1
|
Qian Y, Brown JB, Zhang T, Huang-Fu ZC, Rao Y. In Situ Detection of Chemical Compositions at Nanodroplet Surfaces and In-Nanodroplet Phases. J Phys Chem A 2022; 126:3758-3764. [PMID: 35667005 DOI: 10.1021/acs.jpca.2c03346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Small-volume nanodroplets play an increasingly common role in chemistry and biology. Such nanodroplets are believed to have unique chemical and physical properties at the interface between a droplet and its surrounding medium, however, they are underexamined. In this study, we present the novel technique of vibrational sum frequency scattering (VSFS) spectroscopy as an interface-specific, high-performance method for the in situ investigation of nanodroplets with sub-micron radii; as well as the droplet bulk through simultaneous hyper-Raman scattering (HRS) spectroscopy. We use laboratory-generated nanodroplets from aqueous alcohol solutions to demonstrate this technique's ability to separate the vibrational phenomena which take place at droplet surfaces from the underlying bulk phase. In addition, we systemically examine interfacial spectra of nanodroplets containing methanol, ethanol, 1-propanol, and 1-butanol through VSFS. Furthermore, we demonstrate interfacial differences between such nanodroplets and their analogous planar surfaces. The sensitivity of this technique to probe droplet surfaces with few-particle density at standard conditions validates VSFS as an analytical technique for the in situ investigation of small nanodroplets, providing breakthrough information about these species of ever-increasing relevance.
Collapse
Affiliation(s)
- Yuqin Qian
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Jesse B Brown
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Tong Zhang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Zhi-Chao Huang-Fu
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Yi Rao
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| |
Collapse
|
2
|
Qin Q, Liu J, Hu S, Yu J, Zhang L, Huang S, Yang M, Wang L. Exploring Fungal Species Diversity in the Premature Yeast Flocculation (PYF) of Barley Malt Using Deep Sequencing. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2022. [DOI: 10.1080/03610470.2021.2025329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Qingqing Qin
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, Shandong, China
- The State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
| | - Jia Liu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, Shandong, China
| | - Shumin Hu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, Shandong, China
| | - Junhong Yu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, Shandong, China
| | - Lei Zhang
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, Shandong, China
| | - Shuxia Huang
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, Shandong, China
| | - Mei Yang
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, Shandong, China
| | - Lushan Wang
- The State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
King MD, Jones SH, Lucas COM, Thompson KC, Rennie AR, Ward AD, Marks AA, Fisher FN, Pfrang C, Hughes AV, Campbell RA. The reaction of oleic acid monolayers with gas-phase ozone at the air water interface: the effect of sub-phase viscosity, and inert secondary components. Phys Chem Chem Phys 2020; 22:28032-28044. [PMID: 33367378 DOI: 10.1039/d0cp03934a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Organic films that form on atmospheric particulate matter change the optical and cloud condensation nucleation properties of the particulate matter and consequently have implications for modern climate and climate models. The organic films are subject to attack from gas-phase oxidants present in ambient air. Here we revisit in greater detail the oxidation of a monolayer of oleic acid by gas-phase ozone at the air-water interface as this provides a model system for the oxidation reactions that occur at the air-water interface of aqueous atmospheric aerosol. Experiments were performed on monolayers of oleic acid at the air-liquid interface at atmospherically relevant ozone concentrations to investigate if the viscosity of the sub-phase influences the rate of the reaction and to determine the effect of the presence of a second component within the monolayer, stearic acid, which is generally considered to be non-reactive towards ozone, on the reaction kinetics as determined by neutron reflectometry measurements. Atmospheric aerosol can be extremely viscous. The kinetics of the reaction were found to be independent of the viscosity of the sub-phase below the monolayer over a range of moderate viscosities, , demonstrating no involvement of aqueous sub-phase oxidants in the rate determining step. The kinetics of oxidation of monolayers of pure oleic acid were found to depend on the surface coverage with different behaviour observed above and below a surface coverage of oleic acid of ∼1 × 1018 molecule m-2. Atmospheric aerosol are typically complex mixtures, and the presence of an additional compound in the monolayer that is inert to direct ozone oxidation, stearic acid, did not significantly change the reaction kinetics. It is demonstrated that oleic acid monolayers at the air-water interface do not leave any detectable material at the air-water interface, contradicting the previous work published in this journal which the authors now believe to be erroneous. The combined results presented here indicate that the kinetics, and thus the atmospheric chemical lifetime for unsaturated surface active materials at the air-water interface to loss by reaction with gas-phase ozone, can be considered to be independent of other materials present at either the air-water interface or in the aqueous sub-phase.
Collapse
Affiliation(s)
- Martin D King
- Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Riaz S, Friedrichs G. Vibrational sum-frequency generation study of molecular structure, sterical constraints and nonlinear optical switching contrast of mixed alkyl-azobenzene self-assembled monolayers. Z PHYS CHEM 2020. [DOI: 10.1515/zpch-2020-1655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
Self-assembled monolayers (SAMs) of azobenzene (AB) functionalized alkyl thiols on gold diluted with simple alkyl thiols provide a straightforward way to photochromic surfaces with high and tunable photoswitching efficiency. Trans-cis isomerization of the AB molecule changes the physical properties of the surface, including the nonlinear optical (NLO) response. Vibrational sum-frequency generation (VSFG) spectroscopy as a nonlinear type of laser spectroscopy offers surface- and orientation-sensitive insight into the molecular structure of mixed SAMs. In this study, VSFG as well as ultraviolet-visible (UV/Vis) spectroscopy has been employed to investigate the morphology, molecular structure, and NLO response of mixed SAMs with systematically varied surface composition. Methylazobenzene (MeAB) has been used as the molecular switch with the methyl substituent serving as orientational VSFG marker. Both short-chain and long-chain alkyl thiol co-ligands have been used to gain insight into the interplay between SAM structure and sterical constraints that are known to limit the free switching volume. Underlining the dominating role of sterical effects for controlling photochromic properties, a strong inhibition of the photoswitching efficiency and NLO response has been observed for the SAMs with an alkyl thiol co-ligand long enough to spatially extend into the layer of the MeAB chromophore. Overall, with <12% signal change, the relative NLO switching contrasts remained low in all cases. VSFG spectral trends clearly revealed that the presumably higher photoswitching efficiency upon dilution with the co-ligand is counteracted by a loss of structural order of the chromophore.
Collapse
Affiliation(s)
- Saira Riaz
- Islamabad College for Girls , F-6/2 , Islamabad, 44000 , Pakistan
| | - Gernot Friedrichs
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel , Max-Eyth-Str. 1, 24118 , Kiel , Germany
| |
Collapse
|
5
|
Kohse-Höinghaus K, Troe J, Grabow JU, Olzmann M, Friedrichs G, Hungenberg KD. Kinetics in the real world: linking molecules, processes, and systems. Phys Chem Chem Phys 2018; 20:10561-10568. [PMID: 29616689 DOI: 10.1039/c8cp90054j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unravelling elementary steps, reaction pathways, and kinetic mechanisms is key to understanding the behaviour of many real-world chemical systems that span from the troposphere or even interstellar media to engines and process reactors. Recent work in chemical kinetics provides detailed information on the reactive changes occurring in chemical systems, often on the atomic or molecular scale. The optimisation of practical processes, for instance in combustion, catalysis, battery technology, polymerisation, and nanoparticle production, can profit from a sound knowledge of the underlying fundamental chemical kinetics. Reaction mechanisms can combine information gained from theory and experiments to enable the predictive simulation and optimisation of the crucial process variables and influences on the system's behaviour that may be exploited for both monitoring and control. Chemical kinetics, as one of the pillars of Physical Chemistry, thus contributes importantly to understanding and describing natural environments and technical processes and is becoming increasingly relevant for interactions in and with the real world.
Collapse
|
6
|
Tan J, Luo Y, Ye S. A Highly Sensitive Femtosecond Time-Resolved Sum Frequency Generation Vibrational Spectroscopy System with Simultaneous Measurement of Multiple Polarization Combinations. CHINESE J CHEM PHYS 2017. [DOI: 10.1063/1674-0068/30/cjcp1706114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Junjun Tan
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Shuji Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
A structural and temporal study of the surfactants behenyltrimethylammonium methosulfate and behenyltrimethylammonium chloride adsorbed at air/water and air/glass interfaces using sum frequency generation spectroscopy. J Colloid Interface Sci 2017; 488:365-372. [DOI: 10.1016/j.jcis.2016.10.092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/28/2016] [Accepted: 10/31/2016] [Indexed: 11/23/2022]
|
8
|
Wood MH, Casford MT, Steitz R, Zarbakhsh A, Welbourn RJL, Clarke SM. Comparative Adsorption of Saturated and Unsaturated Fatty Acids at the Iron Oxide/Oil Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:534-540. [PMID: 26707597 DOI: 10.1021/acs.langmuir.5b04435] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A detailed comparison of the adsorption behavior of long straight chain saturated and unsaturated fatty acids at the iron oxide/oil interface has been considered using a combination of surface study techniques. Both depletion isotherms and polarized neutron reflectometry (PNR) show that the extent of adsorption decreases as the number of double bonds in the alkyl chains increases. Sum frequency generation spectroscopic measurements demonstrate that there is also an increase in chain disorder within the adsorbed layer as the unsaturation increases. However, for the unsaturated analogues, a decrease in peak intensity is seen for the double bond peak upon heating, which is thought to arise from isomerization in the surface-bound layer. The PNR study of oleic acid adsorption indicates chemisorbed monolayer adsorption, with a further diffuse reversible adsorbed layer formed at higher concentrations.
Collapse
Affiliation(s)
- Mary H Wood
- Department of Chemistry and BP Institute, Cambridge University , Cambridge, CB2 1EW, United Kingdom
| | - M T Casford
- Department of Chemistry and BP Institute, Cambridge University , Cambridge, CB2 1EW, United Kingdom
| | - R Steitz
- Helmholtz-Zentrum Berlin für Materialien und Energie , Hahn-Meitner-Platz 1, Berlin 14109, Germany
| | - A Zarbakhsh
- School of Biological and Chemical Science, Queen Mary, University of London , Joseph Priestly Building, Mile End Road, London WC1E 7HU, United Kingdom
| | - R J L Welbourn
- Department of Chemistry and BP Institute, Cambridge University , Cambridge, CB2 1EW, United Kingdom
| | - Stuart M Clarke
- Department of Chemistry and BP Institute, Cambridge University , Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|
9
|
Qiao L, Ge A, Liang Y, Ye S. Oxidative Degradation of the Monolayer of 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphocholine (POPC) in Low-Level Ozone. J Phys Chem B 2015; 119:14188-99. [DOI: 10.1021/acs.jpcb.5b08985] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lin Qiao
- Catalysis Research Center, Hokkaido University, Sapporo 001-0021, Japan
| | - Aimin Ge
- Catalysis Research Center, Hokkaido University, Sapporo 001-0021, Japan
| | - Yimin Liang
- Catalysis Research Center, Hokkaido University, Sapporo 001-0021, Japan
| | - Shen Ye
- Catalysis Research Center, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
10
|
Zhang H, Li F, Xiao Q, Lin H. Conformation of Capping Ligands on Nanoplates: Facet-Edge-Induced Disorder and Self-Assembly-Related Ordering Revealed by Sum Frequency Generation Spectroscopy. J Phys Chem Lett 2015; 6:2170-6. [PMID: 26266587 DOI: 10.1021/acs.jpclett.5b00717] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Surface-curvature-amplified conformational disorder in alkyl capping ligands has been observed previously when the nanoparticle radii approach the ligand length. Herein, sum frequency generation studies on oleic-acid-capped nanoplates show that even on faceted surfaces with dimensions tens of times greater than the ligand length a significant proportion of gauche defects exist in the capping layer. The molecular disorder on the nanosized facets is attributed to a facet-edge effect, which is diminished when increasing the facet size or assembling the nanofacets side to side. This feature is further explored to probe the self-assembly dynamics of nanoplates.
Collapse
Affiliation(s)
- Hao Zhang
- †i-LAB, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, P. R. China
- ‡School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P.R. China
| | - Fujin Li
- †i-LAB, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Qingbo Xiao
- †i-LAB, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Hongzhen Lin
- †i-LAB, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, P. R. China
| |
Collapse
|