1
|
Emamian S, Ireland KA, Purohit V, McWhorter KL, Maximova O, Allen W, Jensen S, Casa DM, Pushkar Y, Davis KM. X-ray Emission Spectroscopy of Single Protein Crystals Yields Insights into Heme Enzyme Intermediates. J Phys Chem Lett 2023; 14:41-48. [PMID: 36566390 PMCID: PMC9990082 DOI: 10.1021/acs.jpclett.2c03018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Enzyme reactivity is often enhanced by changes in oxidation state, spin state, and metal-ligand covalency of associated metallocofactors. The development of spectroscopic methods for studying these processes coincidentally with structural rearrangements is essential for elucidating metalloenzyme mechanisms. Herein, we demonstrate the feasibility of collecting X-ray emission spectra of metalloenzyme crystals at a third-generation synchrotron source. In particular, we report the development of a von Hamos spectrometer for the collection of Fe Kβ emission optimized for analysis of dilute biological samples. We further showcase its application in crystals of the immunosuppressive heme-dependent enzyme indoleamine 2,3-dioxygenase. Spectra from protein crystals in different states were compared with relevant reference compounds. Complementary density functional calculations assessing covalency support our spectroscopic analysis and identify active site conformations that correlate to high- and low-spin states. These experiments validate the suitability of an X-ray emission approach for determining spin states of previously uncharacterized metalloenzyme reaction intermediates.
Collapse
Affiliation(s)
- Sahand Emamian
- Department of Physics, Emory University, Atlanta, GA 30322, USA
| | | | - Vatsal Purohit
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | | - Olga Maximova
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Winter Allen
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Scott Jensen
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Diego M. Casa
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
2
|
Wang J, Zhang Y, Zhou L, Yang F, Li J, Du Y, Liu R, Li W, Yu L. Ionizing Radiation: Effective Physical Agents for Economic Crop Seed Priming and the Underlying Physiological Mechanisms. Int J Mol Sci 2022; 23:15212. [PMID: 36499532 PMCID: PMC9737873 DOI: 10.3390/ijms232315212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
To overcome various factors that limit crop production and to meet the growing demand for food by the increasing world population. Seed priming technology has been proposed, and it is considered to be a promising strategy for agricultural sciences and food technology. This technology helps to curtail the germination time, increase the seed vigor, improve the seedling establishment, and enhance the stress tolerance, all of which are conducive to improving the crop yield. Meanwhile, it can be used to reduce seed infection for better physiological or phytosanitary quality. Compared to conventional methods, such as the use of water or chemical-based agents, X-rays, gamma rays, electron beams, proton beams, and heavy ion beams have emerged as promising physics strategies for seed priming as they are time-saving, more effective, environmentally friendly, and there is a greater certainty for yield improvement. Ionizing radiation (IR) has certain biological advantages over other seed priming methods since it generates charged ions while penetrating through the target organisms, and it has enough energy to cause biological effects. However, before the wide utilization of ionizing priming methods in agriculture, extensive research is needed to explore their effects on seed priming and to focus on the underlying mechanism of them. Overall, this review aims to highlight the current understanding of ionizing priming methods and their applicability for promoting agroecological resilience and meeting the challenges of food crises nowadays.
Collapse
Affiliation(s)
- Jiaqi Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730099, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yixin Zhang
- School of Biological Sciences, The University of Edinburgh, 57 George Square, Edinburgh EH89JU, UK
| | - Libin Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730099, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fu Yang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jingpeng Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yan Du
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730099, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiyuan Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730099, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjian Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730099, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixia Yu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730099, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Jensen SC, Sullivan B, Hartzler DA, Pushkar Y. DIY XES - development of an inexpensive, versatile, and easy to fabricate XES analyzer and sample delivery system. X-RAY SPECTROMETRY : XRS 2019; 48:336-344. [PMID: 32606482 PMCID: PMC7326317 DOI: 10.1002/xrs.3005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/18/2018] [Indexed: 06/11/2023]
Abstract
The application of X-ray emission spectroscopy (XES) has grown substantially with the development of X-ray free electron lasers, third and fourth generation synchrotron sources and high-power benchtop sources. By providing the high X-ray flux required for XES, these sources broaden the availability and application of this method of probing electronic structure. As the number of sources increase, so does the demand for X-ray emission detection and sample delivery systems that are cost effective and customizable. Here, we present a detailed fabrication protocol for von Hamos X-ray optics and give details for a 3D-printed spectrometer design. Additionally, we outline an automated, externally triggered liquid sample delivery system that can be used to repeatedly deliver nanoliter droplets onto a plastic substrate for measurement. These systems are both low cost, efficient and easy to recreate or modify depending on the application. A low cost multiple X-ray analyzer system enables measurement of dilute samples, whereas the sample delivery limits sample loss and replaces spent sample with fresh sample in the same position. While both systems can be used in a wide range of applications, the design addresses several challenges associated specifically with time-resolved XES (TRXES). As an example application, we show results from TRXES measurements of photosystem II, a dilute, photoactive protein.
Collapse
Affiliation(s)
- Scott C Jensen
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Brendan Sullivan
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Daniel A Hartzler
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Jensen SC, Sullivan B, Hartzler D, Aguilar JM, Awel S, Bajt S, Basu S, Bean R, Chapman H, Conrad C, Frank M, Fromme R, Martin-Garcia JM, Grant TD, Heymann M, Hunter MS, Ketawala G, Kirian RA, Knoska J, Kupitz C, Li X, Liang M, Lisova S, Mariani V, Mazalova V, Messerschmidt M, Moran M, Nelson G, Oberthür D, Schaffer A, Sierra RG, Vaughn N, Weierstall U, Wiedorn MO, Xavier L, Yang JH, Yefanov O, Zatsepin NA, Aquila A, Fromme P, Boutet S, Seidler GT, Pushkar Y. X-ray Emission Spectroscopy at X-ray Free Electron Lasers: Limits to Observation of the Classical Spectroscopic Response for Electronic Structure Analysis. J Phys Chem Lett 2019; 10:441-446. [PMID: 30566358 PMCID: PMC7047744 DOI: 10.1021/acs.jpclett.8b03595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
X-ray free electron lasers (XFELs) provide ultrashort intense X-ray pulses suitable to probe electron dynamics but can also induce a multitude of nonlinear excitation processes. These affect spectroscopic measurements and interpretation, particularly for upcoming brighter XFELs. Here we identify and discuss the limits to observing classical spectroscopy, where only one photon is absorbed per atom for a Mn2+ in a light element (O, C, H) environment. X-ray emission spectroscopy (XES) with different incident photon energies, pulse intensities, and pulse durations is presented. A rate equation model based on sequential ionization and relaxation events is used to calculate populations of multiply ionized states during a single pulse and to explain the observed X-ray induced spectral lines shifts. This model provides easy estimation of spectral shifts, which is essential for experimental designs at XFELs and illustrates that shorter X-ray pulses will not overcome sequential ionization but can reduce electron cascade effects.
Collapse
Affiliation(s)
- Scott C Jensen
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Brendan Sullivan
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Daniel Hartzler
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Jose Meza Aguilar
- Biodesign Institute, Arizona State University, Tempe, AZ 85287-7401, USA
| | - Salah Awel
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, D-22607 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
| | - Saša Bajt
- Photon Science, Deutsches Elektronen-Synchrotron, D-22607 Hamburg, Germany
| | - Shibom Basu
- Paul Sherrer Institut, 5232 Villigen PSI, Switzerland
| | | | - Henry Chapman
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, D-22607 Hamburg, Germany
| | - Chelsie Conrad
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-7401, USA
| | - Matthias Frank
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Raimund Fromme
- Biodesign Institute, Arizona State University, Tempe, AZ 85287-7401, USA
| | | | - Thomas D Grant
- Hauptman-Woodward Institute, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, SUNY University at Buffalo, Buffalo, NY 14203
- BioXFEL Science and Technology Center, Buffalo, NY 14203, USA
| | - Michael Heymann
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, D-22607 Hamburg, Germany
- Max Planck Institute of Biochemistry, 82152 Planegg, Germany
| | - Mark S. Hunter
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Gihan Ketawala
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-7401, USA
| | - Richard A Kirian
- Department of Physics, Arizona State University, Tempe, AZ 85287-7401, USA
| | - Juraj Knoska
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, D-22607 Hamburg, Germany
| | - Christopher Kupitz
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Xuanxuan Li
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Mengning Liang
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Stella Lisova
- Department of Physics, Arizona State University, Tempe, AZ 85287-7401, USA
| | - Valerio Mariani
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, D-22607 Hamburg, Germany
| | - Victoria Mazalova
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, D-22607 Hamburg, Germany
| | | | - Michael Moran
- Biodesign Institute, Arizona State University, Tempe, AZ 85287-7401, USA
| | - Garrett Nelson
- Department of Physics, Arizona State University, Tempe, AZ 85287-7401, USA
| | - Dominik Oberthür
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, D-22607 Hamburg, Germany
| | - Alex Schaffer
- Department of Biochemistry, University of California Davis, Davis, CA 95616, USA
| | - Raymond G Sierra
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Natalie Vaughn
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-7401, USA
| | - Uwe Weierstall
- Biodesign Institute, Arizona State University, Tempe, AZ 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ 85287-7401, USA
| | - Max O. Wiedorn
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, D-22607 Hamburg, Germany
| | - Lourdu Xavier
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, D-22607 Hamburg, Germany
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Jay-How Yang
- Biodesign Institute, Arizona State University, Tempe, AZ 85287-7401, USA
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, D-22607 Hamburg, Germany
| | - Nadia A Zatsepin
- Department of Physics, Arizona State University, Tempe, AZ 85287-7401, USA
| | - Andrew Aquila
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Petra Fromme
- Biodesign Institute, Arizona State University, Tempe, AZ 85287-7401, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ85287-1604
| | - Sébastien Boutet
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Gerald T Seidler
- Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
5
|
Davis KM, Sullivan BT, Palenik MC, Yan L, Purohit V, Robison G, Kosheleva I, Henning RW, Seidler GT, Pushkar Y. Rapid evolution of the Photosystem II electronic structure during water splitting. PHYSICAL REVIEW. X 2018; 8:041014. [PMID: 31231592 PMCID: PMC6588194 DOI: 10.1103/physrevx.8.041014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Photosynthetic water oxidation is a fundamental process that sustains the biosphere. A Mn4Ca cluster embedded in the photosystem II protein environment is responsible for the production of atmospheric oxygen. Here, time-resolved x-ray emission spectroscopy (XES) was used to observe the process of oxygen formation in real time. These experiments reveal that the oxygen evolution step, initiated by three sequential laser flashes, is accompanied by rapid (within 50 μs) changes to the Mn Kβ XES spectrum. However, no oxidation of the Mn4Ca core above the all MnIV state was detected to precede O-O bond formation, and the observed changes were therefore assigned to O-O bond formation dynamics. We propose that O-O bond formation occurs prior to the transfer of the final (4th) electron from the Mn4Ca cluster to the oxidized tyrosine YZ residue. This model resolves the kinetic limitations associated with O-O bond formation, and suggests an evolutionary adaptation to avoid releasing of harmful peroxide species.
Collapse
Affiliation(s)
- Katherine M. Davis
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Brendan T. Sullivan
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | | | - Lifen Yan
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Vatsal Purohit
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Gregory Robison
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA
| | - Robert W. Henning
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA
| | - Gerald T. Seidler
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
6
|
Kubin M, Kern J, Guo M, Källman E, Mitzner R, Yachandra VK, Lundberg M, Yano J, Wernet P. X-ray-induced sample damage at the Mn L-edge: a case study for soft X-ray spectroscopy of transition metal complexes in solution. Phys Chem Chem Phys 2018; 20:16817-16827. [PMID: 29888772 PMCID: PMC6011208 DOI: 10.1039/c8cp03094d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
X-ray induced sample damage can impede electronic and structural investigations of radiation-sensitive samples studied with X-rays. Here we quantify dose-dependent sample damage to the prototypical MnIII(acac)3 complex in solution and at room temperature for the soft X-ray range, using X-ray absorption spectroscopy at the Mn L-edge. We observe the appearance of a reduced MnII species as the X-ray dose is increased. We find a half-damage dose of 1.6 MGy and quantify a spectroscopically tolerable dose on the order of 0.3 MGy (1 Gy = 1 J kg-1), where 90% of MnIII(acac)3 are intact. Our dose-limit is around one order of magnitude lower than the Henderson limit (half-damage dose of 20 MGy) which is commonly employed for protein crystallography with hard X-rays. It is comparable, however, to the dose-limits obtained for collecting un-damaged Mn K-edge spectra of the photosystem II protein, using hard X-rays. The dose-dependent reduction of MnIII observed here for solution samples occurs at a dose limit that is two to four orders of magnitude smaller than the dose limits previously reported for soft X-ray spectroscopy of iron samples in the solid phase. We compare our measured to calculated spectra from ab initio restricted active space (RAS) theory and discuss possible mechanisms for the observed dose-dependent damage of MnIII(acac)3 in solution. On the basis of our results, we assess the influence of sample damage in other experimental studies with soft X-rays from storage-ring synchrotron radiation sources and X-ray free-electron lasers.
Collapse
Affiliation(s)
- Markus Kubin
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wherland S, Pecht I. Radiation chemists look at damage in redox proteins induced by X-rays. Proteins 2018; 86:817-826. [DOI: 10.1002/prot.25521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/26/2018] [Accepted: 04/25/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Scot Wherland
- Department of Chemistry; Washington State University; Pullman Washington
| | - Israel Pecht
- Department of Immunology; The Weizmann Institute of Science; Rehovot 76100 Israel
| |
Collapse
|
8
|
Meents A, Wiedorn MO, Srajer V, Henning R, Sarrou I, Bergtholdt J, Barthelmess M, Reinke PYA, Dierksmeyer D, Tolstikova A, Schaible S, Messerschmidt M, Ogata CM, Kissick DJ, Taft MH, Manstein DJ, Lieske J, Oberthuer D, Fischetti RF, Chapman HN. Pink-beam serial crystallography. Nat Commun 2017; 8:1281. [PMID: 29097720 PMCID: PMC5668288 DOI: 10.1038/s41467-017-01417-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 09/14/2017] [Indexed: 02/02/2023] Open
Abstract
Serial X-ray crystallography allows macromolecular structure determination at both X-ray free electron lasers (XFELs) and, more recently, synchrotron sources. The time resolution for serial synchrotron crystallography experiments has been limited to millisecond timescales with monochromatic beams. The polychromatic, "pink", beam provides a more than two orders of magnitude increased photon flux and hence allows accessing much shorter timescales in diffraction experiments at synchrotron sources. Here we report the structure determination of two different protein samples by merging pink-beam diffraction patterns from many crystals, each collected with a single 100 ps X-ray pulse exposure per crystal using a setup optimized for very low scattering background. In contrast to experiments with monochromatic radiation, data from only 50 crystals were required to obtain complete datasets. The high quality of the diffraction data highlights the potential of this method for studying irreversible reactions at sub-microsecond timescales using high-brightness X-ray facilities.
Collapse
Affiliation(s)
- A Meents
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany. .,Deutsches Elektronen Synchrotron (DESY), Photon Science, Notkestrasse 85, 22607, Hamburg, Germany.
| | - M O Wiedorn
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany.,Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - V Srajer
- Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - R Henning
- Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - I Sarrou
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - J Bergtholdt
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - M Barthelmess
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - P Y A Reinke
- Medizinische Hochschule Hannover (MHH), Institut für Biophysikalische Chemie, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - D Dierksmeyer
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - A Tolstikova
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - S Schaible
- Deutsches Elektronen Synchrotron (DESY), Photon Science, Notkestrasse 85, 22607, Hamburg, Germany
| | - M Messerschmidt
- National Science Foundation BioXFEL Science and Technology Center, 700 Ellicott Street, Buffalo, NY, 14203, USA
| | - C M Ogata
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL, 60439, USA
| | - D J Kissick
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL, 60439, USA
| | - M H Taft
- Medizinische Hochschule Hannover (MHH), Institut für Biophysikalische Chemie, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - D J Manstein
- Medizinische Hochschule Hannover (MHH), Institut für Biophysikalische Chemie, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - J Lieske
- Deutsches Elektronen Synchrotron (DESY), Photon Science, Notkestrasse 85, 22607, Hamburg, Germany
| | - D Oberthuer
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - R F Fischetti
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL, 60439, USA
| | - H N Chapman
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany.,Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.,Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| |
Collapse
|
9
|
Jensen SC, Davis KM, Sullivan B, Hartzler DA, Seidler GT, Casa DM, Kasman E, Colmer HE, Massie AA, Jackson TA, Pushkar Y. X-ray Emission Spectroscopy of Biomimetic Mn Coordination Complexes. J Phys Chem Lett 2017; 8:2584-2589. [PMID: 28524662 DOI: 10.1021/acs.jpclett.7b01209] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Understanding the function of Mn ions in biological and chemical redox catalysis requires precise knowledge of their electronic structure. X-ray emission spectroscopy (XES) is an emerging technique with a growing application to biological and biomimetic systems. Here, we report an improved, cost-effective spectrometer used to analyze two biomimetic coordination compounds, [MnIV(OH)2(Me2EBC)]2+ and [MnIV(O)(OH)(Me2EBC)]+, the second of which contains a key MnIV═O structural fragment. Despite having the same formal oxidation state (MnIV) and tetradentate ligands, XES spectra from these two compounds demonstrate different electronic structures. Experimental measurements and DFT calculations yield different localized spin densities for the two complexes resulting from MnIV-OH conversion to MnIV═O. The relevance of the observed spectroscopic changes is discussed for applications in analyzing complex biological systems such as photosystem II. A model of the S3 intermediate state of photosystem II containing a MnIV═O fragment is compared to recent time-resolved X-ray diffraction data of the same state.
Collapse
Affiliation(s)
- Scott C Jensen
- Department of Physics and Astronomy, Purdue University , West Lafayette, Indiana 47907, United States
| | - Katherine M Davis
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Brendan Sullivan
- Department of Physics and Astronomy, Purdue University , West Lafayette, Indiana 47907, United States
| | - Daniel A Hartzler
- Department of Physics and Astronomy, Purdue University , West Lafayette, Indiana 47907, United States
| | - Gerald T Seidler
- Department of Physics, University of Washington , Seattle, Washington 98195, United States
| | - Diego M Casa
- Advanced Photon Source, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Elina Kasman
- Advanced Photon Source, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Hannah E Colmer
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , Lawrence, Kansas 66045, United States
| | - Allyssa A Massie
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , Lawrence, Kansas 66045, United States
| | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , Lawrence, Kansas 66045, United States
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|
10
|
Abstract
The intense X-ray pulses from free-electron lasers, of only femtoseconds duration, outrun most of the processes that lead to structural degradation in X-ray exposures of macromolecules. Using these sources it is therefore possible to increase the dose to macromolecular crystals by several orders of magnitude higher than usually tolerable in conventional measurements, allowing crystal size to be decreased dramatically in diffraction measurements and without the need to cool the sample. Such pulses lead to the eventual vaporization of the sample, which has required a measurement approach, called serial crystallography, of consolidating snapshot diffraction patterns of many individual crystals. This in turn has further separated the connection between dose and obtainable diffraction information, with the only requirement from a single pattern being that to give enough information to place it, in three-dimensional reciprocal space, in relation to other patterns. Millions of extremely weak patterns can be collected and combined in this way, requiring methods to rapidly replenish the sample into the beam while generating the lowest possible background . The method is suited to time-resolved measurements over timescales below 1 ps to several seconds, and opens new opportunities for phasing. Some straightforward considerations of achievable signal levels are discussed and compared with a wide variety of recent experiments carried out at XFEL, synchrotron, and even laboratory sources, to discuss the capabilities of these new approaches and give some perspectives on their further development.
Collapse
Affiliation(s)
- Henry N Chapman
- Center for Free-Electron Laser Science, DESY, Hamburg, 22607, Germany.
- Department of Physics, University of Hamburg, Hamburg, 22607, Germany.
- The Centre for Ultrafast Imaging, University of Hamburg, Hamburg, 22607, Germany.
| |
Collapse
|
11
|
Baxter EL, Aguila L, Alonso-Mori R, Barnes CO, Bonagura CA, Brehmer W, Brunger AT, Calero G, Caradoc-Davies TT, Chatterjee R, Degrado WF, Fraser JS, Ibrahim M, Kern J, Kobilka BK, Kruse AC, Larsson KM, Lemke HT, Lyubimov AY, Manglik A, McPhillips SE, Norgren E, Pang SS, Soltis SM, Song J, Thomaston J, Tsai Y, Weis WI, Woldeyes RA, Yachandra V, Yano J, Zouni A, Cohen AE. High-density grids for efficient data collection from multiple crystals. Acta Crystallogr D Struct Biol 2016; 72:2-11. [PMID: 26894529 PMCID: PMC4756618 DOI: 10.1107/s2059798315020847] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/03/2015] [Indexed: 03/01/2023] Open
Abstract
Higher throughput methods to mount and collect data from multiple small and radiation-sensitive crystals are important to support challenging structural investigations using microfocus synchrotron beamlines. Furthermore, efficient sample-delivery methods are essential to carry out productive femtosecond crystallography experiments at X-ray free-electron laser (XFEL) sources such as the Linac Coherent Light Source (LCLS). To address these needs, a high-density sample grid useful as a scaffold for both crystal growth and diffraction data collection has been developed and utilized for efficient goniometer-based sample delivery at synchrotron and XFEL sources. A single grid contains 75 mounting ports and fits inside an SSRL cassette or uni-puck storage container. The use of grids with an SSRL cassette expands the cassette capacity up to 7200 samples. Grids may also be covered with a polymer film or sleeve for efficient room-temperature data collection from multiple samples. New automated routines have been incorporated into the Blu-Ice/DCSS experimental control system to support grids, including semi-automated grid alignment, fully automated positioning of grid ports, rastering and automated data collection. Specialized tools have been developed to support crystallization experiments on grids, including a universal adaptor, which allows grids to be filled by commercial liquid-handling robots, as well as incubation chambers, which support vapor-diffusion and lipidic cubic phase crystallization experiments. Experiments in which crystals were loaded into grids or grown on grids using liquid-handling robots and incubation chambers are described. Crystals were screened at LCLS-XPP and SSRL BL12-2 at room temperature and cryogenic temperatures.
Collapse
Affiliation(s)
- Elizabeth L. Baxter
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Laura Aguila
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Christopher O. Barnes
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | - Winnie Brehmer
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Axel T. Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Guillermo Calero
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Tom T. Caradoc-Davies
- The ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria 3800, Australia
- Australian Synchrotron, 800 Blackburn Road, Clayton, Melbourne, Victoria 3168, Australia
| | - Ruchira Chatterjee
- Physical Bioscences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - William F. Degrado
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Mohamed Ibrahim
- Institut für Biologie, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Jan Kern
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Physical Bioscences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Brian K. Kobilka
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Andrew C. Kruse
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Karl M. Larsson
- Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Heinrik T. Lemke
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Artem Y. Lyubimov
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Aashish Manglik
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Scott E. McPhillips
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Erik Norgren
- Art Robbins Instruments, Sunnyvale, CA 94089, USA
| | - Siew S. Pang
- The ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria 3800, Australia
| | - S. M. Soltis
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Jinhu Song
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Jessica Thomaston
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yingssu Tsai
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - William I. Weis
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Rahel A. Woldeyes
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Vittal Yachandra
- Physical Bioscences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Junko Yano
- Physical Bioscences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Athina Zouni
- Institut für Biologie, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| |
Collapse
|
12
|
Affiliation(s)
- Elspeth F. Garman
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Martin Weik
- University Grenoble Alpes, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
| |
Collapse
|
13
|
Price SWT, Ignatyev K, Geraki K, Basham M, Filik J, Vo NT, Witte PT, Beale AM, Mosselmans JFW. Chemical imaging of single catalyst particles with scanning μ-XANES-CT and μ-XRF-CT. Phys Chem Chem Phys 2015; 17:521-9. [PMID: 25407850 DOI: 10.1039/c4cp04488f] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The physicochemical state of a catalyst is a key factor in determining both activity and selectivity; however these materials are often not structurally or compositionally homogeneous. Here we report on the 3-dimensional imaging of an industrial catalyst, Mo-promoted colloidal Pt supported on carbon. The distribution of both the active Pt species and Mo promoter have been mapped over a single particle of catalyst using microfocus X-ray fluorescence computed tomography. X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure revealed a mixed local coordination environment, including the presence of both metallic Pt clusters and Pt chloride species, but also no direct interaction between the catalyst and Mo promoter. We also report on the benefits of scanning μ-XANES computed tomography for chemical imaging, allowing for 2- and 3-dimensional mapping of the local electronic and geometric environment, in this instance for both the Pt catalyst and Mo promoter throughout the catalyst particle.
Collapse
Affiliation(s)
- S W T Price
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxon, OX11 0DE, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ronda L, Bruno S, Bettati S, Storici P, Mozzarelli A. From protein structure to function via single crystal optical spectroscopy. Front Mol Biosci 2015; 2:12. [PMID: 25988179 PMCID: PMC4428442 DOI: 10.3389/fmolb.2015.00012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/31/2015] [Indexed: 11/23/2022] Open
Abstract
The more than 100,000 protein structures determined by X-ray crystallography provide a wealth of information for the characterization of biological processes at the molecular level. However, several crystallographic “artifacts,” including conformational selection, crystallization conditions and radiation damages, may affect the quality and the interpretation of the electron density maps, thus limiting the relevance of structure determinations. Moreover, for most of these structures, no functional data have been obtained in the crystalline state, thus posing serious questions on their validity in infereing protein mechanisms. In order to solve these issues, spectroscopic methods have been applied for the determination of equilibrium and kinetic properties of proteins in the crystalline state. These methods are UV-vis spectrophotometry, spectrofluorimetry, IR, EPR, Raman, and resonance Raman spectroscopy. Some of these approaches have been implemented with on-line instruments at X-ray synchrotron beamlines. Here, we provide an overview of investigations predominantly carried out in our laboratory by single crystal polarized absorption UV-vis microspectrophotometry, the most applied technique for the functional characterization of proteins in the crystalline state. Studies on hemoglobins, pyridoxal 5′-phosphate dependent enzymes and green fluorescent protein in the crystalline state have addressed key biological issues, leading to either straightforward structure-function correlations or limitations to structure-based mechanisms.
Collapse
Affiliation(s)
- Luca Ronda
- Department of Neurosciences, University of Parma Parma, Italy
| | - Stefano Bruno
- Department of Pharmacy, University of Parma Parma, Italy
| | - Stefano Bettati
- Department of Neurosciences, University of Parma Parma, Italy ; National Institute of Biostructures and Biosystems Rome, Italy
| | | | - Andrea Mozzarelli
- Department of Pharmacy, University of Parma Parma, Italy ; National Institute of Biostructures and Biosystems Rome, Italy ; Institute of Biophysics, Consiglio Nazionale delle Ricerche Pisa, Italy
| |
Collapse
|
15
|
Garman EF, Weik M. Radiation damage to macromolecules: kill or cure? JOURNAL OF SYNCHROTRON RADIATION 2015; 22:195-200. [PMID: 25723921 DOI: 10.1107/s160057751500380x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 05/07/2023]
Abstract
Radiation damage induced by X-ray beams during macromolecular diffraction experiments remains an issue of concern in structural biology. While advances in our understanding of this phenomenon, driven in part by a series of workshops in this area, undoubtedly have been and are still being made, there are still questions to be answered. Eight papers in this volume give a flavour of ongoing investigations, addressing various issues. These range over: a proposed new metric derived from atomic B-factors for identifying potentially damaged amino acid residues, a study of the relative damage susceptibility of protein and DNA in a DNA/protein complex, a report of an indication of specific radiation damage to a protein determined from data collected using an X-ray free-electron laser (FEL), an account of the challenges in FEL raw diffraction data analysis, an exploration of the possibilities of using radiation damage induced phasing to solve structures using FELs, simulations of radiation damage as a function of FEL temporal pulse profiles, results on the influence of radiation damage during scanning X-ray diffraction measurements and, lastly, consideration of strategies for minimizing radiation damage during SAXS experiments. In this short introduction, these contributions are briefly placed in the context of other current work on radiation damage in the field.
Collapse
Affiliation(s)
- Elspeth F Garman
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Martin Weik
- Université Grenoble Alpes, IBS, F-38044 Grenoble, France
| |
Collapse
|
16
|
Nogly P, James D, Wang D, White TA, Zatsepin N, Shilova A, Nelson G, Liu H, Johansson L, Heymann M, Jaeger K, Metz M, Wickstrand C, Wu W, Båth P, Berntsen P, Oberthuer D, Panneels V, Cherezov V, Chapman H, Schertler G, Neutze R, Spence J, Moraes I, Burghammer M, Standfuss J, Weierstall U. Lipidic cubic phase serial millisecond crystallography using synchrotron radiation. IUCRJ 2015; 2:168-76. [PMID: 25866654 PMCID: PMC4392771 DOI: 10.1107/s2052252514026487] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/01/2014] [Indexed: 05/19/2023]
Abstract
Lipidic cubic phases (LCPs) have emerged as successful matrixes for the crystallization of membrane proteins. Moreover, the viscous LCP also provides a highly effective delivery medium for serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs). Here, the adaptation of this technology to perform serial millisecond crystallography (SMX) at more widely available synchrotron microfocus beamlines is described. Compared with conventional microcrystallography, LCP-SMX eliminates the need for difficult handling of individual crystals and allows for data collection at room temperature. The technology is demonstrated by solving a structure of the light-driven proton-pump bacteriorhodopsin (bR) at a resolution of 2.4 Å. The room-temperature structure of bR is very similar to previous cryogenic structures but shows small yet distinct differences in the retinal ligand and proton-transfer pathway.
Collapse
Affiliation(s)
- Przemyslaw Nogly
- Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Daniel James
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Dingjie Wang
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Thomas A. White
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg 22607, Germany
| | - Nadia Zatsepin
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Anastasya Shilova
- European Synchrotron Radiation Facility, Grenoble Cedex 9, F-38043, France
| | - Garrett Nelson
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Haiguang Liu
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Linda Johansson
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California USA
| | - Michael Heymann
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg 22607, Germany
| | - Kathrin Jaeger
- Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Markus Metz
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg 22607, Germany
- Centre for Ultrafast Imaging, Hamburg 22607, Germany
| | - Cecilia Wickstrand
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Wenting Wu
- Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Petra Båth
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Peter Berntsen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Dominik Oberthuer
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg 22607, Germany
- Centre for Ultrafast Imaging, Hamburg 22607, Germany
| | - Valerie Panneels
- Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Vadim Cherezov
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California USA
| | - Henry Chapman
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg 22607, Germany
- Department of Physics, University of Hamburg, Hamburg 22607, Germany
| | - Gebhard Schertler
- Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen 5232, Switzerland
- Deparment of Biology, ETH Zurich, Zürich 8093, Switzerland
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - John Spence
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Isabel Moraes
- Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Oxfordshire OX11 0DE, England
- Department of Life Sciences, Imperial College London, London, England
- Research Complex at Harwell Rutherford, Appleton Laboratory, Harwell, Didcot, Oxfordshire OX11 0FA, England
| | - Manfred Burghammer
- European Synchrotron Radiation Facility, Grenoble Cedex 9, F-38043, France
- Department of Analytical Chemistry, Ghent University, Ghent B-9000, Belgium
| | - Joerg Standfuss
- Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Uwe Weierstall
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
17
|
Abstract
X-ray free-electron lasers have opened up the possibility of structure determination of protein crystals at room temperature, free of radiation damage. The femtosecond-duration pulses of these sources enable diffraction signals to be collected from samples at doses of 1000 MGy or higher. The sample is vaporized by the intense pulse, but not before the scattering that gives rise to the diffraction pattern takes place. Consequently, only a single flash diffraction pattern can be recorded from a crystal, giving rise to the method of serial crystallography where tens of thousands of patterns are collected from individual crystals that flow across the beam and the patterns are indexed and aggregated into a set of structure factors. The high-dose tolerance and the many-crystal averaging approach allow data to be collected from much smaller crystals than have been examined at synchrotron radiation facilities, even from radiation-sensitive samples. Here, we review the interaction of intense femtosecond X-ray pulses with materials and discuss the implications for structure determination. We identify various dose regimes and conclude that the strongest achievable signals for a given sample are attained at the highest possible dose rates, from highest possible pulse intensities.
Collapse
Affiliation(s)
- Henry N Chapman
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Carl Caleman
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
| | - Nicusor Timneanu
- Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
| |
Collapse
|
18
|
Cohen AE, Soltis SM, González A, Aguila L, Alonso-Mori R, Barnes CO, Baxter EL, Brehmer W, Brewster AS, Brunger AT, Calero G, Chang JF, Chollet M, Ehrensberger P, Eriksson TL, Feng Y, Hattne J, Hedman B, Hollenbeck M, Holton JM, Keable S, Kobilka BK, Kovaleva EG, Kruse AC, Lemke HT, Lin G, Lyubimov AY, Manglik A, Mathews II, McPhillips SE, Nelson S, Peters JW, Sauter NK, Smith CA, Song J, Stevenson HP, Tsai Y, Uervirojnangkoorn M, Vinetsky V, Wakatsuki S, Weis WI, Zadvornyy OA, Zeldin OB, Zhu D, Hodgson KO. Goniometer-based femtosecond crystallography with X-ray free electron lasers. Proc Natl Acad Sci U S A 2014; 111:17122-7. [PMID: 25362050 PMCID: PMC4260607 DOI: 10.1073/pnas.1418733111] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The emerging method of femtosecond crystallography (FX) may extend the diffraction resolution accessible from small radiation-sensitive crystals and provides a means to determine catalytically accurate structures of acutely radiation-sensitive metalloenzymes. Automated goniometer-based instrumentation developed for use at the Linac Coherent Light Source enabled efficient and flexible FX experiments to be performed on a variety of sample types. In the case of rod-shaped Cpl hydrogenase crystals, only five crystals and about 30 min of beam time were used to obtain the 125 still diffraction patterns used to produce a 1.6-Å resolution electron density map. For smaller crystals, high-density grids were used to increase sample throughput; 930 myoglobin crystals mounted at random orientation inside 32 grids were exposed, demonstrating the utility of this approach. Screening results from cryocooled crystals of β2-adrenoreceptor and an RNA polymerase II complex indicate the potential to extend the diffraction resolution obtainable from very radiation-sensitive samples beyond that possible with undulator-based synchrotron sources.
Collapse
Affiliation(s)
| | | | | | | | | | - Christopher O Barnes
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | | | | | - Aaron S Brewster
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Axel T Brunger
- Molecular and Cellular Physiology, and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| | - Guillermo Calero
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | | | | | | | | | | | - Johan Hattne
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | | | | | - James M Holton
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158; and
| | - Stephen Keable
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59715
| | | | | | | | | | - Guowu Lin
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Artem Y Lyubimov
- Molecular and Cellular Physiology, and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| | | | | | | | | | - John W Peters
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59715
| | - Nicholas K Sauter
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | | | - Jinhu Song
- Stanford Synchrotron Radiation Lightsource
| | - Hilary P Stevenson
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Yingssu Tsai
- Stanford Synchrotron Radiation Lightsource, Departments of Chemistry
| | - Monarin Uervirojnangkoorn
- Molecular and Cellular Physiology, and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| | | | - Soichi Wakatsuki
- Photon Science, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025; Structural Biology, and
| | - William I Weis
- Molecular and Cellular Physiology, and Structural Biology, and
| | - Oleg A Zadvornyy
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59715
| | - Oliver B Zeldin
- Molecular and Cellular Physiology, and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| | | | - Keith O Hodgson
- Stanford Synchrotron Radiation Lightsource, Departments of Chemistry,
| |
Collapse
|
19
|
Seidler GT, Mortensen DR, Remesnik AJ, Pacold JI, Ball NA, Barry N, Styczinski M, Hoidn OR. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:113906. [PMID: 25430123 DOI: 10.1063/1.4901599] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/03/2014] [Indexed: 05/22/2023]
Abstract
We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ∼5 keV to ∼10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10(6)-10(7) photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.
Collapse
Affiliation(s)
- G T Seidler
- Physics Department, University of Washington, Seattle, Washington 98195-1560, USA
| | - D R Mortensen
- Physics Department, University of Washington, Seattle, Washington 98195-1560, USA
| | - A J Remesnik
- Physics Department, University of Washington, Seattle, Washington 98195-1560, USA
| | - J I Pacold
- Physics Department, University of Washington, Seattle, Washington 98195-1560, USA
| | - N A Ball
- Physics Department, University of Washington, Seattle, Washington 98195-1560, USA
| | - N Barry
- Physics Department, University of Washington, Seattle, Washington 98195-1560, USA
| | - M Styczinski
- Physics Department, University of Washington, Seattle, Washington 98195-1560, USA
| | - O R Hoidn
- Physics Department, University of Washington, Seattle, Washington 98195-1560, USA
| |
Collapse
|
20
|
Griese JJ, Srinivas V, Högbom M. Assembly of nonheme Mn/Fe active sites in heterodinuclear metalloproteins. J Biol Inorg Chem 2014; 19:759-74. [PMID: 24771036 PMCID: PMC4118035 DOI: 10.1007/s00775-014-1140-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/14/2014] [Indexed: 11/23/2022]
Abstract
The ferritin superfamily contains several protein groups that share a common fold and metal coordinating ligands. The different groups utilize different dinuclear cofactors to perform a diverse set of reactions. Several groups use an oxygen-activating di-iron cluster, while others use di-manganese or heterodinuclear Mn/Fe cofactors. Given the similar primary ligand preferences of Mn and Fe as well as the similarities between the binding sites, the basis for metal specificity in these systems remains enigmatic. Recent data for the heterodinuclear cluster show that the protein scaffold per se is capable of discriminating between Mn and Fe and can assemble the Mn/Fe center in the absence of any potential assembly machineries or metal chaperones. Here we review the current understanding of the assembly of the heterodinuclear cofactor in the two different protein groups in which it has been identified, ribonucleotide reductase R2c proteins and R2-like ligand-binding oxidases. Interestingly, although the two groups form the same metal cluster they appear to employ partly different mechanisms to assemble it. In addition, it seems that both the thermodynamics of metal binding and the kinetics of oxygen activation play a role in achieving metal specificity.
Collapse
Affiliation(s)
- Julia J. Griese
- Arrhenius Laboratories for Natural Sciences A4, Department of Biochemistry and Biophysics, Stockholm Center for Biomembrane Research, Stockholm University, 10691 Stockholm, Sweden
| | - Vivek Srinivas
- Arrhenius Laboratories for Natural Sciences A4, Department of Biochemistry and Biophysics, Stockholm Center for Biomembrane Research, Stockholm University, 10691 Stockholm, Sweden
| | - Martin Högbom
- Arrhenius Laboratories for Natural Sciences A4, Department of Biochemistry and Biophysics, Stockholm Center for Biomembrane Research, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
21
|
Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature 2014; 513:261-5. [PMID: 25043005 DOI: 10.1038/nature13453] [Citation(s) in RCA: 315] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 05/04/2014] [Indexed: 01/17/2023]
Abstract
Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which maintains the Earth's oxygenic atmosphere. In this process, the oxygen-evolving complex (OEC) of PSII cycles through five states, S0 to S4, in which four electrons are sequentially extracted from the OEC in four light-driven charge-separation events. Here we describe time resolved experiments on PSII nano/microcrystals from Thermosynechococcus elongatus performed with the recently developed technique of serial femtosecond crystallography. Structures have been determined from PSII in the dark S1 state and after double laser excitation (putative S3 state) at 5 and 5.5 Å resolution, respectively. The results provide evidence that PSII undergoes significant conformational changes at the electron acceptor side and at the Mn4CaO5 core of the OEC. These include an elongation of the metal cluster, accompanied by changes in the protein environment, which could allow for binding of the second substrate water molecule between the more distant protruding Mn (referred to as the 'dangler' Mn) and the Mn3CaOx cubane in the S2 to S3 transition, as predicted by spectroscopic and computational studies. This work shows the great potential for time-resolved serial femtosecond crystallography for investigation of catalytic processes in biomolecules.
Collapse
|