition or receptor neutralization, and, at the same time, provide favorable surfaces for crystal packing. Remarkable results have been achieved by using nanobodies with flexible multi-domain proteins, large complexes and, last but not least, membrane proteins. While generating nanobodies is still a rather long and expensive procedure, the advent of naive libraries might be expected to facilitate the whole process.
Collapse
Affiliation(s)
- Aline Desmyter
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, France; Centre National de la Recherche Scientifique, AFMB, UMR 7257, case 932, 13288 Marseille Cedex 09, France
| | - Silvia Spinelli
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, France; Centre National de la Recherche Scientifique, AFMB, UMR 7257, case 932, 13288 Marseille Cedex 09, France
| | - Alain Roussel
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, France; Centre National de la Recherche Scientifique, AFMB, UMR 7257, case 932, 13288 Marseille Cedex 09, France
| | - Christian Cambillau
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, France; Centre National de la Recherche Scientifique, AFMB, UMR 7257, case 932, 13288 Marseille Cedex 09, France.
| |
Collapse
|
34
|
De Genst E, Messer A, Dobson CM. Antibodies and protein misfolding: From structural research tools to therapeutic strategies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1907-1919. [PMID: 25194824 DOI: 10.1016/j.bbapap.2014.08.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/21/2014] [Accepted: 08/27/2014] [Indexed: 01/24/2023]
Abstract
Protein misfolding disorders, including the neurodegenerative conditions Alzheimer's disease (AD) and Parkinson's disease (PD) represent one of the major medical challenges or our time. The underlying molecular mechanisms that govern protein misfolding and its links with disease are very complex processes, involving the formation of transiently populated but highly toxic molecular species within the crowded environment of the cell and tissue. Nevertheless, much progress has been made in understanding these events in recent years through innovative experiments and therapeutic strategies, and in this review we present an overview of the key roles of antibodies and antibody fragments in these endeavors. We discuss in particular how these species are being used in combination with a variety of powerful biochemical and biophysical methodologies, including a range of spectroscopic and microscopic techniques applied not just in vitro but also in situ and in vivo, both to gain a better understanding of the mechanistic nature of protein misfolding and aggregation and also to design novel therapeutic strategies to combat the family of diseases with which they are associated. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
Affiliation(s)
- Erwin De Genst
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Anne Messer
- Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144, USA; Department of Biomedical Sciences, University at Albany, Albany, NY 12208, USA
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
35
|
Nonose S, Yamashita K, Okamura T, Fukase S, Kawashima M, Sudo A, Isono H. Conformations of disulfide-intact and -reduced lysozyme ions probed by proton-transfer reactions at various temperatures. J Phys Chem B 2014; 118:9651-61. [PMID: 25046209 DOI: 10.1021/jp505621f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proton-transfer reactions of disulfide-intact and -reduced lysozyme ions (7+ through 14+) to 2,6-dimethylpyridine were examined in the gas phase using tandem mass spectrometry with electrospray ionization. By changing temperature of a collision cell from 280 to 460 K, temperature dependence of reaction rate constants and branching fractions was measured. Absolute reaction rate constants for the protein ions of specific charge states were determined from intensities of parent and product ions in the mass spectra. Remarkable change was observed for the rate constants and distribution of product ions. The rate constants for disulfide-intact ions changed more drastically with change of charge states and temperature than those for disulfide-reduced ions. Observed branching fractions for parent and product ions were represented by calculated reaction rate constants with a scheme of sequential process. The reaction rate constants are closely related to conformation changes with change of temperature, which are profoundly influenced by amputation of disulfide bonds.
Collapse
Affiliation(s)
- Shinji Nonose
- Graduate School of Nanobioscience, Yokohama City University , Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Class A β-lactamases as versatile scaffolds to create hybrid enzymes: applications from basic research to medicine. BIOMED RESEARCH INTERNATIONAL 2013; 2013:827621. [PMID: 24066299 PMCID: PMC3771265 DOI: 10.1155/2013/827621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/04/2013] [Indexed: 01/13/2023]
Abstract
Designing hybrid proteins is a major aspect of protein engineering and covers a very wide range of applications from basic research to medical applications. This review focuses on the use of class A β-lactamases as versatile scaffolds to design hybrid enzymes (referred to as β-lactamase hybrid proteins, BHPs) in which an exogenous peptide, protein or fragment thereof is inserted at various permissive positions. We discuss how BHPs can be specifically designed to create bifunctional proteins, to produce and to characterize proteins that are otherwise difficult to express, to determine the epitope of specific antibodies, to generate antibodies against nonimmunogenic epitopes, and to better understand the structure/function relationship of proteins.
Collapse
|