1
|
Bhopatkar AA, Kayed R. Flanking regions, amyloid cores, and polymorphism: the potential interplay underlying structural diversity. J Biol Chem 2023; 299:105122. [PMID: 37536631 PMCID: PMC10482755 DOI: 10.1016/j.jbc.2023.105122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023] Open
Abstract
The β-sheet-rich amyloid core is the defining feature of protein aggregates associated with neurodegenerative disorders. Recent investigations have revealed that there exist multiple examples of the same protein, with the same sequence, forming a variety of amyloid cores with distinct structural characteristics. These structural variants, termed as polymorphs, are hypothesized to influence the pathological profile and the progression of different neurodegenerative diseases, giving rise to unique phenotypic differences. Thus, identifying the origin and properties of these structural variants remain a focus of studies, as a preliminary step in the development of therapeutic strategies. Here, we review the potential role of the flanking regions of amyloid cores in inducing polymorphism. These regions, adjacent to the amyloid cores, show a preponderance for being structurally disordered, imbuing them with functional promiscuity. The dynamic nature of the flanking regions can then manifest in the form of conformational polymorphism of the aggregates. We take a closer look at the sequences flanking the amyloid cores, followed by a review of the polymorphic aggregates of the well-characterized proteins amyloid-β, α-synuclein, Tau, and TDP-43. We also consider different factors that can potentially influence aggregate structure and how these regions can be viewed as novel targets for therapeutic strategies by utilizing their unique structural properties.
Collapse
Affiliation(s)
- Anukool A Bhopatkar
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
2
|
Yang J, Agnihotri MV, Huseby CJ, Kuret J, Singer SJ. A theoretical study of polymorphism in VQIVYK fibrils. Biophys J 2021; 120:1396-1416. [PMID: 33571490 DOI: 10.1016/j.bpj.2021.01.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
The VQIVYK fragment from the Tau protein, also known as PHF6, is essential for aggregation of Tau into neurofibrillary lesions associated with neurodegenerative diseases. VQIVYK itself forms amyloid fibrils composed of paired β-sheets. Therefore, the full Tau protein and VQIVYK fibrils have been intensively investigated. A central issue in these studies is polymorphism, the ability of a protein to fold into more than one structure. Using all-atom molecular simulations, we generate five stable polymorphs of VQIVYK fibrils, establish their relative free energy with umbrella sampling methods, and identify the side chain interactions that provide stability. The two most stable polymorphs, which have nearly equal free energy, are formed by interdigitation of the mostly hydrophobic VIY "face" sides of the β-sheets. Another stable polymorph is formed by interdigitation of the QVK "back" sides. When we turn to examine structures from cryo-electron microscopy experiments on Tau filaments taken from diseased patients or generated in vitro, we find that the pattern of side chain interactions found in the two most stable face-to-face as well as the back-to-back polymorphs are recapitulated in amyloid structures of the full protein. Thus, our studies suggest that the interactions stabilizing PHF6 fibrils explain the amyloidogenicity of the VQIVYK motif within the full Tau protein and provide justification for the use of VQIVYK fibrils as a test bed for the design of molecules that identify or inhibit amyloid structures.
Collapse
Affiliation(s)
- Jaehoon Yang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Mithila V Agnihotri
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio
| | - Carol J Huseby
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio
| | - Jeff Kuret
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio.
| | - Sherwin J Singer
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
3
|
Chen H, Sun D, Tian Y, Fan H, Liu Y, Morozova-Roche LA, Zhang C. Surface-Directed Structural Transition of Amyloidogenic Aggregates and the Resulting Neurotoxicity. ACS OMEGA 2020; 5:2856-2864. [PMID: 32095707 PMCID: PMC7034003 DOI: 10.1021/acsomega.9b03671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
The transition of amyloidogenic species into ordered structures (i.e., prefibrillar oligomers, protofibrils, mature fibrils, and amyloidogenic aggregates) is closely associated with many neurodegenerative disease pathologies. It is increasingly appreciated that the liquid-solid interface contributes to peptide aggregation under physiological conditions. However, much remains to be explored on the molecular mechanism of surface-directed amyloid formation. We herein demonstrate that physical environmental conditions (i.e., negatively charged surface) affect amyloid formation. Nontoxic amyloid aggregates quickly develop into intertwisting fibrils on a negatively charged mica surface. These fibrillar structures show significant cytotoxicity on both neuroblastoma cell-lines (SH-SY5Y) and primary neural stem cells. Our results suggest an alternative amyloid development pathway, following which Aβ peptides form large amyloidogenic aggregates upon stimulation, and later transit into neurotoxic fibrillar structures while being trapped and aligned by a negatively charged surface. Conceivably, the interplay between chemical and physical environmental conditions plays important roles in the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hao Chen
- School
of Chemical Engineering, Northwest University, Xi’an 710069, China
| | - Dan Sun
- State
Key Laboratory of Cultivation Base for Photoelectric Technology and
Functional Materials, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710069, China
| | - Yin Tian
- Laboratory
of Stem Cell and Tissue Engineering, Chongqing
Medical University, Chongqing 400016, China
| | - Haiming Fan
- College
of Chemistry and Materials Science, Northwest
University, Xi’an 710127, China
| | - Yonggang Liu
- Laboratory
of Stem Cell and Tissue Engineering, Chongqing
Medical University, Chongqing 400016, China
| | | | - Ce Zhang
- State
Key Laboratory of Cultivation Base for Photoelectric Technology and
Functional Materials, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710069, China
| |
Collapse
|
4
|
Summers KL, Schilling KM, Roseman G, Markham KA, Dolgova NV, Kroll T, Sokaras D, Millhauser GL, Pickering IJ, George GN. X-ray Absorption Spectroscopy Investigations of Copper(II) Coordination in the Human Amyloid β Peptide. Inorg Chem 2019; 58:6294-6311. [PMID: 31013069 DOI: 10.1021/acs.inorgchem.9b00507] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is the main cause of age-related dementia and currently affects approximately 5.7 million Americans. Major brain changes associated with AD pathology include accumulation of amyloid beta (Aβ) protein fragments and formation of extracellular amyloid plaques. Redox-active metals mediate oligomerization of Aβ, and the resultant metal-bound oligomers have been implicated in the putative formation of harmful, reactive species that could contribute to observed oxidative damage. In isolated plaque cores, Cu(II) is bound to Aβ via histidine residues. Despite numerous structural studies of Cu(II) binding to synthetic Aβ in vitro, there is still uncertainty surrounding Cu(II) coordination in Aβ. In this study, we used X-ray absorption spectroscopy (XAS) and high energy resolution fluorescence detected (HERFD) XAS to investigate Cu(II) coordination in Aβ(1-42) under various solution conditions. We found that the average coordination environment in Cu(II)Aβ(1-42) is sensitive to X-ray photoreduction, changes in buffer composition, peptide concentration, and solution pH. Fitting of the extended X-ray absorption fine structure (EXAFS) suggests Cu(II) is bound in a mixture of coordination environments in monomeric Aβ(1-42) under all conditions studied. However, it was evident that on average only a single histidine residue coordinates Cu(II) in monomeric Aβ(1-42) at pH 6.1, in addition to 3 other oxygen or nitrogen ligands. Cu(II) coordination in Aβ(1-42) at pH 7.4 is similarly 4-coordinate with oxygen and nitrogen ligands, although an average of 2 histidine residues appear to coordinate at this pH. At pH 9.0, the average Cu(II) coordination environment in Aβ(1-42) appears to be 5-coordinate with oxygen and nitrogen ligands, including two histidine residues.
Collapse
Affiliation(s)
- Kelly L Summers
- Molecular and Environmental Sciences Group, Department of Geological Sciences , University of Saskatchewan , 114 Science Place , Saskatoon , Saskatchewan S7N 5E2 , Canada.,Department of Chemistry , University of Saskatchewan , 110 Science Place , Saskatoon , Saskatchewan S7N 5C9 , Canada
| | - Kevin M Schilling
- Department of Chemistry and Biochemistry , University of California , Santa Cruz , California 95064 , United States
| | - Graham Roseman
- Department of Chemistry and Biochemistry , University of California , Santa Cruz , California 95064 , United States
| | - Kate A Markham
- Department of Chemistry and Biochemistry , University of California , Santa Cruz , California 95064 , United States
| | - Natalia V Dolgova
- Molecular and Environmental Sciences Group, Department of Geological Sciences , University of Saskatchewan , 114 Science Place , Saskatoon , Saskatchewan S7N 5E2 , Canada
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory , Stanford University , Menlo Park , California 94025 , United States
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory , Stanford University , Menlo Park , California 94025 , United States
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry , University of California , Santa Cruz , California 95064 , United States
| | - Ingrid J Pickering
- Molecular and Environmental Sciences Group, Department of Geological Sciences , University of Saskatchewan , 114 Science Place , Saskatoon , Saskatchewan S7N 5E2 , Canada.,Department of Chemistry , University of Saskatchewan , 110 Science Place , Saskatoon , Saskatchewan S7N 5C9 , Canada
| | - Graham N George
- Molecular and Environmental Sciences Group, Department of Geological Sciences , University of Saskatchewan , 114 Science Place , Saskatoon , Saskatchewan S7N 5E2 , Canada.,Department of Chemistry , University of Saskatchewan , 110 Science Place , Saskatoon , Saskatchewan S7N 5C9 , Canada
| |
Collapse
|
5
|
Dean DN, Lee JC. pH-Dependent fibril maturation of a Pmel17 repeat domain isoform revealed by tryptophan fluorescence. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:961-969. [PMID: 30716507 DOI: 10.1016/j.bbapap.2019.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 11/19/2022]
Abstract
The pre-melanosomal protein (Pmel17) aggregates within melanosomes to form functional amyloid fibrils that facilitate melanin polymerization. The repeat domain (RPT) of Pmel17 fibrillates under strict acidic melanosomal pH. Alternative splicing results in a shortened repeat domain (sRPT), which also forms amyloid fibrils. Here, we explored the effects of pH and protein concentration on sRPT aggregation by monitoring the intrinsic fluorescence of the sole tryptophan at position 381 (381W). 381W emission properties revealed changes of local environment polarity for sRPT fibrils formed at different pH. At pH 4, fibrils formed rapidly with no lag phase. A high 381W intensity was observed with a slight blue shift (10 nm). These fibrils underwent further structural rearrangements at intermediate pH (5-6), mirroring that of melanosome maturation, which initiates at pH 4 and increases to near neutral pH. In contrast, typical sigmoidal kinetics were observed at pH 6 with slower rates and 381W exhibited quenched emission. Interestingly, biphasic kinetics were observed at pH 5 in a protein concentration-dependent manner. A large 381W blue shift (23 nm) was measured, indicating a more hydrophobic environment for fibrils made at pH 5. Consistent with 381W fluorescence, Raman spectroscopy revealed molecular level perturbations in sRPT fibrils that were not evident from circular dichroism, transmission electron microscopy, or limited proteolysis analysis. Finally, sRPT fibrils did not form at pH ≥7 and preformed fibrils rapidly disaggregated under these solution conditions. Collectively, this work yields mechanistic insights into pH-dependent sRPT aggregation in the context of melanosome maturation.
Collapse
Affiliation(s)
- Dexter N Dean
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Jennifer C Lee
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
6
|
Jong K, Grisanti L, Hassanali A. Hydrogen Bond Networks and Hydrophobic Effects in the Amyloid β30–35 Chain in Water: A Molecular Dynamics Study. J Chem Inf Model 2017; 57:1548-1562. [DOI: 10.1021/acs.jcim.7b00085] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- KwangHyok Jong
- Condensed
Matter and Statistical Physics, International Centre for Theoretical Physics, Strada Costiera 11, Trieste 34151, Italy
- SISSA-Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, Trieste 34136, Italy
- Department
of Physics, Kim II Sung University, RyongNam Dong, TaeSong District, Pyongyang, D.P.R., Korea
| | - Luca Grisanti
- Condensed
Matter and Statistical Physics, International Centre for Theoretical Physics, Strada Costiera 11, Trieste 34151, Italy
- SISSA-Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, Trieste 34136, Italy
| | - Ali Hassanali
- Condensed
Matter and Statistical Physics, International Centre for Theoretical Physics, Strada Costiera 11, Trieste 34151, Italy
| |
Collapse
|
7
|
Liao Q, Owen MC, Olubiyi OO, Barz B, Strodel B. Conformational Transitions of the Amyloid-β Peptide Upon Copper(II) Binding and pH Changes. Isr J Chem 2017. [DOI: 10.1002/ijch.201600108] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Qinghua Liao
- Institute of Complex Systems: Structural Biochemistry (ICS-6); Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Michael C. Owen
- Institute of Complex Systems: Structural Biochemistry (ICS-6); Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Olujide O. Olubiyi
- Department of Pharmacology and Therapeutics; College of Medicine and Health Sciences; Afe Babalola University; Nigeria
| | - Bogdan Barz
- Institute of Complex Systems: Structural Biochemistry (ICS-6); Forschungszentrum Jülich GmbH; 52425 Jülich Germany
- Institute of Theoretical and Computational Chemistry; Heinrich Heine University Düsseldorf; 40225 Düsseldorf Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6); Forschungszentrum Jülich GmbH; 52425 Jülich Germany
- Institute of Theoretical and Computational Chemistry; Heinrich Heine University Düsseldorf; 40225 Düsseldorf Germany
| |
Collapse
|
8
|
Carballo-Pacheco M, Ismail AE, Strodel B. Oligomer Formation of Toxic and Functional Amyloid Peptides Studied with Atomistic Simulations. J Phys Chem B 2015; 119:9696-705. [PMID: 26130191 DOI: 10.1021/acs.jpcb.5b04822] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Amyloids are associated with diseases, including Alzheimer's, as well as functional roles such as storage of peptide hormones. It is still unclear what differences exist between aberrant and functional amyloids. However, it is known that soluble oligomers formed during amyloid aggregation are more toxic than the final fibrils. Here, we perform molecular dynamics simulations to study the aggregation of the amyloid-β peptide Aβ25-35, associated with Alzheimer's disease, and two functional amyloid-forming tachykinin peptides: kassinin and neuromedin K. Although the three peptides have similar primary sequences, tachykinin peptides, in contrast to Aβ25-35, form nontoxic amyloids. Our simulations reveal that the charge of the C-terminus is essential to controlling the aggregation process. In particular, when the kassinin C-terminus is not amidated, the aggregation kinetics decreases considerably. In addition, we observe that the monomeric peptides in extended conformations aggregate faster than those in collapsed hairpin-like conformations.
Collapse
Affiliation(s)
- Martín Carballo-Pacheco
- †AICES Graduate School and Aachener Verfahrenstechnik: Molecular Simulations and Transformations, RWTH Aachen University, Schinkelstraße 2, 52062 Aachen, Germany.,‡Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Ahmed E Ismail
- †AICES Graduate School and Aachener Verfahrenstechnik: Molecular Simulations and Transformations, RWTH Aachen University, Schinkelstraße 2, 52062 Aachen, Germany
| | - Birgit Strodel
- ‡Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,¶Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
9
|
Zhao J, Hu R, Sciacca MFM, Brender JR, Chen H, Ramamoorthy A, Zheng J. Non-selective ion channel activity of polymorphic human islet amyloid polypeptide (amylin) double channels. Phys Chem Chem Phys 2014; 16:2368-77. [PMID: 24352606 DOI: 10.1039/c3cp53345j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fundamental understanding of ion channel formation by amyloid peptides, which is strongly linked to cell toxicity, is very critical for (pre)clinical treatment of neurodegenerative diseases. Here, we combine atomistic simulations and experiments to demonstrate a broad range of conformational states of hIAPP double channels in lipid membranes. All individual channels display high selectivity for Cl(-) ions over cations, but the co-existence of polymorphic double channels of different conformations and orientations with different populations determines the non-ionic selectivity nature of the channels, which is different from the typical amyloid-β channels that exhibit Ca(2+) selective ion-permeable characteristics. This work provides a more complete physicochemical mechanism of amyloid-channel-induced toxicity.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Li Y, Xu W, Mu Y, Zhang JZH. Acidic pH retards the fibrillization of human Islet Amyloid Polypeptide due to electrostatic repulsion of histidines. J Chem Phys 2014; 139:055102. [PMID: 23927287 DOI: 10.1063/1.4817000] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The human Islet Amyloid Polypeptide (hIAPP) is the major constituent of amyloid deposits in pancreatic islets of type-II diabetes. IAPP is secreted together with insulin from the acidic secretory granules at a low pH of approximately 5.5 to the extracellular environment at a neutral pH. The increased accumulation of extracellular hIAPP in diabetes indicates that changes in pH may promote amyloid formation. To gain insights and underlying mechanisms of the pH effect on hIAPP fibrillogenesis, all-atom molecular dynamics simulations in explicit solvent model were performed to study the structural properties of five hIAPP protofibrillar oligomers, under acidic and neutral pH, respectively. In consistent with experimental findings, simulation results show that acidic pH is not conducive to the structural stability of these oligomers. This provides a direct evidence for a recent experiment [L. Khemtemourian, E. Domenech, J. P. F. Doux, M. C. Koorengevel, and J. A. Killian, J. Am. Chem. Soc. 133, 15598 (2011)], which suggests that acidic pH inhibits the fibril formation of hIAPP. In addition, a complementary coarse-grained simulation shows the repulsive electrostatic interactions among charged His18 residues slow down the dimerization process of hIAPP by twofold. Besides, our all-atom simulations reveal acidic pH mainly affects the local structure around residue His18 by destroying the surrounding hydrogen-bonding network, due to the repulsive interactions between protonated interchain His18 residues at acidic pH. It is also disclosed that the local interactions nearby His18 operating between adjacent β-strands trigger the structural transition, which gives hints to the experimental findings that the rate of hIAPP fibril formation and the morphologies of the fibrillar structures are strongly pH-dependent.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062, China
| | | | | | | |
Collapse
|
11
|
Nguyen PH, Li MS, Derreumaux P. Amyloid oligomer structure characterization from simulations: A general method. J Chem Phys 2014; 140:094105. [DOI: 10.1063/1.4866902] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|