1
|
Vitharana S, Stillahn JM, Katayama DS, Henry CS, Manning MC. Application of Formulation Principles to Stability Issues Encountered During Processing, Manufacturing, and Storage of Drug Substance and Drug Product Protein Therapeutics. J Pharm Sci 2023; 112:2724-2751. [PMID: 37572779 DOI: 10.1016/j.xphs.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
The field of formulation and stabilization of protein therapeutics has become rather extensive. However, most of the focus has been on stabilization of the final drug product. Yet, proteins experience stress and degradation through the manufacturing process, starting with fermentaition. This review describes how formulation principles can be applied to stabilize biopharmaceutical proteins during bioprocessing and manufacturing, considering each unit operation involved in prepration of the drug substance. In addition, the impact of the container on stabilty is discussed as well.
Collapse
Affiliation(s)
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
2
|
Rodrigues MA, Duarte A, Geraldes V, Kingsbury JS, Sanket P, Filipe V, Nakach M, Authelin JR. Native and Non-Native aggregation pathways of antibodies anticipated by cold-accelerated studies. Eur J Pharm Biopharm 2023; 192:174-184. [PMID: 37832611 DOI: 10.1016/j.ejpb.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Assessment of cold stability is essential for manufacture and commercialization of biotherapeutics. Storage stability is often estimated by measuring accelerated rates at elevated temperature and using mathematical models (as the Arrhenius equation). Although, this strategy often leads to an underestimation of protein aggregation during storage. In this work, we measured the aggregation rates of two antibodies in a broad temperature range (from 60 °C to -25 °C), using an isochoric cooling method to prevent freezing of the formulations below 0 °C. Both antibodies evidenced increasing aggregation rates when approaching extreme temperatures, because of hot and cold denaturation. This behavior was modelled using Arrhenius and Gibbs-Helmholtz equations, which enabled to deconvolute the contribution of unfolding from the protein association kinetics. This approach made possible to model the aggregation rates at refrigeration temperature (5 °C) in a relatively short timeframe (1-2 weeks) and using standard characterization techniques (SEC-HPLC and DLS).
Collapse
Affiliation(s)
- Miguel A Rodrigues
- SmartFreeZ, Ed. Inovação II, Incubadora Taguspark, Porto Salvo, Portugal; CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| | - Andreia Duarte
- SmartFreeZ, Ed. Inovação II, Incubadora Taguspark, Porto Salvo, Portugal
| | - Vitor Geraldes
- SmartFreeZ, Ed. Inovação II, Incubadora Taguspark, Porto Salvo, Portugal; CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | | | - Patke Sanket
- Biologics Drug Product Development, Sanofi, Framingham, MA, USA; Current address: Commercial Drug Product Manufacturing Science and Technology, Moderna, Norwood, MA, USA
| | - Vasco Filipe
- Biologics Drug Product Development, Sanofi, Vitry-sur-Seine, France
| | - Mostafa Nakach
- Biologics Drug Product Development, Sanofi, Vitry-sur-Seine, France
| | | |
Collapse
|
3
|
Elsayed A, Jaber N, Al-Remawi M, Abu-Salah K. From cell factories to patients: Stability challenges in biopharmaceuticals manufacturing and administration with mitigation strategies. Int J Pharm 2023; 645:123360. [PMID: 37657507 DOI: 10.1016/j.ijpharm.2023.123360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/19/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023]
Abstract
Active ingredients of biopharmaceuticals consist of a wide array of biomolecular structures, including those of enzymes, monoclonal antibodies, nucleic acids, and recombinant proteins. Recently, these molecules have dominated the pharmaceutical industry owing to their safety and efficacy. However, their manufacturing is hindered by high cost, inadequate batch-to-batch equivalence, inherent instability, and other quality issues. This article is an up-to-date review of the challenges encountered during different stages of biopharmaceutical production and mitigation of problems arising during their development, formulation, manufacturing, and administration. It is a broad overview discussion of stability issues encountered during product life cycle i.e., upstream processing (aggregation, solubility, host cell proteins, color change), downstream bioprocessing (aggregation, fragmentation), formulation, manufacturing, and delivery to patients.
Collapse
Affiliation(s)
- Amani Elsayed
- College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Nisrein Jaber
- Faculty of Pharmacy, Al Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Mayyas Al-Remawi
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman 1196, Jordan.
| | - Khalid Abu-Salah
- King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Department of Nanomedicine, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Spray Freeze Drying of Biologics: A Review and Applications for Inhalation Delivery. Pharm Res 2022; 40:1115-1140. [DOI: 10.1007/s11095-022-03442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
|
5
|
Thakur S, Jha B, Bhardwaj N, Singh A, Sawale PD, Kumar A. Isochoric freezing of foods; a review of instrumentation, mechanism, physico‐chemical influence and applications. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sheetal Thakur
- Department of Food Science and Technology, MMICT & BH, MMDU Ambala India
| | - Bhavya Jha
- Department of Food Science and Technology Gautam Buddha University Noida India
| | - Naman Bhardwaj
- Department of Food Science and Technology Gautam Buddha University Noida India
| | - Ajay Singh
- Department of Food Technology Mata Gujri College Fatehgarh India
| | - Pravin D. Sawale
- Department of Dairy Technology College of Dairy Technology Yavatmal India
| | - Ashish Kumar
- Department of Food Science and Technology Gautam Buddha University Noida India
| |
Collapse
|
6
|
Berger JE, Teixeira SCM, Reed K, Razinkov VI, Sloey CJ, Qi W, Roberts CJ. High-Pressure, Low-Temperature Induced Unfolding and Aggregation of Monoclonal Antibodies: Role of the Fc and Fab Fragments. J Phys Chem B 2022; 126:4431-4441. [PMID: 35675067 DOI: 10.1021/acs.jpcb.1c10528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of high pressure and low temperature on the stability of two different monoclonal antibodies (MAbs) were examined in this work. Fluorescence and small-angle neutron scattering were used to monitor the in situ effects of pressure to infer shifts in tertiary structure and characterize aggregation prone intermediates. Partial unfolding was observed for both MAbs, to different extents, under a range of pressure/temperature conditions. Fourier transform infrared spectroscopy was also used to monitor ex situ changes in secondary structure. Preservation of native secondary structure after incubation at elevated pressures and subzero ° C temperatures was independent of the extent of tertiary unfolding and reversibility. Several combinations of pressure and temperature were also used to discern the respective contributions of the isolated Ab fragments (Fab and Fc) to unfolding and aggregation. The fragments for each antibody showed significantly different partial unfolding profiles and reversibility. There was not a simple correlation between stability of the full MAb and either the Fc or Fab fragment stabilities across all cases, demonstrating a complex relationship to full MAb unfolding and aggregation behavior. That notwithstanding, the combined use of spectroscopic and scattering techniques provides insights into MAb conformational stability and hysteresis in high-pressure, low-temperature environments.
Collapse
Affiliation(s)
- Jordan E Berger
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Susana C M Teixeira
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States.,NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Kaelan Reed
- PharmBIO Products, W. L. Gore & Associates, Elkton, Maryland 21921, United States
| | - Vladimir I Razinkov
- Drug Product Technologies, Amgen, Thousand Oaks, California 91320, United States
| | - Christopher J Sloey
- Drug Product Technologies, Amgen, Thousand Oaks, California 91320, United States
| | - Wei Qi
- Drug Product Technologies, Amgen, Thousand Oaks, California 91320, United States
| | - Christopher J Roberts
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
7
|
Bluemel O, Rodrigues MA, Buecheler JW, Geraldes V, Hoelzl G, Hauptmann A, Bechtold-Peters K, Friess W. Evaluation of Two Novel Scale-Down Devices for Testing Monoclonal Antibody Aggregation During Large-Scale Freezing. J Pharm Sci 2022; 111:1973-1983. [PMID: 35007568 DOI: 10.1016/j.xphs.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/28/2022]
Abstract
There is a need for representative small volume devices that reflect monoclonal antibody (mAb) aggregation during freezing and thawing (FT) in large containers. We characterised two novel devices that aim to mimic the stress in rectangular 2 L bottles. The first scale-down device (SDD) consists of a 125 mL bottle surrounded by a 3D printed cover that manipulates heat exchange. The second device, a micro scale-down device (mSDD), adapts cooling and heating of 10 mL vials to extend stress time. MAb aggregation upon repeated FT was evaluated considering formation of higher molecular weight species, subvisible particles, and the increase in hydrodynamic radius, polydispersity index, and optical density at 350 nm. Three different mAb solutions were processed. Both an unshielded 125 mL bottle and the SDD can be used to predict aggregation during FT in 2 L bottles. In specific cases the unshielded 125 mL bottle underestimates whereas the SDD slightly overestimates soluble aggregate formation. The mSDD increases aggregation compared to 10 mL vials but is less representative than the SDD. Ultimately, both SDDs enable characterisation of protein sensitivity to large-scale FT with two orders of magnitude less volume and are superior to simply using smaller bottles.
Collapse
Affiliation(s)
- Oliver Bluemel
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universitaet Muenchen, 81377 Munich, Germany
| | - Miguel A Rodrigues
- Centro de Química Estrutural, Department of Chemical Engineering, Instituto Superior Técnico, Lisboa 1049-001, Portugal
| | - Jakob W Buecheler
- Technical Research and Development, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Vitor Geraldes
- CeFEMA, Department of Chemical Engineering, Instituto Superior Técnico, Lisboa 1049-001, Portugal
| | | | | | | | - Wolfgang Friess
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universitaet Muenchen, 81377 Munich, Germany
| |
Collapse
|
8
|
Gomes DC, Teixeira SCM, Leão JB, Razinkov VI, Qi W, Rodrigues MA, Roberts CJ. In Situ Monitoring of Protein Unfolding/Structural States under Cold High-Pressure Stress. Mol Pharm 2021; 18:4415-4427. [PMID: 34699230 DOI: 10.1021/acs.molpharmaceut.1c00604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biopharmaceutical formulations may be compromised by freezing, which has been attributed to protein conformational changes at a low temperature, and adsorption to ice-liquid interfaces. However, direct measurements of unfolding/conformational changes in sub-0 °C environments are limited because at ambient pressure, freezing of water can occur, which limits the applicability of otherwise commonly used analytical techniques without specifically tailored instrumentation. In this report, small-angle neutron scattering (SANS) and intrinsic fluorescence (FL) were used to provide in situ analysis of protein tertiary structure/folding at temperatures as low as -15 °C utilizing a high-pressure (HP) environment (up to 3 kbar) that prevents water from freezing. The results show that the α-chymotrypsinogen A (aCgn) structure is reasonably maintained under acidic pH (and corresponding pD) for all conditions of pressure and temperature tested. On the other hand, reversible structural changes and formation of oligomeric species were detected near -10 °C via HP-SANS for ovalbumin under neutral pD conditions. This was found to be related to the proximity of the temperature of cold denaturation of ovalbumin (TCD ∼ -17 °C; calculated via isothermal chemical denaturation and Gibbs-Helmholtz extrapolation) rather than a pressure effect. Significant structural changes were also observed for a monoclonal antibody, anti-streptavidin IgG1 (AS-IgG1), under acidic conditions near -5 °C and a pressure of ∼2 kbar. The conformational perturbation detected for AS-IgG1 is proposed to be consistent with the formation of unfolding intermediates such as molten globule states. Overall, the in situ approaches described here offer a means to characterize the conformational stability of biopharmaceuticals and proteins more generally under cold-temperature stress by the assessment of structural alteration, self-association, and reversibility of each process. This offers an alternative to current ex situ methods that are based on higher temperatures and subsequent extrapolation of the data and interpretations to the cold-temperature regime.
Collapse
Affiliation(s)
- Diana C Gomes
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.,Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, Delaware 19713, United States
| | - Susana C M Teixeira
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, Delaware 19713, United States.,NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Juscelino B Leão
- NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Vladimir I Razinkov
- Drug Product Development, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Wei Qi
- Drug Product Development, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Miguel A Rodrigues
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Christopher J Roberts
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, Delaware 19713, United States
| |
Collapse
|
9
|
Lundahl MLE, Fogli S, Colavita PE, Scanlan EM. Aggregation of protein therapeutics enhances their immunogenicity: causes and mitigation strategies. RSC Chem Biol 2021; 2:1004-1020. [PMID: 34458822 PMCID: PMC8341748 DOI: 10.1039/d1cb00067e] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/04/2021] [Indexed: 12/25/2022] Open
Abstract
Protein aggregation in biotherapeutics has been identified to increase immunogenicity, leading to immune-mediated adverse effects, such as severe allergic responses including anaphylaxis. The induction of anti-drug antibodies (ADAs) moreover enhances drug clearance rates, and can directly block therapeutic function. In this review, identified immune activation mechanisms triggered by protein aggregates are discussed, as well as physicochemical properties of aggregates, such as size and shape, which contribute to immunogenicity. Furthermore, factors which contribute to protein stability and aggregation are considered. Lastly, with these factors in mind, we encourage an innovative and multidisciplinary approach with regard to further research in the field, with the overall aim to avoid immunogenic aggregation in future drug development.
Collapse
Affiliation(s)
- Mimmi L E Lundahl
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin Dublin 2 Ireland
| | - Silvia Fogli
- Glycome Biopharma, Unit 4, Joyce House, Barrack Square, Ballincollig Co Cork P31 HW35 Ireland
| | - Paula E Colavita
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin Dublin 2 Ireland
| | - Eoin M Scanlan
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin Dublin 2 Ireland
| |
Collapse
|
10
|
Bansal R, Jha SK, Jha NK. Size-based Degradation of Therapeutic Proteins - Mechanisms, Modelling and Control. Biomol Concepts 2021; 12:68-84. [PMID: 34146465 DOI: 10.1515/bmc-2021-0008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/07/2021] [Indexed: 02/02/2023] Open
Abstract
Protein therapeutics are in great demand due to their effectiveness towards hard-to-treat diseases. Despite their high demand, these bio-therapeutics are very susceptible to degradation via aggregation, fragmentation, oxidation, and reduction, all of which are very likely to affect the quality and efficacy of the product. Mechanisms and modelling of these degradation (aggregation and fragmentation) pathways is critical for gaining a deeper understanding of stability of these products. This review aims to provide a summary of major developments that have occurred towards unravelling the mechanisms of size-based protein degradation (particularly aggregation and fragmentation), modelling of these size-based degradation pathways, and their control. Major caveats that remain in our understanding and control of size-based protein degradation have also been presented and discussed.
Collapse
Affiliation(s)
- Rohit Bansal
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
11
|
Mutual diffusion of proteins in cold concentration gradients measured by holographic interferometry. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Lehman SE, Karageorgos I, Filteau JR, Vreeland WN. Effect of Azide Preservative on Thermomechanical Aggregation of Purified Reference Protein Materials. J Pharm Sci 2021; 110:1948-1957. [PMID: 33453208 DOI: 10.1016/j.xphs.2021.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
Protein aggregation can affect the quality of protein-based therapeutics. Attempting to unravel factors influencing protein aggregation involves systematic studies. These studies often include sodium azide or similar preservatives in the aggregation buffer. This work shows effects of azide on aggregation of two highly purified reference proteins, both a bovine serum albumin (BSA) as well as a monoclonal antibody (NISTmAb). The proteins were aggregated by thermomechanical stress, consisting of simultaneous heating of the solution with gentle agitation. Protein aggregates were characterized by asymmetric flow field flow fractionation (AF4) with light scattering measurements along with quantification by UV spectroscopy, revealing strong time-dependent generation of aggregated protein and an increase in aggregate molar mass. Gel electrophoresis was used to probe the reversibility of the aggregation and demonstrated complete reversibility for the NISTmAb, but not so for the BSA. Kinetic fitting to a commonly implemented nucleated polymerization model was also employed to provide mechanistic details into the kinetic process. The model suggests that the aggregation of the NISTmAb proceeds via nucleated growth and aggregate-aggregate condensation in a way that is dependent on the concentration (and presence) of the azide anion. This work overall implicates azide preservatives as having demonstrable effects on thermomechanical stress and aggregation of proteins undergoing systematic aggregation and stability studies.
Collapse
Affiliation(s)
- Sean E Lehman
- Biomolecular Measurement Division, Bioprocess Measurements Group, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Ioannis Karageorgos
- Biomolecular Measurement Division, Bioprocess Measurements Group, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Jeremy R Filteau
- Biomolecular Measurement Division, Bioprocess Measurements Group, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA; Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Wyatt N Vreeland
- Biomolecular Measurement Division, Bioprocess Measurements Group, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
13
|
A New Perspective on Scale-Down Strategies for Freezing of Biopharmaceutics by Means of Computational Fluid Dynamics. J Pharm Sci 2020; 109:1978-1989. [DOI: 10.1016/j.xphs.2020.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 11/19/2022]
|
14
|
Correia C, Tavares E, Lopes C, Silva JG, Duarte A, Geraldes V, Rodrigues MA, Melo EP. Stability of Protein Formulations at Subzero Temperatures by Isochoric Cooling. J Pharm Sci 2020; 109:316-322. [DOI: 10.1016/j.xphs.2019.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/28/2019] [Accepted: 06/21/2019] [Indexed: 10/26/2022]
|
15
|
Authelin JR, Rodrigues MA, Tchessalov S, Singh SK, McCoy T, Wang S, Shalaev E. Freezing of Biologicals Revisited: Scale, Stability, Excipients, and Degradation Stresses. J Pharm Sci 2019; 109:44-61. [PMID: 31705870 DOI: 10.1016/j.xphs.2019.10.062] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 01/15/2023]
Abstract
Although many biotech products are successfully stored in the frozen state, there are cases of degradation of biologicals during freeze storage. These examples are discussed in the Perspective to emphasize the fact that stability of frozen biologicals should not be taken for granted. Frozen-state degradation (predominantly, aggregation) has been linked to crystallization of a cryoprotector in many cases. Other factors, for example, protein unfolding (either due to cold denaturation or interaction of protein molecules with ice crystals), could also contribute to the instability. As a hypothesis, additional freezing-related destabilization pathways are introduced in the paper, that is, air bubbles formed on the ice crystallization front, and local pressure and mechanical stresses due to volume expansion during water-to-ice transformation. Furthermore, stability of frozen biologicals can depend on the sample size, via its impact on the freezing kinetics (i.e., cooling rates and freezing time) and cryoconcentration effects, as well as on the mechanical stresses associated with freezing. We conclude that, although fundamentals of freezing processes are fairly well described in the current literature, there are important gaps to be addressed in both scientific foundations of the freezing-related manufacturing processes and implementation of the available knowledge in practice.
Collapse
Affiliation(s)
| | - Miguel A Rodrigues
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | | | - Satish K Singh
- Drug Product Development, Moderna Therapeutics, Cambridge, Massachusetts 02139
| | - Timothy McCoy
- Biologics Drug Product Development, Sanofi, Framingham, Massachusetts 01701
| | - Stuart Wang
- Drug Product Development, Moderna Therapeutics, Cambridge, Massachusetts 02139; WuXi AppTec, Cambridge, Massachusetts 02142
| | - Evgenyi Shalaev
- Pharmaceutical Development, Allergan Inc., Irvine, California 92612.
| |
Collapse
|
16
|
Wang W, Roberts CJ. Protein aggregation – Mechanisms, detection, and control. Int J Pharm 2018; 550:251-268. [DOI: 10.1016/j.ijpharm.2018.08.043] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022]
|
17
|
Shalaev E, Soper A, Zeitler JA, Ohtake S, Roberts CJ, Pikal MJ, Wu K, Boldyreva E. Freezing of Aqueous Solutions and Chemical Stability of Amorphous Pharmaceuticals: Water Clusters Hypothesis. J Pharm Sci 2018; 108:36-49. [PMID: 30055227 DOI: 10.1016/j.xphs.2018.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 11/24/2022]
Abstract
Molecular mobility has been traditionally invoked to explain physical and chemical stability of diverse pharmaceutical systems. Although the molecular mobility concept has been credited with creating a scientific basis for stabilization of amorphous pharmaceuticals and biopharmaceuticals, it has become increasingly clear that this approach represents only a partial description of the underlying fundamental principles. An additional mechanism is proposed herein to address 2 key questions: (1) the existence of unfrozen water (i.e., partial or complete freezing inhibition) in aqueous solutions at subzero temperatures and (2) the role of water in the chemical stability of amorphous pharmaceuticals. These apparently distant phenomena are linked via the concept of water clusters. In particular, freezing inhibition is associated with the confinement of water clusters in a solidified matrix of an amorphous solute, with nanoscaled water clusters being observed in aqueous glasses using wide-angle neutron scattering. The chemical instability is suggested to be directly related to the catalysis of proton transfer by water clusters, considering that proton transfer is the key elementary reaction in many chemical processes, including such common reactions as hydrolysis and deamidation.
Collapse
Affiliation(s)
- Evgenyi Shalaev
- Pharmaceutical Development, Allergan plc., Irvine, California 92612.
| | - Alan Soper
- ISIS Facility, UKRI-STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxon OX11 OQX, UK
| | - J Axel Zeitler
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Satoshi Ohtake
- Pfizer BioTherapeutics Pharmaceutical Sciences, Chesterfield, Missouri 63198
| | | | - Michael J Pikal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269
| | - Ke Wu
- Pharmaceutical Development, Allergan plc., Irvine, California 92612
| | - Elena Boldyreva
- Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russian Federation; Boreskov Institute of Catalysis SB RAS, Novosibirsk 630090, Russian Federation
| |
Collapse
|
18
|
Rosa M, Roberts CJ, Rodrigues MA. Connecting high-temperature and low-temperature protein stability and aggregation. PLoS One 2017; 12:e0176748. [PMID: 28472066 PMCID: PMC5417562 DOI: 10.1371/journal.pone.0176748] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/14/2017] [Indexed: 11/19/2022] Open
Abstract
Protein aggregation is a long-standing problem for preservation of proteins in both laboratory settings and for commercial biotechnology products. It is well established that heating (cooling) can accelerate (slow) aggregation by populating (depopulating) unfolded or partially unfolded monomer states that are key intermediates in aggregation processes. However, there is a long-standing question of whether the same mechanism(s) that lead to aggregation under high-temperature stress are relevant for low-temperature stress such as in refrigerated or supercooled liquids. This report shows the first direct comparison of “hot” and “cold” aggregation kinetics and folding/unfolding thermodynamics, using bovine hemoglobin as a model system. The results suggest that the same mechanism for non-native aggregation holds from “hot” to “cold” temperatures, with an aggregation temperature-of-maximum-stability slightly below 0°C. This highlights that sub-zero temperatures can induce cold-mediated aggregation, even in the absence of freezing stresses. From a practical perspective, the results suggests the possibility that cold-stress may be a useful alternative to heat-stress for extrapolating predictions of protein shelf life at refrigerated conditions, as well as providing a foundation for more mechanistic studies of cold-stress conditions in future work. A comparison between isochoric and isobaric methods is also briefly discussed.
Collapse
Affiliation(s)
- Mónica Rosa
- Centro de Química Estrutural, Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Christopher J. Roberts
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Miguel A. Rodrigues
- Centro de Química Estrutural, Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
19
|
Barnett GV, Drenski M, Razinkov V, Reed WF, Roberts CJ. Identifying protein aggregation mechanisms and quantifying aggregation rates from combined monomer depletion and continuous scattering. Anal Biochem 2016; 511:80-91. [PMID: 27510552 PMCID: PMC5004974 DOI: 10.1016/j.ab.2016.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 12/13/2022]
Abstract
Parallel temperature initial rates (PTIR) from chromatographic separation of aggregating protein solutions are combined with continuous simultaneous multiple sample light scattering (SMSLS) to make quantitative deductions about protein aggregation kinetics and mechanisms. PTIR determines the rates at which initially monomeric proteins are converted to aggregates over a range of temperatures, under initial-rate conditions. Using SMSLS for the same set of conditions provides time courses of the absolute Rayleigh scattering ratio, IR(t), from which a potentially different measure of aggregation rates can be quantified. The present report compares these measures of aggregation rates across a range of solution conditions that result in different aggregation mechanisms for anti-streptavidin (AS) immunoglobulin gamma-1 (IgG1). The results illustrate how the two methods provide complementary information when deducing aggregation mechanisms, as well as cases where they provide new mechanistic details that were not possible to deduce in previous work. Criteria are presented for when the two techniques are expected to give equivalent results for quantitative rates, the potential limitations when solution non-idealities are large, as well as a comparison of the temperature dependence of AS-IgG1 aggregation rates with published data for other antibodies.
Collapse
Affiliation(s)
- Gregory V Barnett
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Michael Drenski
- Department of Physics, Tulane University, New Orleans, LA 70118, USA
| | | | - Wayne F Reed
- Department of Physics, Tulane University, New Orleans, LA 70118, USA.
| | - Christopher J Roberts
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
20
|
Rosa M, Tiago JM, Singh SK, Geraldes V, Rodrigues MA. Improving Heat Transfer at the Bottom of Vials for Consistent Freeze Drying with Unidirectional Structured Ice. AAPS PharmSciTech 2016; 17:1049-59. [PMID: 26502885 DOI: 10.1208/s12249-015-0437-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/19/2015] [Indexed: 11/30/2022] Open
Abstract
The quality of lyophilized products is dependent of the ice structure formed during the freezing step. Herein, we evaluate the importance of the air gap at the bottom of lyophilization vials for consistent nucleation, ice structure, and cake appearance. The bottom of lyophilization vials was modified by attaching a rectified aluminum disc with an adhesive material. Freezing was studied for normal and converted vials, with different volumes of solution, varying initial solution temperature (from 5°C to 20°C) and shelf temperature (from -20°C to -40°C). The impact of the air gap on the overall heat transfer was interpreted with the assistance of a computational fluid dynamics model. Converted vials caused nucleation at the bottom and decreased the nucleation time up to one order of magnitude. The formation of ice crystals unidirectionally structured from bottom to top lead to a honeycomb-structured cake after lyophilization of a solution with 4% mannitol. The primary drying time was reduced by approximately 35%. Converted vials that were frozen radially instead of bottom-up showed similar improvements compared with normal vials but very poor cake quality. Overall, the curvature of the bottom of glass vials presents a considerable threat to consistency by delaying nucleation and causing radial ice growth. Rectifying the vials bottom with an adhesive material revealed to be a relatively simple alternative to overcome this inconsistency.
Collapse
|
21
|
Estrela N, Franquelim HG, Lopes C, Tavares E, Macedo JA, Christiansen G, Otzen DE, Melo EP. Sucrose prevents protein fibrillation through compaction of the tertiary structure but hardly affects the secondary structure. Proteins 2015; 83:2039-51. [DOI: 10.1002/prot.24921] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/14/2015] [Accepted: 08/28/2015] [Indexed: 01/30/2023]
Affiliation(s)
- Nídia Estrela
- Centre for Biomedical Research (CBMR); University of Algarve, Campus of Gambelas; Faro 8005-139 Portugal
| | - Henri G. Franquelim
- Instituto De Medicina Molecular; Faculdade De Medicina Da Universidade De Lisboa; Av. Prof. Egas Moniz, Edifício Egas Moniz Lisboa 1649-028 Portugal
| | - Carlos Lopes
- Centre for Biomedical Research (CBMR); University of Algarve, Campus of Gambelas; Faro 8005-139 Portugal
| | - Evandro Tavares
- Centre for Biomedical Research (CBMR); University of Algarve, Campus of Gambelas; Faro 8005-139 Portugal
| | - Joana A. Macedo
- Centre for Biomedical Research (CBMR); University of Algarve, Campus of Gambelas; Faro 8005-139 Portugal
| | | | - Daniel E. Otzen
- Department of Molecular Biology and Genetics; Aarhus University, iNANO (Interdisciplinary Nanoscience Centre); Gustav Wieds Vej 14 Aarhus C 8000 Denmark
| | - Eduardo P. Melo
- Centre for Biomedical Research (CBMR); University of Algarve, Campus of Gambelas; Faro 8005-139 Portugal
- Instituto Superior Técnico, Centro De Química Estrutural; Av. Rovisco Pais Lisboa 1049-001 Portugal
| |
Collapse
|
22
|
|
23
|
Roberts CJ. Therapeutic protein aggregation: mechanisms, design, and control. Trends Biotechnol 2014; 32:372-80. [PMID: 24908382 DOI: 10.1016/j.tibtech.2014.05.005] [Citation(s) in RCA: 314] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/08/2014] [Accepted: 05/13/2014] [Indexed: 11/28/2022]
Abstract
Although it is well known that proteins are only marginally stable in their folded states, it is often less well appreciated that most proteins are inherently aggregation-prone in their unfolded or partially unfolded states, and the resulting aggregates can be extremely stable and long-lived. For therapeutic proteins, aggregates are a significant risk factor for deleterious immune responses in patients, and can form via a variety of mechanisms. Controlling aggregation using a mechanistic approach may allow improved design of therapeutic protein stability, as a complement to existing design strategies that target desired protein structures and function. Recent results highlight the importance of balancing protein environment with the inherent aggregation propensities of polypeptide chains.
Collapse
Affiliation(s)
- Christopher J Roberts
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|