1
|
Missel JW, Salustros N, Becares ER, Steffen JH, Laursen AG, Garcia AS, Garcia-Alai MM, Kolar Č, Gourdon P, Gotfryd K. Cyclohexyl-α maltoside as a highly efficient tool for membrane protein studies. Curr Res Struct Biol 2021; 3:85-94. [PMID: 34235488 PMCID: PMC8244287 DOI: 10.1016/j.crstbi.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/09/2021] [Accepted: 03/05/2021] [Indexed: 01/06/2023] Open
Abstract
Membrane proteins (MPs) constitute a large fraction of the proteome, but exhibit physicochemical characteristics that impose challenges for successful sample production crucial for subsequent biophysical studies. In particular, MPs have to be extracted from the membranes in a stable form. Reconstitution into detergent micelles represents the most common procedure in recovering MPs for subsequent analysis. n-dodecyl-β-D-maltoside (DDM) remains one of the most popular conventional detergents used in production of MPs. Here we characterize the novel DDM analogue 4-trans-(4-trans-propylcyclohexyl)-cyclohexyl α-maltoside (t-PCCαM), possessing a substantially lower critical micelle concentration (CMC) than the parental compound that represents an attractive feature when handling MPs. Using three different types of MPs of human and prokaryotic origin, i.e., a channel, a primary and a secondary active transporter, expressed in yeast and bacterial host systems, respectively, we investigate the performance of t-PCCαM in solubilization and affinity purification together with its capacity to preserve native fold and activity. Strikingly, t-PCCαM displays favorable behavior in extracting and stabilizing the three selected targets. Importantly, t-PCCαM promoted extraction of properly folded protein, enhanced thermostability and provided negatively-stained electron microscopy samples of promising quality. All-in-all, t-PCCαM emerges as competitive surfactant applicable to a broad portfolio of challenging MPs for downstream structure-function analysis.
Collapse
Affiliation(s)
- Julie Winkel Missel
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
| | - Nina Salustros
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
| | - Eva Ramos Becares
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
| | - Jonas Hyld Steffen
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
| | - Amalie Gerdt Laursen
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
| | - Angelica Struve Garcia
- European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607, Hamburg, Germany
| | - Maria M Garcia-Alai
- European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607, Hamburg, Germany.,Centre for Structural Systems Biology, Notkestrasse 85, D-22607, Hamburg, Germany
| | - Čeněk Kolar
- Glycon Biochemicals GmbH, Im Biotechnologie Park TGZ 1, D-14943, Luckenwalde, Germany
| | - Pontus Gourdon
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen N, Denmark.,Department of Experimental Medical Science, Lund University, Sölvegatan 19, SE-221 84, Lund, Sweden
| | - Kamil Gotfryd
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
| |
Collapse
|
2
|
Abel S, Marchi M, Solier J, Finet S, Brillet K, Bonneté F. Structural insights into the membrane receptor ShuA in DDM micelles and in a model of gram-negative bacteria outer membrane as seen by SAXS and MD simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183504. [PMID: 33157097 DOI: 10.1016/j.bbamem.2020.183504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/20/2020] [Accepted: 10/20/2020] [Indexed: 11/19/2022]
Abstract
Successful crystallization of membrane proteins in detergent micelles depends on key factors such as conformational stability of the protein in micellar assemblies, the protein-detergent complex (PDC) monodispersity and favorable protein crystal contacts by suitable shielding of the protein hydrophobic surface by the detergent belt. With the aim of studying the influence of amphiphilic environment on membrane protein structure, stability and crystallizability, we combine molecular dynamics (MD) simulations with SEC-MALLS and SEC-SAXS (Size Exclusion Chromatography in line with Multi Angle Laser Light Scattering or Small Angle X-ray Scattering) experiments to describe the protein-detergent interactions that could help to rationalize PDC crystallization. In this context, we compare the protein-detergent interactions of ShuA from Shigella dysenteriae in n-Dodecyl-β-D-Maltopyranoside (DDM) with ShuA inserted in a realistic model of gram-negative bacteria outer membrane (OM) containing a mixture of bacterial lipopolysaccharide and phospholipids. To evaluate the quality of the PDC models, we compute the corresponding SAXS curves from the MD trajectories and compare with the experimental ones. We show that computed SAXS curves obtained from the MD trajectories reproduce better the SAXS obtained from the SEC-SAXS experiments for ShuA surrounded by 268 DDM molecules. The MD results show that the DDM molecules form around ShuA a closed belt whose the hydrophobic thickness appears slightly smaller (~22 Å) than the hydrophobic transmembrane domain of the protein (24.6 Å) suggested by Orientations of Proteins in Membranes (OPM) database. The simulations also show that ShuA transmembrane domain is remarkably stable in all the systems except for the extracellular and periplasmic loops that exhibit larger movements due to specific molecular interactions with lipopolysaccharides (LPS). We finally point out that this detergent behavior may lead to the occlusion of the periplasmic hydrophilic surface and poor crystal contacts leading to difficulties in crystallization of ShuA in DDM.
Collapse
Affiliation(s)
- Stéphane Abel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Massimo Marchi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Justine Solier
- Laboratoire d'Electrochimie et de Physico-chimie des Matériaux et des Interfaces, UMR 5279 CNRS Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, INP, F38000 Grenoble, France
| | - Stéphanie Finet
- Institut de Minéralogie, de Physique de Matériaux et de Cosmochimie, UMR 7590 CNRS-Sorbonne université, Bioinformatique et Biophysique, 4 Place Jussieu, F75005 Paris, France
| | - Karl Brillet
- Institut de Biologie Moléculaire et Cellulaire UPR 9002 CNRS, Architecture et Réactivité de l'ARN, 2 allée Konrad Roentgen, F67000 Strasbourg, France
| | - Françoise Bonneté
- Institut de Biologie Physico-Chimique (IBPC) UMR 7099 CNRS Université de Paris, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, 13 rue Pierre et Marie Curie, F75005 Paris, France.
| |
Collapse
|
3
|
Lapieza MP, Jungas C, Savirón M, Jarne C, Membrado L, Vela J, Orduna J, Garriga R, Galbán J, Cebolla VL. HPTLC coupled to ESI-Tandem MS for identifying phospholipids associated to membrane proteins in photosynthetic purple bacteria. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2018.1561465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- María P. Lapieza
- Instituto de Carboquímica, ICB-CSIC, C/Miguel Luesma, 4, 50018 Zaragoza, Spain
| | - Colette Jungas
- Cadarache‐DSV‐DEVM Laboratoire de Bioenergetique Cellulaire, CEA, St Paul‐lez‐Durance, France
| | - María Savirón
- Facultad de Ciencias, Instituto de Ciencia de Materiales de Aragón (UZ-CSIC), Zaragoza, Spain
| | - Carmen Jarne
- Instituto de Carboquímica, ICB-CSIC, C/Miguel Luesma, 4, 50018 Zaragoza, Spain
| | - Luis Membrado
- Instituto de Carboquímica, ICB-CSIC, C/Miguel Luesma, 4, 50018 Zaragoza, Spain
| | - Jesús Vela
- Departamento de Química Analítica, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Jesús Orduna
- Facultad de Ciencias, Instituto de Ciencia de Materiales de Aragón (UZ-CSIC), Zaragoza, Spain
| | - Rosa Garriga
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Javier Galbán
- Departamento de Química Analítica, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Vicente L. Cebolla
- Instituto de Carboquímica, ICB-CSIC, C/Miguel Luesma, 4, 50018 Zaragoza, Spain
| |
Collapse
|
4
|
Bonneté F, Loll PJ. Characterization of New Detergents and Detergent Mimetics by Scattering Techniques for Membrane Protein Crystallization. Methods Mol Biol 2017; 1635:169-193. [PMID: 28755369 DOI: 10.1007/978-1-4939-7151-0_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Membrane proteins are difficult to manipulate and stabilize once they have been removed from their native membranes. However, despite these difficulties, successes in membrane-protein structure determination have continued to accumulate for over two decades, thanks to advances in chemistry and technology. Many of these advances have resulted from efforts focused on protein engineering, high-throughput expression, and development of detergent screens, all with the aim of enhancing protein stability for biochemistry and biophysical studies. In contrast, considerably less work has been done to decipher the basic mechanisms that underlie the structure of protein-detergent complexes and to describe the influence of detergent structure on stabilization and crystallization. These questions can be addressed using scattering techniques (employing light, X-rays, and/or neutrons), which are suitable to describe the structure and conformation of macromolecules in solution, as well as to assess weak interactions between particles, both of which are clearly germane to crystallization. These techniques can be used either in batch modes or coupled to size-exclusion chromatography, and offer the potential to describe the conformation of a detergent-solubilized membrane protein and to quantify and model detergent bound to the protein in order to optimize crystal packing. We will describe relevant techniques and present examples of scattering experiments, which allow one to explore interactions between micelles and between membrane protein complexes, and relate these interactions to membrane protein crystallization.
Collapse
Affiliation(s)
- Françoise Bonneté
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-UM-ENSCM, Chimie BioOrganique et Systèmes Amphiphiles, Université d'Avignon, 301, rue Baruch de Spinoza, F84000, Avignon, France.
| | - Patrick J Loll
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, 19102, USA
| |
Collapse
|
5
|
Garrido PF, Brocos P, Amigo A, García-Río L, Gracia-Fadrique J, Piñeiro Á. STAND: Surface Tension for Aggregation Number Determination. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3917-3925. [PMID: 27048988 DOI: 10.1021/acs.langmuir.6b00477] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Taking advantage of the extremely high dependence of surface tension on the concentration of amphiphilic molecules in aqueous solution, a new model based on the double equilibrium between free and aggregated molecules in the liquid phase and between free molecules in the liquid phase and those adsorbed at the air/liquid interface is presented and validated using literature data and fluorescence measurements. A key point of the model is the use of both the Langmuir isotherm and the Gibbs adsorption equation in terms of free molecules instead of the nominal concentration of the solute. The application of the model should be limited to non ionic compounds since it does not consider the presence of counterions. It requires several coupled nonlinear fittings for which we developed a software that is publicly available in our server as a web application. Using this tool, it is straightforward to get the average aggregation number of an amphiphile, the micellization free energy, the adsorption constant, the maximum surface excess (and so the minimum area per molecule), the distribution of solute in the liquid phase between free and aggregate species, and the surface coverage in only a couple of seconds, just by uploading a text file with surface tension vs concentration data and the corresponding uncertainties.
Collapse
Affiliation(s)
- Pablo F Garrido
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela , 15782 Santiago de Compostela, Spain
| | - Pilar Brocos
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela , 15782 Santiago de Compostela, Spain
| | - Alfredo Amigo
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela , 15782 Santiago de Compostela, Spain
| | - Luis García-Río
- Departamento de Química Física, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Facultade de Química, Universidade de Santiago de Compostela , 15782 Santiago de Compostela, Spain
| | - Jesús Gracia-Fadrique
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria , 04510 México D.F., Mexico
| | - Ángel Piñeiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela , 15782 Santiago de Compostela, Spain
| |
Collapse
|
6
|
Polidori A, Raynal S, Barret LA, Dahani M, Barrot-Ivolot C, Jungas C, Frotscher E, Keller S, Ebel C, Breyton C, Bonneté F. Sparingly fluorinated maltoside-based surfactants for membrane-protein stabilization. NEW J CHEM 2016. [DOI: 10.1039/c5nj03502c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Dahani M, Barret LA, Raynal S, Jungas C, Pernot P, Polidori A, Bonneté F. Use of dynamic light scattering and small-angle X-ray scattering to characterize new surfactants in solution conditions for membrane-protein crystallization. Acta Crystallogr F Struct Biol Commun 2015; 71:838-46. [PMID: 26144228 PMCID: PMC4498704 DOI: 10.1107/s2053230x15009516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/18/2015] [Indexed: 11/11/2022] Open
Abstract
The structural and interactive properties of two novel hemifluorinated surfactants, F2H9-β-M and F4H5-β-M, the syntheses of which were based on the structure and hydrophobicity of the well known dodecyl-β-maltoside (DD-β-M), are described. The shape of their micellar assemblies was characterized by small-angle X-ray scattering and their intermicellar interactions in crystallizing conditions were measured by dynamic light scattering. Such information is essential for surfactant phase-diagram determination and membrane-protein crystallization.
Collapse
Affiliation(s)
- Mohamed Dahani
- Institut des Biomolécules Max Mousseron/CBSA, UMR 5247, Avignon University, 33 Rue Louis Pasteur, 84000 Avignon,France
| | - Laurie-Anne Barret
- Institut des Biomolécules Max Mousseron/CBSA, UMR 5247, Avignon University, 33 Rue Louis Pasteur, 84000 Avignon,France
- Laboratoire de Bioénergétique Cellulaire/Biologie Végétale et Microbiologie Environnementales, UMR 7265, 13108 Saint-Paul-lez-Durance, France
| | - Simon Raynal
- Institut des Biomolécules Max Mousseron/CBSA, UMR 5247, Avignon University, 33 Rue Louis Pasteur, 84000 Avignon,France
| | - Colette Jungas
- Laboratoire de Bioénergétique Cellulaire/Biologie Végétale et Microbiologie Environnementales, UMR 7265, 13108 Saint-Paul-lez-Durance, France
| | - Pétra Pernot
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Ange Polidori
- Institut des Biomolécules Max Mousseron/CBSA, UMR 5247, Avignon University, 33 Rue Louis Pasteur, 84000 Avignon,France
| | - Françoise Bonneté
- Institut des Biomolécules Max Mousseron/CBSA, UMR 5247, Avignon University, 33 Rue Louis Pasteur, 84000 Avignon,France
| |
Collapse
|
8
|
Loll PJ. Membrane proteins, detergents and crystals: what is the state of the art? ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2014; 70:1576-83. [PMID: 25484203 DOI: 10.1107/s2053230x14025035] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/14/2014] [Indexed: 12/19/2022]
Abstract
At the time when the first membrane-protein crystal structure was determined, crystallization of these molecules was widely perceived as extremely arduous. Today, that perception has changed drastically, and the process is regarded as routine (or nearly so). On the occasion of the International Year of Crystallography 2014, this review presents a snapshot of the current state of the art, with an emphasis on the role of detergents in this process. A survey of membrane-protein crystal structures published since 2012 reveals that the direct crystallization of protein-detergent complexes remains the dominant methodology; in addition, lipidic mesophases have proven immensely useful, particularly in specific niches, and bicelles, while perhaps undervalued, have provided important contributions as well. Evolving trends include the addition of lipids to protein-detergent complexes and the gradual incorporation of new detergents into the standard repertoire. Stability has emerged as a critical parameter controlling how a membrane protein behaves in the presence of detergent, and efforts to enhance stability are discussed. Finally, although discovery-based screening approaches continue to dwarf mechanistic efforts to unravel crystallization, recent technical advances offer hope that future experiments might incorporate the rational manipulation of crystallization behaviors.
Collapse
Affiliation(s)
- Patrick J Loll
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| |
Collapse
|
9
|
Le RK, Harris BJ, Iwuchukwu IJ, Bruce BD, Cheng X, Qian S, Heller WT, O’Neill H, Frymier PD. Analysis of the solution structure of Thermosynechococcus elongatus photosystem I in n-dodecyl-β-d-maltoside using small-angle neutron scattering and molecular dynamics simulation. Arch Biochem Biophys 2014; 550-551:50-7. [DOI: 10.1016/j.abb.2014.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 04/15/2014] [Indexed: 10/25/2022]
|