1
|
Han Z, Shen Z, Pei J, You Q, Zhang Q, Wang L. Transformation of peptides to small molecules in medicinal chemistry: Challenges and opportunities. Acta Pharm Sin B 2024; 14:4243-4265. [PMID: 39525591 PMCID: PMC11544290 DOI: 10.1016/j.apsb.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 11/16/2024] Open
Abstract
Peptides are native binders involved in numerous physiological life procedures, such as cellular signaling, and serve as ready-made regulators of biochemical processes. Meanwhile, small molecules compose many drugs owing to their outstanding advantages of physiochemical properties and synthetic convenience. A novel field of research is converting peptides into small molecules, providing a convenient portable solution for drug design or peptidomic research. Endowing properties of peptides onto small molecules can evolutionarily combine the advantages of both moieties and improve the biological druggability of molecules. Herein, we present eight representative recent cases in this conversion and elaborate on the transformation process of each case. We discuss the innovative technological methods and research approaches involved, and analyze the applicability conditions of the approaches and methods in each case, guiding further modifications of peptides to small molecules. Finally, based on the aforementioned cases, we summarize a general procedure for peptide-to-small molecule modifications, listing the technological methods available for each transformation step and providing our insights on the applicable scenarios for these methods. This review aims to present the progress of peptide-to-small molecule modifications and propose our thoughts and perspectives for future research in this field.
Collapse
Affiliation(s)
- Zeyu Han
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zekai Shen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jiayue Pei
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
2
|
Maruyama Y, Yoshida N. RISMiCal: A software package to perform fast RISM/3D-RISM calculations. J Comput Chem 2024; 45:1470-1482. [PMID: 38472097 DOI: 10.1002/jcc.27340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Solvent plays an essential role in a variety of chemical, physical, and biological processes that occur in the solution phase. The reference interaction site model (RISM) and its three-dimensional extension (3D-RISM) serve as powerful computational tools for modeling solvation effects in chemical reactions, biological functions, and structure formations. We present the RISM integrated calculator (RISMiCal) program package, which is based on RISM and 3D-RISM theories with fast GPU code. RISMiCal has been developed as an integrated RISM/3D-RISM program that has interfaces with external programs such as Gaussian16, GAMESS, and Tinker. Fast 3D-RISM programs for single- and multi-GPU codes written in CUDA would enhance the availability of these hybrid methods because they require the performance of many computationally expensive 3D-RISM calculations. We expect that our package can be widely applied for chemical and biological processes in solvent. The RISMiCal package is available at https://rismical-dev.github.io.
Collapse
Affiliation(s)
- Yutaka Maruyama
- Data Science Center for Creative Design and Manufacturing, The Institute of Statistical Mathematics, Tachikawa, Tokyo, Japan
- Department of Physics, School of Science and Technology, Meiji University, Kawasaki-shi, Kanagawa, Japan
| | - Norio Yoshida
- Graduate School of Informatics, Nagoya University, Chikusa, Nagoya, Japan
| |
Collapse
|
3
|
Gilson MK, Kurtzman T. Free Energy Density of a Fluid and Its Role in Solvation and Binding. J Chem Theory Comput 2024; 20:2871-2887. [PMID: 38536144 PMCID: PMC11197885 DOI: 10.1021/acs.jctc.3c01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The concept that a fluid has a position-dependent free energy density appears in the literature but has not been fully developed or accepted. We set this concept on an unambiguous theoretical footing via the following strategy. First, we set forth four desiderata that should be satisfied by any definition of the position-dependent free energy density, f(R), in a system comprising only a fluid and a rigid solute: its volume integral, plus the fixed internal energy of the solute, should be the system free energy; it deviates from its bulk value, fbulk, near a solute but should asymptotically approach fbulk with increasing distance from the solute; it should go to zero where the solvent density goes to zero; and it should be well-defined in the most general case of a fluid made up of flexible molecules with an arbitrary interaction potential. Second, we use statistical thermodynamics to formulate a definition of the free energy density that satisfies these desiderata. Third, we show how any free energy density satisfying the desiderata may be used to analyze molecular processes in solution. In particular, because the spatial integral of f(R) equals the free energy of the system, it can be used to compute free energy changes that result from the rearrangement of solutes as well as the forces exerted on the solutes by the solvent. This enables the use of a thermodynamic analysis of water in protein binding sites to inform ligand design. Finally, we discuss related literature and address published concerns regarding the thermodynamic plausibility of a position-dependent free energy density. The theory presented here has applications in theoretical and computational chemistry and may be further generalizable beyond fluids, such as to solids and macromolecules.
Collapse
Affiliation(s)
- Michael K Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, and Department of Chemistry and Biochemistry, UC San Diego, La Jolla, CA, 92093, USA
| | - Tom Kurtzman
- PhD Programs in Chemistry, Biochemistry, and Biology, The Graduate Center of the City University of New York, New York, 10016, USA; Department of Chemistry, Lehman College, The City University of New York, Bronx, New York, 10468, USA
| |
Collapse
|
4
|
Awoonor-Williams E, Abu-Saleh AAAA. Molecular Insights into the Impact of Mutations on the Binding Affinity of Targeted Covalent Inhibitors of BTK. J Phys Chem B 2024; 128:2874-2884. [PMID: 38502552 DOI: 10.1021/acs.jpcb.4c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Targeted covalent inhibitors (TCIs) have witnessed a significant resurgence in recent years, particularly in the kinase drug discovery field for treating diverse clinical indications. The inhibition of Bruton's tyrosine kinase (BTK) for treating B-cell cancers is a classic example where TCIs such as ibrutinib have had breakthroughs in targeted therapy. However, selectivity remains challenging, and the emergence of resistance mutations is a critical concern for clinical efficacy. Computational methods that can accurately predict the impact of mutations on inhibitor binding affinity could prove helpful in informing targeted approaches─providing insights into drug resistance mechanisms. In addition, such systems could help guide the systematic evaluation and impact of mutations in disease models for optimal experimental design. Here, we have employed in silico physics-based methods to understand the effects of mutations on the binding affinity and conformational dynamics of select TCIs of BTK. The TCIs studied include ibrutinib, acalabrutinib, and zanubrutinib─all of which are FDA-approved drugs for treating multiple forms of leukemia and lymphoma. Our results offer useful molecular insights into the structural determinants, thermodynamics, and conformational energies that impact ligand binding for this biological target of clinical relevance.
Collapse
Affiliation(s)
- Ernest Awoonor-Williams
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
| | - Abd Al-Aziz A Abu-Saleh
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| |
Collapse
|
5
|
Fedotova MV, Chuev GN. The Three-Dimensional Reference Interaction Site Model Approach as a Promising Tool for Studying Hydrated Viruses and Their Complexes with Ligands. Int J Mol Sci 2024; 25:3697. [PMID: 38612508 PMCID: PMC11011341 DOI: 10.3390/ijms25073697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Viruses are the most numerous biological form living in any ecosystem. Viral diseases affect not only people but also representatives of fauna and flora. The latest pandemic has shown how important it is for the scientific community to respond quickly to the challenge, including critically assessing the viral threat and developing appropriate measures to counter this threat. Scientists around the world are making enormous efforts to solve these problems. In silico methods, which allow quite rapid obtention of, in many cases, accurate information in this field, are effective tools for the description of various aspects of virus activity, including virus-host cell interactions, and, thus, can provide a molecular insight into the mechanism of virus functioning. The three-dimensional reference interaction site model (3D-RISM) seems to be one of the most effective and inexpensive methods to compute hydrated viruses, since the method allows us to provide efficient calculations of hydrated viruses, remaining all molecular details of the liquid environment and virus structure. The pandemic challenge has resulted in a fast increase in the number of 3D-RISM calculations devoted to hydrated viruses. To provide readers with a summary of this literature, we present a systematic overview of the 3D-RISM calculations, covering the period since 2010. We discuss various biophysical aspects of the 3D-RISM results and demonstrate capabilities, limitations, achievements, and prospects of the method using examples of viruses such as influenza, hepatitis, and SARS-CoV-2 viruses.
Collapse
Affiliation(s)
- Marina V. Fedotova
- G.A. Krestov Institute of Solution Chemistry, The Russian Academy of Sciences, Akademicheskaya St., 1, 153045 Ivanovo, Russia
| | - Gennady N. Chuev
- Institute of Theoretical and Experimental Biophysics, The Russian Academy of Sciences, Institutskaya St., 142290 Pushchino, Russia
| |
Collapse
|
6
|
Halim SA, Waqas M, Khan A, Ogaly HA, Othman G, Al-Harrasi A. Identification of potential agonist-like molecules for α2-adrenergic receptor by multi-layer virtual screening to combat sinusitis. Comput Biol Med 2023; 167:107693. [PMID: 37976818 DOI: 10.1016/j.compbiomed.2023.107693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Sinusitis is one of the most common respiratory inflammatory conditions and a significant health issue that affects millions of people worldwide with a global prevalence of 10-15%. The side effects of available drug regimens of sinus infection demand the urgent development of new drug candidates to combat sinusitis. With the aim of identifying new drug-like candidates to control sinus, we have conducted multifold comprehensive screening of drug-like molecules targeting α2-adrenergic receptor (α2-AR), which serve as the primary drug target in sinusitis. By structure-based virtual screening of in-house compound's database, ten molecules (CP1-CP10) with agonistic effects for α2-AR were selected, and their binding mechanism with critical residues of α2-AR and their physicochemical properties were studied. Moreover, the process of receptor activation by these compounds and the conformational changes in α2-AR caused by these molecules, were further explored by molecular dynamic simulation. The MM-PBSA estimated free energies of compounds are higher than that of reference agonist (ΔGTOTAL = -39.0 kcal/mol). Among all, CP2-CP3, CP7-CP8 and CP6 have the highest binding free energies of -78.9 kcal/mol, -77.3 kcal/mol, -75.60 kcal/mol, -64.8 kcal/mol, and -61.6 kcal/mol, respectively. While CP4 (-55.0 kcal/mol), CP5 (-49.2 kcal/mol), CP9 (-54.8 ± 0.07 kcal/mol), CP10 (-56.7 ± 0.10 kcal/mol) and CP1 (-46.0 ± 0.08 kcal/mol) also exhibited significant binding free energies. These energetically favorable binding energies indicate strong binding affinity of our compounds for α2-AR as compared to known partial agonist. Therefore, these molecules can serve as excellent drug-like candidates for sinusitis.
Collapse
Affiliation(s)
- Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mouz, Nizwa, 616, Oman.
| | - Muhammad Waqas
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mouz, Nizwa, 616, Oman; Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Dhodial, 21120, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mouz, Nizwa, 616, Oman
| | - Hanan A Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Gehan Othman
- Biology Department, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mouz, Nizwa, 616, Oman.
| |
Collapse
|
7
|
Li Y, Zhang Z, Wang R. HydraMap v.2: Prediction of Hydration Sites and Desolvation Energy with Refined Statistical Potentials. J Chem Inf Model 2023; 63:4749-4761. [PMID: 37433022 DOI: 10.1021/acs.jcim.3c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The complex network of water molecules within the binding pocket of a target protein undergoes alterations upon ligand binding, presenting a significant challenge for conventional molecular modeling methods to accurately characterize and compute the associated energy changes. We have previously developed an empirical method, HydraMap (J. Chem. Inf. Model. 2020, 60, 4359-4375), which employs statistical potentials to predict hydration sites and compute desolvation energy, achieving a reasonable balance between accuracy and speed. In this work, we present its improved version, namely, HydraMap v.2. We updated the statistical potentials for protein-water interactions through an analysis of 17 042 crystal protein structures. We also introduced a new feature to evaluate ligand-water interactions by incorporating statistical potentials derived from the solvated structures of 9878 small organic molecules produced by molecular dynamics simulations. By combining these potentials, HydraMap v.2 can predict and compare the hydration sites in a binding pocket before and after ligand binding, identifying key water molecules involved in the binding process, such as those forming bridging hydrogen bonds and unstable ones that can be replaced. We demonstrated the application of HydraMap v.2 in explaining the structure-activity relationship of a panel of MCL-1 inhibitors. The desolvation energies calculated by summing the energy change of each hydration site before and after ligand binding showed good correlation with known ligand binding affinities on six target proteins. In conclusion, HydraMap v.2 offers a cost-effective solution for estimating the desolvation energy during protein-ligand binding and also is practical in guiding lead optimization in structure-based drug discovery.
Collapse
Affiliation(s)
- Yan Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Zhe Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Renxiao Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| |
Collapse
|
8
|
Eberhardt J, Forli S. WaterKit: Thermodynamic Profiling of Protein Hydration Sites. J Chem Theory Comput 2023; 19:2535-2556. [PMID: 37094087 PMCID: PMC10732097 DOI: 10.1021/acs.jctc.2c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Water desolvation is one of the key components of the free energy of binding of small molecules to their receptors. Thus, understanding the energetic balance of solvation and desolvation resulting from individual water molecules can be crucial when estimating ligand binding, especially when evaluating different molecules and poses as done in High-Throughput Virtual Screening (HTVS). Over the most recent decades, several methods were developed to tackle this problem, ranging from fast approximate methods (usually empirical functions using either discrete atom-atom pairwise interactions or continuum solvent models) to more computationally expensive and accurate ones, mostly based on Molecular Dynamics (MD) simulations, such as Grid Inhomogeneous Solvation Theory (GIST) or Double Decoupling. On one hand, MD-based methods are prohibitive to use in HTVS to estimate the role of waters on the fly for each ligand. On the other hand, fast and approximate methods show an unsatisfactory level of accuracy, with low agreement with results obtained with the more expensive methods. Here we introduce WaterKit, a new grid-based sampling method with explicit water molecules to calculate thermodynamic properties using the GIST method. Our results show that the discrete placement of water molecules is successful in reproducing the position of crystallographic waters with very high accuracy, as well as providing thermodynamic estimates with accuracy comparable to more expensive MD simulations. Unlike these methods, WaterKit can be used to analyze specific regions on the protein surface, (such as the binding site of a receptor), without having to hydrate and simulate the whole receptor structure. The results show the feasibility of a general and fast method to compute thermodynamic properties of water molecules, making it well-suited to be integrated in high-throughput pipelines such as molecular docking.
Collapse
Affiliation(s)
- Jerome Eberhardt
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, United States
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
9
|
Shin W, Yang ZJ. Computational Strategies for Entropy Modeling in Chemical Processes. Chem Asian J 2023; 18:e202300117. [PMID: 36882367 DOI: 10.1002/asia.202300117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023]
Abstract
Computational simulations of entropy are important in understanding the thermodynamic forces that drive chemical reactions on a molecular scale. In recent years, various algorithms have been developed and applied in conjunction with molecular modeling techniques to evaluate the change of entropy in solvation, hydrophobic interactions, and chemical reactions. The aim of this review is to highlight four specific computational entropy calculation methods: normal mode analysis, free volume theory, two-phase thermodynamics, and configurational entropy modeling. The technical aspects, applications, and limitations of each method will be discussed in detail.
Collapse
Affiliation(s)
- Wook Shin
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, 37235, United States
| | - Zhongyue J Yang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, 37235, United States.,Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, 37235, United States.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, 37235, United States.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, 37235, United States.,Data Science Institute, Vanderbilt University, Nashville, Tennessee, 37235, United States
| |
Collapse
|
10
|
Hirata F. Generalized Langevin Mode Analysis (GLMA) for Local Density Fluctuation of Water in an Inhomogeneous Field of a Biomolecule. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
11
|
Kruchinin SE, Kislinskaya EE, Chuev GN, Fedotova MV. Protein 3D Hydration: A Case of Bovine Pancreatic Trypsin Inhibitor. Int J Mol Sci 2022; 23:ijms232314785. [PMID: 36499117 PMCID: PMC9737982 DOI: 10.3390/ijms232314785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Characterization of the hydrated state of a protein is crucial for understanding its structural stability and function. In the present study, we have investigated the 3D hydration structure of the protein BPTI (bovine pancreatic trypsin inhibitor) by molecular dynamics (MD) and the integral equation method in the three-dimensional reference interaction site model (3D-RISM) approach. Both methods have found a well-defined hydration layer around the protein and revealed the localization of BPTI buried water molecules corresponding to the X-ray crystallography data. Moreover, under 3D-RISM calculations, the obtained positions of waters bound firmly to the BPTI sites are in reasonable agreement with the experimental results mentioned above for the BPTI crystal form. The analysis of the 3D hydration structure (thickness of hydration shell and hydration numbers) was performed for the entire protein and its polar and non-polar parts using various cut-off distances taken from the literature as well as by a straightforward procedure proposed here for determining the thickness of the hydration layer. Using the thickness of the hydration shell from this procedure allows for calculating the total hydration number of biomolecules properly under both methods. Following this approach, we have obtained the thickness of the BPTI hydration layer of 3.6 Å with 369 water molecules in the case of MD simulation and 3.9 Å with 333 water molecules in the case of the 3D-RISM approach. The above procedure was also applied for a more detailed description of the BPTI hydration structure near the polar charged and uncharged radicals as well as non-polar radicals. The results presented for the BPTI as an example bring new knowledge to the understanding of protein hydration.
Collapse
Affiliation(s)
- Sergey E. Kruchinin
- G.A. Krestov Institute of Solution Chemistry, The Russian Academy of Sciences, Akademicheskaya St., 1, 153045 Ivanovo, Russia
| | - Ekaterina E. Kislinskaya
- Department of Fundamental and Applied Chemistry, Institute of Mathematics, Information Technology and Science, Ivanovo State University, Ermak St., 39, 153025 Ivanovo, Russia
| | - Gennady N. Chuev
- Institute of Theoretical and Experimental Biophysics, The Russian Academy of Sciences, Institutskaya St., Pushchino, 142290 Moscow, Russia
- Correspondence: (G.N.C.); (M.V.F.)
| | - Marina V. Fedotova
- G.A. Krestov Institute of Solution Chemistry, The Russian Academy of Sciences, Akademicheskaya St., 1, 153045 Ivanovo, Russia
- Correspondence: (G.N.C.); (M.V.F.)
| |
Collapse
|
12
|
Hauseman ZJ, Fodor M, Dhembi A, Viscomi J, Egli D, Bleu M, Katz S, Park E, Jang DM, Porter KA, Meili F, Guo H, Kerr G, Mollé S, Velez-Vega C, Beyer KS, Galli GG, Maira SM, Stams T, Clark K, Eck MJ, Tordella L, Thoma CR, King DA. Structure of the MRAS-SHOC2-PP1C phosphatase complex. Nature 2022; 609:416-423. [PMID: 35830882 PMCID: PMC9452295 DOI: 10.1038/s41586-022-05086-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/07/2022] [Indexed: 11/09/2022]
Abstract
RAS-MAPK signalling is fundamental for cell proliferation and is altered in most human cancers1-3. However, our mechanistic understanding of how RAS signals through RAF is still incomplete. Although studies revealed snapshots for autoinhibited and active RAF-MEK1-14-3-3 complexes4, the intermediate steps that lead to RAF activation remain unclear. The MRAS-SHOC2-PP1C holophosphatase dephosphorylates RAF at serine 259, resulting in the partial displacement of 14-3-3 and RAF-RAS association3,5,6. MRAS, SHOC2 and PP1C are mutated in rasopathies-developmental syndromes caused by aberrant MAPK pathway activation6-14-and SHOC2 itself has emerged as potential target in receptor tyrosine kinase (RTK)-RAS-driven tumours15-18. Despite its importance, structural understanding of the SHOC2 holophosphatase is lacking. Here we determine, using X-ray crystallography, the structure of the MRAS-SHOC2-PP1C complex. SHOC2 bridges PP1C and MRAS through its concave surface and enables reciprocal interactions between all three subunits. Biophysical characterization indicates a cooperative assembly driven by the MRAS GTP-bound active state, an observation that is extendible to other RAS isoforms. Our findings support the concept of a RAS-driven and multi-molecular model for RAF activation in which individual RAS-GTP molecules recruit RAF-14-3-3 and SHOC2-PP1C to produce downstream pathway activation. Importantly, we find that rasopathy and cancer mutations reside at protein-protein interfaces within the holophosphatase, resulting in enhanced affinities and function. Collectively, our findings shed light on a fundamental mechanism of RAS biology and on mechanisms of clinically observed enhanced RAS-MAPK signalling, therefore providing the structural basis for therapeutic interventions.
Collapse
Affiliation(s)
| | - Michelle Fodor
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Anxhela Dhembi
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Jessica Viscomi
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - David Egli
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Melusine Bleu
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stephanie Katz
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Eunyoung Park
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Dong Man Jang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Fabian Meili
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Hongqiu Guo
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Grainne Kerr
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Sandra Mollé
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Kim S Beyer
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Giorgio G Galli
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Travis Stams
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Kirk Clark
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Michael J Eck
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Luca Tordella
- Novartis Institutes for BioMedical Research, Basel, Switzerland.
| | - Claudio R Thoma
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA.
| | - Daniel A King
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA.
| |
Collapse
|
13
|
Halim SA, Waqas M, Asim A, Khan M, Khan A, Al-Harrasi A. Discovering novel inhibitors of P2Y12 receptor using structure-based virtual screening, molecular dynamics simulation and MMPBSA approaches. Comput Biol Med 2022; 147:105743. [DOI: 10.1016/j.compbiomed.2022.105743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
|
14
|
Dickson CJ, Hornak V, Duca JS. Relative Binding Free-Energy Calculations at Lipid-Exposed Sites: Deciphering Hot Spots. J Chem Inf Model 2021; 61:5923-5930. [PMID: 34843243 DOI: 10.1021/acs.jcim.1c01147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Relative binding free-energy (RBFE) calculations are experiencing resurgence in the computer-aided drug design of novel small molecules due to performance gains allowed by cutting-edge molecular mechanic force fields and computer hardware. Application of RBFE to soluble proteins is becoming a routine, while recent studies outline necessary steps to successfully apply RBFE at the orthosteric site of membrane-embedded G-protein-coupled receptors (GPCRs). In this work, we apply RBFE to a congeneric series of antagonists that bind to a lipid-exposed, extra-helical site of the P2Y1 receptor. We find promising performance of RBFE, such that it may be applied in a predictive manner on drug discovery programs targeting lipid-exposed sites. Further, by the application of the microkinetic model, binding at a lipid-exposed site can be split into (1) membrane partitioning of the drug molecule followed by (2) binding at the extra-helical site. We find that RBFE can be applied to calculate the free energy of each step, allowing the uncoupling of observed binding free energy from the influence of membrane affinity. This protocol may be used to identify binding hot spots at extra-helical sites and guide drug discovery programs toward optimizing intrinsic activity at the target.
Collapse
Affiliation(s)
- Callum J Dickson
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Viktor Hornak
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jose S Duca
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Liu C, Brini E, Dill KA. Accelerating Molecular Dynamics Enrichments of High-Affinity Ligands for Proteins. J Chem Theory Comput 2021; 18:374-379. [PMID: 34877865 DOI: 10.1021/acs.jctc.1c00855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular docking algorithms are used to seek the most active compounds from a pool of ligands. In principle, molecular dynamics (MD) simulations with accurate physical potentials and sampling could yield better enrichments, but they are computationally expensive. Here, we describe a method called MELD-Bracket that utilizes biased replica exchange ladders in MD in order to compete different ligands against each other within a fast bracket style "binding tournament". MELD-Bracket finds best-binders rapidly when ligands are well separated in their binding affinities.
Collapse
Affiliation(s)
- Cong Liu
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States.,Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| | - Emiliano Brini
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Ken A Dill
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States.,Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States.,Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11790, United States
| |
Collapse
|
16
|
Benchmarking Free Energy Calculations in Liquid Aliphatic Ketone Solvents Using the 3D-RISM-KH Molecular Solvation Theory. J 2021. [DOI: 10.3390/j4040044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The three-dimensional reference interaction site model of the molecular solvation theory with the Kovalenko–Hirata closure is used to calculate the free energy of solvation of organic solutes in liquid aliphatic ketones. The ketone solvent sites were modeled using a modified united-atom force field. The successful application of these solvation models in calculating ketone–water partition coefficients of a large number of solutes supports the validation and benchmarking reported here.
Collapse
|
17
|
Borgis D, Luukkonen S, Belloni L, Jeanmairet G. Accurate prediction of hydration free energies and solvation structures using molecular density functional theory with a simple bridge functional. J Chem Phys 2021; 155:024117. [PMID: 34266282 DOI: 10.1063/5.0057506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This paper assesses the ability of molecular density functional theory to predict efficiently and accurately the hydration free energies of molecular solutes and the surrounding microscopic water structure. A wide range of solutes were investigated, including hydrophobes, water as a solute, and the FreeSolv database containing 642 drug-like molecules having a variety of shapes and sizes. The usual second-order approximation of the theory is corrected by a third-order, angular-independent bridge functional. The overall functional is parameter-free in the sense that the only inputs are bulk water properties, independent of the solutes considered. These inputs are the direct correlation function, compressibility, liquid-gas surface tension, and excess chemical potential of the solvent. Compared to molecular simulations with the same force field and the same fixed solute geometries, the present theory is shown to describe accurately the solvation free energy and structure of both hydrophobic and hydrophilic solutes. Overall, the method yields a precision of order 0.5 kBT for the hydration free energies of the FreeSolv database, with a computer speedup of 3 orders of magnitude. The theory remains to be improved for a better description of the H-bonding structure and the hydration free energy of charged solutes.
Collapse
Affiliation(s)
- Daniel Borgis
- Maison de la Simulation, USR 3441 CNRS-CEA-Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Sohvi Luukkonen
- Maison de la Simulation, USR 3441 CNRS-CEA-Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Luc Belloni
- Universié Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - Guillaume Jeanmairet
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| |
Collapse
|
18
|
Field-Template, QSAR, Ensemble Molecular Docking, and 3D-RISM Solvation Studies Expose Potential of FDA-Approved Marine Drugs as SARS-CoVID-2 Main Protease Inhibitors. Molecules 2021; 26:molecules26040936. [PMID: 33578831 PMCID: PMC7916619 DOI: 10.3390/molecules26040936] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 02/07/2023] Open
Abstract
Currently, SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) has infected people among all countries and is a pandemic as declared by the World Health Organization (WHO). SARS-CoVID-2 main protease is one of the therapeutic drug targets that has been shown to reduce virus replication, and its high-resolution 3D structures in complex with inhibitors have been solved. Previously, we had demonstrated the potential of natural compounds such as serine protease inhibitors eventually leading us to hypothesize that FDA-approved marine drugs have the potential to inhibit the biological activity of SARS-CoV-2 main protease. Initially, field-template and structure–activity atlas models were constructed to understand and explain the molecular features responsible for SARS-CoVID-2 main protease inhibitors, which revealed that Eribulin Mesylate, Plitidepsin, and Trabectedin possess similar characteristics related to SARS-CoVID-2 main protease inhibitors. Later, protein–ligand interactions are studied using ensemble molecular-docking simulations that revealed that marine drugs bind at the active site of the main protease. The three-dimensional reference interaction site model (3D-RISM) studies show that marine drugs displace water molecules at the active site, and interactions observed are favorable. These computational studies eventually paved an interest in further in vitro studies. Finally, these findings are new and indeed provide insights into the role of FDA-approved marine drugs, which are already in clinical use for cancer treatment as a potential alternative to prevent and treat infected people with SARS-CoV-2.
Collapse
|
19
|
Spitaleri A, Zia SR, Di Micco P, Al-Lazikani B, Soler MA, Rocchia W. Tuning Local Hydration Enables a Deeper Understanding of Protein-Ligand Binding: The PP1-Src Kinase Case. J Phys Chem Lett 2021; 12:49-58. [PMID: 33300337 PMCID: PMC7812613 DOI: 10.1021/acs.jpclett.0c03075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/03/2020] [Indexed: 05/13/2023]
Abstract
Water plays a key role in biomolecular recognition and binding. Despite the development of several computational and experimental approaches, it is still challenging to comprehensively characterize water-mediated effects on the binding process. Here, we investigate how water affects the binding of Src kinase to one of its inhibitors, PP1. Src kinase is a target for treating several diseases, including cancer. We use biased molecular dynamics simulations, where the hydration of predetermined regions is tuned at will. This computational technique efficiently accelerates the SRC-PP1 binding simulation and allows us to identify several key and yet unexplored aspects of the solvent's role. This study provides a further perspective on the binding phenomenon, which may advance the current drug design approaches for the development of new kinase inhibitors.
Collapse
Affiliation(s)
- Andrea Spitaleri
- CONCEPT
Lab, Istituto Italiano di Tecnologia, via Morego 30, Genoa I-16163, Italy
- Center
for Omics Sciences, Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Syeda R. Zia
- CONCEPT
Lab, Istituto Italiano di Tecnologia, via Morego 30, Genoa I-16163, Italy
- Dr.
Panjwani Center for Molecular Medicine and Drug Research, International
Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Patrizio Di Micco
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Bissan Al-Lazikani
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Miguel A. Soler
- CONCEPT
Lab, Istituto Italiano di Tecnologia, via Morego 30, Genoa I-16163, Italy
| | - Walter Rocchia
- CONCEPT
Lab, Istituto Italiano di Tecnologia, via Morego 30, Genoa I-16163, Italy
| |
Collapse
|
20
|
Sugita M, Onishi I, Irisa M, Yoshida N, Hirata F. Molecular Recognition and Self-Organization in Life Phenomena Studied by a Statistical Mechanics of Molecular Liquids, the RISM/3D-RISM Theory. Molecules 2021; 26:E271. [PMID: 33430461 PMCID: PMC7826681 DOI: 10.3390/molecules26020271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 11/18/2022] Open
Abstract
There are two molecular processes that are essential for living bodies to maintain their life: the molecular recognition, and the self-organization or self-assembly. Binding of a substrate by an enzyme is an example of the molecular recognition, while the protein folding is a good example of the self-organization process. The two processes are further governed by the other two physicochemical processes: solvation and the structural fluctuation. In the present article, the studies concerning the two molecular processes carried out by Hirata and his coworkers, based on the statistical mechanics of molecular liquids or the RISM/3D-RISM theory, are reviewed.
Collapse
Affiliation(s)
- Masatake Sugita
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, W8-76, 2-12-1, Ookayama Meguro-ku, Tokyo 152-8550, Japan;
| | - Itaru Onishi
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan; (I.O.); (M.I.)
| | - Masayuki Irisa
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan; (I.O.); (M.I.)
| | - Norio Yoshida
- Department of Chemistry, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan;
| | - Fumio Hirata
- Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
21
|
Ghanbarpour A, Mahmoud AH, Lill MA. Instantaneous generation of protein hydration properties from static structures. Commun Chem 2020; 3:188. [PMID: 36703451 PMCID: PMC9814540 DOI: 10.1038/s42004-020-00435-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/10/2020] [Indexed: 01/29/2023] Open
Abstract
Complex molecular simulation methods are typically required to calculate the thermodynamic properties of biochemical systems. One example thereof is the thermodynamic profiling of (de)solvation of proteins, which is an essential driving force for protein-ligand and protein-protein binding. The thermodynamic state of water molecules depends on its enthalpic and entropic components; the latter is governed by dynamic properties of the molecule. Here, we developed, to the best of our knowledge, two novel machine learning methods based on deep neural networks that are able to generate the converged thermodynamic state of dynamic water molecules in the heterogeneous protein environment based solely on the information of the static protein structure. The applicability of our machine learning methods to predict the hydration information is demonstrated in two different studies, the qualitative analysis and quantitative prediction of structure-activity relationships, and the prediction of protein-ligand binding modes.
Collapse
Affiliation(s)
- Ahmadreza Ghanbarpour
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47906, USA
| | - Amr H Mahmoud
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47906, USA
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Markus A Lill
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47906, USA.
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| |
Collapse
|
22
|
Sirohiwal A, Neese F, Pantazis DA. Protein Matrix Control of Reaction Center Excitation in Photosystem II. J Am Chem Soc 2020; 142:18174-18190. [PMID: 33034453 PMCID: PMC7582616 DOI: 10.1021/jacs.0c08526] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Indexed: 02/06/2023]
Abstract
Photosystem II (PSII) is a multisubunit pigment-protein complex that uses light-induced charge separation to power oxygenic photosynthesis. Its reaction center chromophores, where the charge transfer cascade is initiated, are arranged symmetrically along the D1 and D2 core polypeptides and comprise four chlorophyll (PD1, PD2, ChlD1, ChlD2) and two pheophytin molecules (PheoD1 and PheoD2). Evolution favored productive electron transfer only via the D1 branch, with the precise nature of primary excitation and the factors that control asymmetric charge transfer remaining under investigation. Here we present a detailed atomistic description for both. We combine large-scale simulations of membrane-embedded PSII with high-level quantum-mechanics/molecular-mechanics (QM/MM) calculations of individual and coupled reaction center chromophores to describe reaction center excited states. We employ both range-separated time-dependent density functional theory and the recently developed domain based local pair natural orbital (DLPNO) implementation of the similarity transformed equation of motion coupled cluster theory with single and double excitations (STEOM-CCSD), the first coupled cluster QM/MM calculations of the reaction center. We find that the protein matrix is exclusively responsible for both transverse (chlorophylls versus pheophytins) and lateral (D1 versus D2 branch) excitation asymmetry, making ChlD1 the chromophore with the lowest site energy. Multipigment calculations show that the protein matrix renders the ChlD1 → PheoD1 charge-transfer the lowest energy excitation globally within the reaction center, lower than any pigment-centered local excitation. Remarkably, no low-energy charge transfer states are located within the "special pair" PD1-PD2, which is therefore excluded as the site of initial charge separation in PSII. Finally, molecular dynamics simulations suggest that modulation of the electrostatic environment due to protein conformational flexibility enables direct excitation of low-lying charge transfer states by far-red light.
Collapse
Affiliation(s)
- Abhishek Sirohiwal
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fakultät
für Chemie und Biochemie, Ruhr-Universität
Bochum, 44780 Bochum, Germany
| | - Frank Neese
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
23
|
Comparing Fragment Binding Poses Prediction Using HSP90 as a Key Study: When Bound Water Makes the Difference. Molecules 2020; 25:molecules25204651. [PMID: 33053878 PMCID: PMC7587341 DOI: 10.3390/molecules25204651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/03/2022] Open
Abstract
Fragment-Based Drug Discovery (FBDD) approaches have gained popularitynot only in industry but also in academic research institutes. However, the computational prediction of the binding mode adopted by fragment-like molecules within a protein binding site is still a very challenging task. One of the most crucial aspects of fragment binding is related to the large amounts of bound waters in the targeted binding pocket. The binding affinity of fragmentsmay not be sufficientto displace the bound water molecules. In the present work, we confirmed the importance of the bound water molecules in the correct prediction of the fragment binding mode. Moreover, we investigate whether the use of methods based on explicit solvent molecular dynamics simulations can improve the accuracy of fragment posing. The protein chosen for this study is HSP-90.
Collapse
|
24
|
Shah B, Sindhikara D, Borrelli K, Leffler AE. Water Thermodynamics of Peptide Toxin Binding Sites on Ion Channels. Toxins (Basel) 2020; 12:toxins12100652. [PMID: 33053750 PMCID: PMC7599640 DOI: 10.3390/toxins12100652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/21/2020] [Accepted: 10/09/2020] [Indexed: 12/20/2022] Open
Abstract
Peptide toxins isolated from venomous creatures, long prized as research tools due to their innate potency for ion channels, are emerging as drugs as well. However, it remains challenging to understand why peptide toxins bind with high potency to ion channels, to identify residues that are key for activity, and to improve their affinities via mutagenesis. We use WaterMap, a molecular dynamics simulation-based method, to gain computational insight into these three questions by calculating the locations and thermodynamic properties of water molecules in the peptide toxin binding sites of five ion channels. These include an acid-sensing ion channel, voltage-gated potassium channel, sodium channel in activated and deactivated states, transient-receptor potential channel, and a nicotinic receptor whose structures were recently determined by crystallography and cryo-electron microscopy (cryo-EM). All channels had water sites in the peptide toxin binding site, and an average of 75% of these sites were stable (low-energy), and 25% were unstable (medium or high energy). For the sodium channel, more unstable water sites were present in the deactivated state structure than the activated. Additionally, for each channel, unstable water sites coincided with the positions of peptide toxin residues that previous mutagenesis experiments had shown were important for activity. Finally, for the sodium channel in the deactivated state, unstable water sites were present in the peptide toxin binding pocket but did not overlap with the peptide toxin, suggesting that future experimental efforts could focus on targeting these sites to optimize potency.
Collapse
Affiliation(s)
- Binita Shah
- Schrödinger, Inc. 120 W. 45th St, New York, NY 10036, USA; (B.S.); (D.S.); (K.B.)
- PhD Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Dan Sindhikara
- Schrödinger, Inc. 120 W. 45th St, New York, NY 10036, USA; (B.S.); (D.S.); (K.B.)
| | - Ken Borrelli
- Schrödinger, Inc. 120 W. 45th St, New York, NY 10036, USA; (B.S.); (D.S.); (K.B.)
| | - Abba E. Leffler
- Schrödinger, Inc. 120 W. 45th St, New York, NY 10036, USA; (B.S.); (D.S.); (K.B.)
- Correspondence:
| |
Collapse
|
25
|
Li Y, Gao Y, Holloway MK, Wang R. Prediction of the Favorable Hydration Sites in a Protein Binding Pocket and Its Application to Scoring Function Formulation. J Chem Inf Model 2020; 60:4359-4375. [DOI: 10.1021/acs.jcim.9b00619] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yan Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People’s Republic of China
| | - Yingduo Gao
- Merck Research Laboratories, 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
- Merck Research Laboratories, 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | | | - Renxiao Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People’s Republic of China
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
- Shanxi Key Laboratory of Innovative Drugs for the Treatment of Serious Diseases Basing on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi 030619, People’s Republic of China
| |
Collapse
|
26
|
Luukkonen S, Levesque M, Belloni L, Borgis D. Hydration free energies and solvation structures with molecular density functional theory in the hypernetted chain approximation. J Chem Phys 2020; 152:064110. [DOI: 10.1063/1.5142651] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Sohvi Luukkonen
- Maison de la Simulation, USR 3441 CNRS-CEA-Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Maximilien Levesque
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Luc Belloni
- LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Daniel Borgis
- Maison de la Simulation, USR 3441 CNRS-CEA-Université Paris-Saclay, 91191 Gif-sur-Yvette, France
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
27
|
Mitusińska K, Raczyńska A, Bzówka M, Bagrowska W, Góra A. Applications of water molecules for analysis of macromolecule properties. Comput Struct Biotechnol J 2020; 18:355-365. [PMID: 32123557 PMCID: PMC7036622 DOI: 10.1016/j.csbj.2020.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/26/2020] [Accepted: 02/01/2020] [Indexed: 01/12/2023] Open
Abstract
Water molecules maintain proteins' structures, functions, stabilities and dynamics. They can occupy certain positions or pass quickly via a protein's interior. Regardless of their behaviour, water molecules can be used for the analysis of proteins' structural features and biochemical properties. Here, we present a list of several software programs that use the information provided by water molecules to: i) analyse protein structures and provide the optimal positions of water molecules for protein hydration, ii) identify high-occupancy water sites in order to analyse ligand binding modes, and iii) detect and describe tunnels and cavities. The analysis of water molecules' distribution and trajectories sheds a light on proteins' interactions with small molecules, on the dynamics of tunnels and cavities, on protein composition and also on the functionality, transportation network and location of functionally relevant residues. Finally, the correct placement of water molecules in protein crystal structures can significantly improve the reliability of molecular dynamics simulations.
Collapse
Affiliation(s)
| | | | | | | | - Artur Góra
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, Gliwice, Poland
| |
Collapse
|
28
|
Mahmoud AH, Masters MR, Yang Y, Lill MA. Elucidating the multiple roles of hydration for accurate protein-ligand binding prediction via deep learning. Commun Chem 2020; 3:19. [PMID: 36703428 PMCID: PMC9814895 DOI: 10.1038/s42004-020-0261-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/16/2020] [Indexed: 01/29/2023] Open
Abstract
Accurate and efficient prediction of protein-ligand interactions has been a long-lasting dream of practitioners in drug discovery. The insufficient treatment of hydration is widely recognized to be a major limitation for accurate protein-ligand scoring. Using an integration of molecular dynamics simulations on thousands of protein structures with novel big-data analytics based on convolutional neural networks and deep Taylor decomposition, we consistently identify here three different patterns of hydration to be essential for protein-ligand interactions. In addition to desolvation and water-mediated interactions, the formation of enthalpically favorable networks of first-shell water molecules around solvent-exposed ligand moieties is identified to be essential for protein-ligand binding. Despite being currently neglected in drug discovery, this hydration phenomenon could lead to new avenues in optimizing the free energy of ligand binding. Application of deep neural networks incorporating hydration to docking provides 89% accuracy in binding pose ranking, an essential step for rational structure-based drug design.
Collapse
Affiliation(s)
- Amr H. Mahmoud
- grid.169077.e0000 0004 1937 2197Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906 USA
| | - Matthew R. Masters
- grid.169077.e0000 0004 1937 2197Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906 USA
| | - Ying Yang
- grid.169077.e0000 0004 1937 2197Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906 USA
| | - Markus A. Lill
- grid.169077.e0000 0004 1937 2197Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906 USA ,grid.6612.30000 0004 1937 0642Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
29
|
Bodnarchuk MS, Packer MJ, Haywood A. Utilizing Grand Canonical Monte Carlo Methods in Drug Discovery. ACS Med Chem Lett 2020; 11:77-82. [PMID: 31938467 DOI: 10.1021/acsmedchemlett.9b00499] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/11/2019] [Indexed: 12/17/2022] Open
Abstract
The concepts behind targeting waters for potency and selectivity gains have been well documented and explored, although maximizing such potential gains can prove to be challenging. This problem is exacerbated in cases where there are multiple interacting waters, wherein perturbation of one water can affect the free energy landscape of the remaining waters. Knowing the right modification a priori is challenging, and computational approaches are ideally suited to help answer the key question of which substitution is best to try. Here, we use Grand Canonical Monte Carlo and the recent Grand Canonical Alchemical Perturbation methods to both understand and predict the effect of ligand-mediated water displacement when more than one water molecule is involved, as well as to understand how exploiting water networks can help govern selectivity.
Collapse
Affiliation(s)
- Michael S. Bodnarchuk
- Computational Chemistry, R&D Oncology, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Martin J. Packer
- Computational Chemistry, R&D Oncology, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Alexe Haywood
- Computational Chemistry, R&D Oncology, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| |
Collapse
|
30
|
He P, Sarkar S, Gallicchio E, Kurtzman T, Wickstrom L. Role of Displacing Confined Solvent in the Conformational Equilibrium of β-Cyclodextrin. J Phys Chem B 2019; 123:8378-8386. [PMID: 31509409 DOI: 10.1021/acs.jpcb.9b07028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study investigates the role of hydration and its relationship to the conformational equilibrium of the host molecule β-cyclodextrin. Molecular dynamics simulations indicate that the unbound β-cyclodextrin exhibits two state behavior in explicit solvent due to the opening and closing of its cavity. In implicit solvent, these transitions are not observed, and there is one dominant conformation of β-cyclodextrin with an open cavity. Based on these observations, we investigate the hypothesis that the expulsion of thermodynamically unfavorable water molecules into the bulk plays an important role in controlling the accessibility of the closed macrostate at room temperature. We compare the results of the molecular mechanics analytical generalized Born plus nonpolar solvation approach to those obtained through grid inhomogeneous solvation theory analysis with explicit solvation to elucidate the thermodynamic forces at play. The work illustrates the use of continuum solvent models to tease out solvation effects related to the inhomogeneity and the molecular nature of water and demonstrates the key role of the thermodynamics of enclosed hydration in driving the conformational equilibrium of molecules in solution.
Collapse
Affiliation(s)
- Peng He
- Center for Biophysics & Computational Biology/ICMS, Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Sheila Sarkar
- Department of Science , Borough of Manhattan Community College, The City University of New York , New York , New York 10007 , United States
| | - Emilio Gallicchio
- Department of Chemistry , Brooklyn College, The City University of New York , Brooklyn , New York 11210 , United States.,Ph.D. Programs in Chemistry & Biochemistry , The Graduate Center of the City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States
| | - Tom Kurtzman
- Department of Chemistry , Lehman College, The City University of New York , Bronx , New York 10468 , United States.,Ph.D. Programs in Chemistry & Biochemistry , The Graduate Center of the City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States
| | - Lauren Wickstrom
- Department of Science , Borough of Manhattan Community College, The City University of New York , New York , New York 10007 , United States
| |
Collapse
|
31
|
Pal RK, Gadhiya S, Ramsey S, Cordone P, Wickstrom L, Harding WW, Kurtzman T, Gallicchio E. Inclusion of enclosed hydration effects in the binding free energy estimation of dopamine D3 receptor complexes. PLoS One 2019; 14:e0222902. [PMID: 31568493 PMCID: PMC6768453 DOI: 10.1371/journal.pone.0222902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/30/2019] [Indexed: 01/04/2023] Open
Abstract
Confined hydration and conformational flexibility are some of the challenges encountered for the rational design of selective antagonists of G-protein coupled receptors. We present a set of C3-substituted (-)-stepholidine derivatives as potent binders of the dopamine D3 receptor. The compounds are characterized biochemically, as well as by computer modeling using a novel molecular dynamics-based alchemical binding free energy approach which incorporates the effect of the displacement of enclosed water molecules from the binding site. The free energy of displacement of specific hydration sites is obtained using the Hydration Site Analysis method with explicit solvation. This work underscores the critical role of confined hydration and conformational reorganization in the molecular recognition mechanism of dopamine receptors and illustrates the potential of binding free energy models to represent these key phenomena.
Collapse
Affiliation(s)
- Rajat Kumar Pal
- Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, NY 11210, United States of America
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States of America
| | - Satishkumar Gadhiya
- PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States of America
- Department of Chemistry, Hunter College, 695 Park Avenue, NY 10065, United States of America
| | - Steven Ramsey
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States of America
- Department of Chemistry, Lehman College, 250 Bedford Park Blvd. West, Bronx, NY 10468, United States of America
| | - Pierpaolo Cordone
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States of America
- Department of Chemistry, Hunter College, 695 Park Avenue, NY 10065, United States of America
| | - Lauren Wickstrom
- Department of Science, Borough of Manhattan Community College, 199 Chambers Street, New York, NY 10007, United States of America
| | - Wayne W. Harding
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States of America
- PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States of America
- Department of Chemistry, Hunter College, 695 Park Avenue, NY 10065, United States of America
| | - Tom Kurtzman
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States of America
- PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States of America
- Department of Chemistry, Lehman College, 250 Bedford Park Blvd. West, Bronx, NY 10468, United States of America
| | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, NY 11210, United States of America
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States of America
- PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States of America
- * E-mail:
| |
Collapse
|
32
|
Nguyen C, Yamazaki T, Kovalenko A, Case DA, Gilson MK, Kurtzman T, Luchko T. A molecular reconstruction approach to site-based 3D-RISM and comparison to GIST hydration thermodynamic maps in an enzyme active site. PLoS One 2019; 14:e0219473. [PMID: 31291328 PMCID: PMC6619770 DOI: 10.1371/journal.pone.0219473] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/24/2019] [Indexed: 11/25/2022] Open
Abstract
Computed, high-resolution, spatial distributions of solvation energy and entropy can provide detailed information about the role of water in molecular recognition. While grid inhomogeneous solvation theory (GIST) provides rigorous, detailed thermodynamic information from explicit solvent molecular dynamics simulations, recent developments in the 3D reference interaction site model (3D-RISM) theory allow many of the same quantities to be calculated in a fraction of the time. However, 3D-RISM produces atomic-site, rather than molecular, density distributions, which are difficult to extract physical meaning from. To overcome this difficulty, we introduce a method to reconstruct molecular density distributions from atomic-site density distributions. Furthermore, we assess the quality of the resulting solvation thermodynamics density distributions by analyzing the binding site of coagulation Factor Xa with both GIST and 3D-RISM. We find good qualitative agreement between the methods for oxygen and hydrogen densities as well as direct solute-solvent energetic interactions. However, 3D-RISM predicts lower energetic and entropic penalties for moving water from the bulk to the binding site.
Collapse
Affiliation(s)
- Crystal Nguyen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | | | - Andriy Kovalenko
- National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta, Canada
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - David A. Case
- Department of Chemistry, Lehman College, The City University of New York, Bronx, New York, United States of America
| | - Michael K. Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Tom Kurtzman
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, United States of America
| | - Tyler Luchko
- Department of Physics and Astronomy, California State University, Northridge, California, United States of America
| |
Collapse
|
33
|
Cao S, Konovalov KA, Unarta IC, Huang X. Recent Developments in Integral Equation Theory for Solvation to Treat Density Inhomogeneity at Solute–Solvent Interface. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201900049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Siqin Cao
- Department of Chemistrythe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
- Center of System Biology and Human HealthState Key Laboratory of Molecular Neuroscience, Hong Kong Branch Clear Water Bay Kowloon Hong Kong
| | - Kirill A. Konovalov
- Department of Chemistrythe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
- Center of System Biology and Human HealthState Key Laboratory of Molecular Neuroscience, Hong Kong Branch Clear Water Bay Kowloon Hong Kong
| | - Ilona Christy Unarta
- Center of System Biology and Human HealthState Key Laboratory of Molecular Neuroscience, Hong Kong Branch Clear Water Bay Kowloon Hong Kong
- Bioengineering Graduate Programthe Hong Kong University of Science and TechnologyHong Kong of Chinese National EngineeringResearch Center for Tissue Restoration and Reconstructionthe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
| | - Xuhui Huang
- Department of Chemistrythe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
- Center of System Biology and Human HealthState Key Laboratory of Molecular Neuroscience, Hong Kong Branch Clear Water Bay Kowloon Hong Kong
- Bioengineering Graduate Programthe Hong Kong University of Science and TechnologyHong Kong of Chinese National EngineeringResearch Center for Tissue Restoration and Reconstructionthe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
- HKUST‐Shenzhen Research Institute Hi‐Tech Park, Nanshan Shenzhen 518057 China
| |
Collapse
|
34
|
Masters MR, Mahmoud AH, Yang Y, Lill MA. Efficient and Accurate Hydration Site Profiling for Enclosed Binding Sites. J Chem Inf Model 2018; 58:2183-2188. [PMID: 30289252 DOI: 10.1021/acs.jcim.8b00544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew R. Masters
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| | - Amr H. Mahmoud
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| | - Ying Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| | - Markus A. Lill
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| |
Collapse
|
35
|
Matter H, Güssregen S. Characterizing hydration sites in protein-ligand complexes towards the design of novel ligands. Bioorg Med Chem Lett 2018; 28:2343-2352. [PMID: 29880400 DOI: 10.1016/j.bmcl.2018.05.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 11/18/2022]
Abstract
Water is an essential part of protein binding sites and mediates interactions to ligands. Its displacement by ligand parts affects the free binding energy of resulting protein-ligand complexes. Therefore the characterization of solvation properties is important for design. Of particular interest is the propensity of localized water to be favorably displaced by a ligand. This review discusses two popular computational approaches addressing these questions, namely WaterMap based on statistical mechanics analysis of MD simulations and 3D RISM based on integral equation theory of liquids. The theoretical background and recent applications in structure-based design will be presented.
Collapse
Affiliation(s)
- Hans Matter
- Sanofi-Aventis Deutschland GmbH, Integrated Drug Discovery (IDD), Synthetic Molecular Design, Building G838, Industriepark Höchst, 65926 Frankfurt am Main, Germany.
| | - Stefan Güssregen
- Sanofi-Aventis Deutschland GmbH, Integrated Drug Discovery (IDD), Synthetic Molecular Design, Building G838, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| |
Collapse
|
36
|
Wahl J, Smieško M. Thermodynamic Insight into the Effects of Water Displacement and Rearrangement upon Ligand Modifications using Molecular Dynamics Simulations. ChemMedChem 2018; 13:1325-1335. [DOI: 10.1002/cmdc.201800093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/07/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Joel Wahl
- Molecular Modeling, Department of Pharmaceutical Sciences; University of Basel; Klingelbergstrasse 50 4056 Basel Switzerland
| | - Martin Smieško
- Molecular Modeling, Department of Pharmaceutical Sciences; University of Basel; Klingelbergstrasse 50 4056 Basel Switzerland
| |
Collapse
|
37
|
Yoon TJ, Lee YW. Current theoretical opinions and perspectives on the fundamental description of supercritical fluids. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.11.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Senisterra G, Zhu HY, Luo X, Zhang H, Xun G, Lu C, Xiao W, Hajian T, Loppnau P, Chau I, Li F, Allali-Hassani A, Atadja P, Oyang C, Li E, Brown PJ, Arrowsmith CH, Zhao K, Yu Z, Vedadi M. Discovery of Small-Molecule Antagonists of the H3K9me3 Binding to UHRF1 Tandem Tudor Domain. SLAS DISCOVERY 2018; 23:930-940. [PMID: 29562800 DOI: 10.1177/2472555218766278] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is a multidomain protein that plays a critical role in maintaining DNA methylation patterns through concurrent recognition of hemimethylated DNA and histone marks by various domains, and recruitment of DNA methyltransferase 1 (DNMT1). UHRF1 is overexpressed in various cancers, including breast cancer. The tandem tudor domain (TTD) of UHRF1 specifically and tightly binds to histone H3 di- or trimethylated at lysine 9 (H3K9me2 or H3K9me3, respectively), and this binding is essential for UHRF1 function. We developed an H3K9me3 peptide displacement assay, which was used to screen a library of 44,000 compounds for small molecules that disrupt the UHRF1-H3K9me3 interaction. This screen resulted in the identification of NV01, which bound to UHRF1-TTD with a Kd value of 5 μM. The structure of UHRF1-TTD in complex with NV01 confirmed binding to the H3K9me3-binding pocket. Limited structure-based optimization of NV01 led to the discovery of NV03 (Kd of 2.4 μM). These well-characterized small-molecule antagonists of the UHRF1-H3K9me2/3 interaction could be valuable starting chemical matter for developing more potent and cell-active probes toward further characterizing UHRF1 function, with possible applications as anticancer therapeutics.
Collapse
Affiliation(s)
| | - Hugh Y Zhu
- 2 Novartis Institutes for BioMedical Research (China), Pudong, Shanghai, China
| | - Xiao Luo
- 2 Novartis Institutes for BioMedical Research (China), Pudong, Shanghai, China
| | - Hailong Zhang
- 2 Novartis Institutes for BioMedical Research (China), Pudong, Shanghai, China
| | - Guoliang Xun
- 2 Novartis Institutes for BioMedical Research (China), Pudong, Shanghai, China
| | - Chunliang Lu
- 2 Novartis Institutes for BioMedical Research (China), Pudong, Shanghai, China
| | - Wen Xiao
- 2 Novartis Institutes for BioMedical Research (China), Pudong, Shanghai, China
| | - Taraneh Hajian
- 1 Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Peter Loppnau
- 1 Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Irene Chau
- 1 Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Fengling Li
- 1 Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | | | - Peter Atadja
- 2 Novartis Institutes for BioMedical Research (China), Pudong, Shanghai, China
| | - Counde Oyang
- 2 Novartis Institutes for BioMedical Research (China), Pudong, Shanghai, China
| | - En Li
- 2 Novartis Institutes for BioMedical Research (China), Pudong, Shanghai, China
| | - Peter J Brown
- 1 Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Cheryl H Arrowsmith
- 1 Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada.,3 Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Kehao Zhao
- 2 Novartis Institutes for BioMedical Research (China), Pudong, Shanghai, China.,4 School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Zhengtian Yu
- 2 Novartis Institutes for BioMedical Research (China), Pudong, Shanghai, China
| | - Masoud Vedadi
- 1 Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada.,5 Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
39
|
Cuzzolin A, Deganutti G, Salmaso V, Sturlese M, Moro S. AquaMMapS: An Alternative Tool to Monitor the Role of Water Molecules During Protein-Ligand Association. ChemMedChem 2018; 13:522-531. [DOI: 10.1002/cmdc.201700564] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/21/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Alberto Cuzzolin
- Molecular Modeling Section, MMS, Department of Pharmaceutical and Pharmacological Sciences; University of Padova; via Marzolo 5 35131 Padova Italy
| | - Giuseppe Deganutti
- Molecular Modeling Section, MMS, Department of Pharmaceutical and Pharmacological Sciences; University of Padova; via Marzolo 5 35131 Padova Italy
| | - Veronica Salmaso
- Molecular Modeling Section, MMS, Department of Pharmaceutical and Pharmacological Sciences; University of Padova; via Marzolo 5 35131 Padova Italy
| | - Mattia Sturlese
- Molecular Modeling Section, MMS, Department of Pharmaceutical and Pharmacological Sciences; University of Padova; via Marzolo 5 35131 Padova Italy
| | - Stefano Moro
- Molecular Modeling Section, MMS, Department of Pharmaceutical and Pharmacological Sciences; University of Padova; via Marzolo 5 35131 Padova Italy
| |
Collapse
|
40
|
Zheng M, Zhao J, Cui C, Fu Z, Li X, Liu X, Ding X, Tan X, Li F, Luo X, Chen K, Jiang H. Computational chemical biology and drug design: Facilitating protein structure, function, and modulation studies. Med Res Rev 2018; 38:914-950. [DOI: 10.1002/med.21483] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Mingyue Zheng
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
| | - Jihui Zhao
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
| | - Chen Cui
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
| | - Zunyun Fu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
| | - Xutong Li
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
| | - Xiaohong Liu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
- School of Life Science and Technology; ShanghaiTech University; Shanghai China
| | - Xiaoyu Ding
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
| | - Xiaoqin Tan
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
| | - Fei Li
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
- Department of Chemistry, College of Sciences; Shanghai University; Shanghai China
| | - Xiaomin Luo
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
| | - Kaixian Chen
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
- School of Life Science and Technology; ShanghaiTech University; Shanghai China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
| |
Collapse
|
41
|
Hasegawa T, Sugita M, Kikuchi T, Hirata F. A Systematic Analysis of the Binding Affinity between the Pim-1 Kinase and Its Inhibitors Based on the MM/3D-RISM/KH Method. J Chem Inf Model 2017; 57:2789-2798. [PMID: 29019402 DOI: 10.1021/acs.jcim.7b00158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A systematic study of the binding affinities of 16 lead compounds targeting the Pim-1 kinase based on the 3D-RISM/KH theory and MD simulations is reported. The results show a correlation coefficient R = 0.69 between the theoretical and experimental values of the binding free energy. This demonstrates that the method is applicable to the problem of compound screening and lead optimization, for which relative values of the free energy among the compounds have significance. We elucidate the contribution of the ligand fragments to the binding free energy. Our results indicate that the interactions between the residues and the triazolo[4,3-b]pyridazine scaffold as well as the phenyl ring of the ligand molecule make significant contributions to stabilization of the complex. Using the 3D-RISM/KH theory, we further analyze the probability distribution of a ligand fragment around the protein-ligand complex in which the substituent around the phenyl ring is removed from the ligand. The results demonstrate that the 3D-RISM/KH theory is capable of predicting the position of substitution on a ligand that has a higher affinity to a target protein.
Collapse
Affiliation(s)
- Takeshi Hasegawa
- Department of Bioinformatics, College of Life Science, Ritsumeikan University , 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Masatake Sugita
- Department of Bioinformatics, College of Life Science, Ritsumeikan University , 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Takeshi Kikuchi
- Department of Bioinformatics, College of Life Science, Ritsumeikan University , 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Fumio Hirata
- Toyota Physical and Chemical Research Institute , 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| |
Collapse
|
42
|
Yoshida N. Role of Solvation in Drug Design as Revealed by the Statistical Mechanics Integral Equation Theory of Liquids. J Chem Inf Model 2017; 57:2646-2656. [DOI: 10.1021/acs.jcim.7b00389] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Norio Yoshida
- Department of Chemistry,
Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 Japan
| |
Collapse
|
43
|
Testing inhomogeneous solvation theory in structure-based ligand discovery. Proc Natl Acad Sci U S A 2017; 114:E6839-E6846. [PMID: 28760952 DOI: 10.1073/pnas.1703287114] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Binding-site water is often displaced upon ligand recognition, but is commonly neglected in structure-based ligand discovery. Inhomogeneous solvation theory (IST) has become popular for treating this effect, but it has not been tested in controlled experiments at atomic resolution. To do so, we turned to a grid-based version of this method, GIST, readily implemented in molecular docking. Whereas the term only improves docking modestly in retrospective ligand enrichment, it could be added without disrupting performance. We thus turned to prospective docking of large libraries to investigate GIST's impact on ligand discovery, geometry, and water structure in a model cavity site well-suited to exploring these terms. Although top-ranked docked molecules with and without the GIST term often overlapped, many ligands were meaningfully prioritized or deprioritized; some of these were selected for testing. Experimentally, 13/14 molecules prioritized by GIST did bind, whereas none of the molecules that it deprioritized were observed to bind. Nine crystal complexes were determined. In six, the ligand geometry corresponded to that predicted by GIST, for one of these the pose without the GIST term was wrong, and three crystallographic poses differed from both predictions. Notably, in one structure, an ordered water molecule with a high GIST displacement penalty was observed to stay in place. Inclusion of this water-displacement term can substantially improve the hit rates and ligand geometries from docking screens, although the magnitude of its effects can be small and its impact in drug binding sites merits further controlled studies.
Collapse
|
44
|
Güssregen S, Matter H, Hessler G, Lionta E, Heil J, Kast SM. Thermodynamic Characterization of Hydration Sites from Integral Equation-Derived Free Energy Densities: Application to Protein Binding Sites and Ligand Series. J Chem Inf Model 2017; 57:1652-1666. [DOI: 10.1021/acs.jcim.6b00765] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stefan Güssregen
- R&D, IDD, Structural Design and Informatics, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Building G877, 65926 Frankfurt am Main, Germany
| | - Hans Matter
- R&D, IDD, Structural Design and Informatics, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Building G877, 65926 Frankfurt am Main, Germany
| | - Gerhard Hessler
- R&D, IDD, Structural Design and Informatics, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Building G877, 65926 Frankfurt am Main, Germany
| | - Evanthia Lionta
- R&D, IDD, Structural Design and Informatics, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Building G877, 65926 Frankfurt am Main, Germany
| | - Jochen Heil
- Physikalische
Chemie III, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany
| | - Stefan M. Kast
- Physikalische
Chemie III, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany
| |
Collapse
|
45
|
Schauperl M, Czodrowski P, Fuchs JE, Huber RG, Waldner BJ, Podewitz M, Kramer C, Liedl KR. Binding Pose Flip Explained via Enthalpic and Entropic Contributions. J Chem Inf Model 2017; 57:345-354. [PMID: 28079371 PMCID: PMC5331458 DOI: 10.1021/acs.jcim.6b00483] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The anomalous binding modes of five
highly similar fragments of
TIE2 inhibitors, showing three distinct binding poses, are investigated.
We report a quantitative rationalization for the changes in binding
pose based on molecular dynamics simulations. We investigated five
fragments in complex with the transforming growth factor β receptor
type 1 kinase domain. Analyses of these simulations using Grid Inhomogeneous
Solvation Theory (GIST), pKA calculations,
and a tool to investigate enthalpic differences upon binding unraveled
the various thermodynamic contributions to the different binding modes.
While one binding mode flip can be rationalized by steric repulsion,
the second binding pose flip revealed a different protonation state
for one of the ligands, leading to different enthalpic and entropic
contributions to the binding free energy. One binding pose is stabilized
by the displacement of entropically unfavored water molecules (binding
pose determined by solvation entropy), ligands in the other binding
pose are stabilized by strong enthalpic interactions, overcompensating
the unfavorable water entropy in this pose (binding pose determined
by enthalpic interactions). This analysis elucidates unprecedented
details determining the flipping of the binding modes, which can elegantly
explain the experimental findings for this system.
Collapse
Affiliation(s)
- Michael Schauperl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck , Innrain 80-82, 6020 Innsbruck, Tyrol, Austria
| | - Paul Czodrowski
- Discovery Technologies, Merck Serono Research, Merck Serono R&D, Merck KGaA , Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Julian E Fuchs
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck , Innrain 80-82, 6020 Innsbruck, Tyrol, Austria
| | - Roland G Huber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR) , #07-01 Matrix, 30 Biopolis Street, 138671, Singapore
| | - Birgit J Waldner
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck , Innrain 80-82, 6020 Innsbruck, Tyrol, Austria
| | - Maren Podewitz
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck , Innrain 80-82, 6020 Innsbruck, Tyrol, Austria
| | - Christian Kramer
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck , Innrain 80-82, 6020 Innsbruck, Tyrol, Austria
| | - Klaus R Liedl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck , Innrain 80-82, 6020 Innsbruck, Tyrol, Austria
| |
Collapse
|
46
|
Pal RK, Haider K, Kaur D, Flynn W, Xia J, Levy RM, Taran T, Wickstrom L, Kurtzman T, Gallicchio E. A combined treatment of hydration and dynamical effects for the modeling of host-guest binding thermodynamics: the SAMPL5 blinded challenge. J Comput Aided Mol Des 2017; 31:29-44. [PMID: 27696239 PMCID: PMC5477994 DOI: 10.1007/s10822-016-9956-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/25/2016] [Indexed: 01/02/2023]
Abstract
As part of the SAMPL5 blinded experiment, we computed the absolute binding free energies of 22 host-guest complexes employing a novel approach based on the BEDAM single-decoupling alchemical free energy protocol with parallel replica exchange conformational sampling and the AGBNP2 implicit solvation model specifically customized to treat the effect of water displacement as modeled by the Hydration Site Analysis method with explicit solvation. Initial predictions were affected by the lack of treatment of ionic charge screening, which is very significant for these highly charged hosts, and resulted in poor relative ranking of negatively versus positively charged guests. Binding free energies obtained with Debye-Hückel treatment of salt effects were in good agreement with experimental measurements. Water displacement effects contributed favorably and very significantly to the observed binding affinities; without it, the modeling predictions would have grossly underestimated binding. The work validates the implicit/explicit solvation approach employed here and it shows that comprehensive physical models can be effective at predicting binding affinities of molecular complexes requiring accurate treatment of conformational dynamics and hydration.
Collapse
Affiliation(s)
- Rajat Kumar Pal
- Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Kamran Haider
- Department of Chemistry, Lehman College, The City University of New York, 250 Bedford Park Blvd. West, Bronx, New York, NY, 10468, USA
| | - Divya Kaur
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - William Flynn
- Center for Biophysics and Computational Biology, Institute of Computational Molecular Science and Department of Chemistry, Temple University, Philadelphia, PA, USA
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, 08854, USA
| | - Junchao Xia
- Center for Biophysics and Computational Biology, Institute of Computational Molecular Science and Department of Chemistry, Temple University, Philadelphia, PA, USA
| | - Ronald M Levy
- Center for Biophysics and Computational Biology, Institute of Computational Molecular Science and Department of Chemistry, Temple University, Philadelphia, PA, USA
| | - Tetiana Taran
- Borough of Manhattan Community College, Department of Science, The City University of New York, 199 Chambers Street, New York, NY, 10007, USA
| | - Lauren Wickstrom
- Borough of Manhattan Community College, Department of Science, The City University of New York, 199 Chambers Street, New York, NY, 10007, USA
| | - Tom Kurtzman
- Department of Chemistry, Lehman College, The City University of New York, 250 Bedford Park Blvd. West, Bronx, New York, NY, 10468, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
47
|
Brezovsky J, Babkova P, Degtjarik O, Fortova A, Gora A, Iermak I, Rezacova P, Dvorak P, Smatanova IK, Prokop Z, Chaloupkova R, Damborsky J. Engineering a de Novo Transport Tunnel. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02081] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jan Brezovsky
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Petra Babkova
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Oksana Degtjarik
- Faculty
of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic
- Center for Nanobiology and Structural Biology ASCR, Zamek 136, 37333 Nove Hrady, Czech Republic
| | - Andrea Fortova
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Artur Gora
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Iuliia Iermak
- Faculty
of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic
- Center for Nanobiology and Structural Biology ASCR, Zamek 136, 37333 Nove Hrady, Czech Republic
| | - Pavlina Rezacova
- Institute of Organic Chemistry and Biochemistry ASCR, v.v.i. Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
- Institute of Molecular Genetics of the ASCR, v.v.i. Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Pavel Dvorak
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Ivana Kuta Smatanova
- Faculty
of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic
- Center for Nanobiology and Structural Biology ASCR, Zamek 136, 37333 Nove Hrady, Czech Republic
| | - Zbynek Prokop
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Radka Chaloupkova
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| |
Collapse
|
48
|
Shanker S, Bandyopadhyay P. How Mg 2+ ion and water network affect the stability and structure of non-Watson-Crick base pairs in E. coli loop E of 5S rRNA: a molecular dynamics and reference interaction site model (RISM) study. J Biomol Struct Dyn 2016; 35:2103-2122. [PMID: 27426235 DOI: 10.1080/07391102.2016.1213186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The non-Watson-Crick (non-WC) base pairs of Escherichia coli loop E of 5S rRNA are stabilized by Mg2+ ions through water-mediated interaction. It is important to know the synergic role of Mg2+ and the water network surrounding Mg2+ in stabilizing the non-WC base pairs of RNA. For this purpose, free energy change of the system is calculated using molecular dynamics (MD) simulation as Mg2+ is pulled from RNA, which causes disturbance of the water network. It was found that Mg2+ remains hexahydrated unless it is close to or far from RNA. In the pentahydrated form, Mg2+ interacts directly with RNA. Water network has been identified by two complimentary methods; MD followed by a density-based clustering algorithm and three-dimensional-reference interaction site model. These two methods gave similar results. Identification of water network around Mg2+ and non-WC base pairs gives a clue to the strong effect of water network on the stability of this RNA. Based on sequence analysis of all Eubacteria 5s rRNA, we propose that hexahydrated Mg2+ is an integral part of this RNA and geometry of base pairs surrounding it adjust to accommodate the [Formula: see text]. Overall the findings from this work can help in understanding the basis of the complex structure and stability of RNA with non-WC base pairs.
Collapse
Affiliation(s)
- Sudhanshu Shanker
- a School of Computational and Integrative Sciences, Jawaharlal Nehru University , New Delhi 110067 , India
| | - Pradipta Bandyopadhyay
- a School of Computational and Integrative Sciences, Jawaharlal Nehru University , New Delhi 110067 , India
| |
Collapse
|
49
|
Affiliation(s)
- Debasis Saha
- Department
of Chemistry, Indian Institute of Science Education and Research, Pune, 411008 Maharashtra India
| | - Arnab Mukherjee
- Department
of Chemistry, Indian Institute of Science Education and Research, Pune, 411008 Maharashtra India
| |
Collapse
|
50
|
Bodnarchuk MS. Water, water, everywhere… It's time to stop and think. Drug Discov Today 2016; 21:1139-46. [DOI: 10.1016/j.drudis.2016.05.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/15/2016] [Accepted: 05/13/2016] [Indexed: 12/11/2022]
|