1
|
Yasui Y, Tansho M, Fujii K, Sakuda Y, Goto A, Ohki S, Mogami Y, Iijima T, Kobayashi S, Kawaguchi S, Osaka K, Ikeda K, Otomo T, Yashima M. Hidden chemical order in disordered Ba 7Nb 4MoO 20 revealed by resonant X-ray diffraction and solid-state NMR. Nat Commun 2023; 14:2337. [PMID: 37095089 PMCID: PMC10126145 DOI: 10.1038/s41467-023-37802-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/30/2023] [Indexed: 04/26/2023] Open
Abstract
The chemical order and disorder of solids have a decisive influence on the material properties. There are numerous materials exhibiting chemical order/disorder of atoms with similar X-ray atomic scattering factors and similar neutron scattering lengths. It is difficult to investigate such order/disorder hidden in the data obtained from conventional diffraction methods. Herein, we quantitatively determined the Mo/Nb order in the high ion conductor Ba7Nb4MoO20 by a technique combining resonant X-ray diffraction, solid-state nuclear magnetic resonance (NMR) and first-principle calculations. NMR provided direct evidence that Mo atoms occupy only the M2 site near the intrinsically oxygen-deficient ion-conducting layer. Resonant X-ray diffraction determined the occupancy factors of Mo atoms at the M2 and other sites to be 0.50 and 0.00, respectively. These findings provide a basis for the development of ion conductors. This combined technique would open a new avenue for in-depth investigation of the hidden chemical order/disorder in materials.
Collapse
Affiliation(s)
- Yuta Yasui
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-W4-17, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Masataka Tansho
- NMR Station, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba, Ibaraki, 305-0003, Japan
| | - Kotaro Fujii
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-W4-17, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Yuichi Sakuda
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-W4-17, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Atsushi Goto
- NMR Station, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba, Ibaraki, 305-0003, Japan
| | - Shinobu Ohki
- NMR Station, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba, Ibaraki, 305-0003, Japan
| | - Yuuki Mogami
- NMR Station, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba, Ibaraki, 305-0003, Japan
| | - Takahiro Iijima
- Institute of Arts and Sciences, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata, 990-8560, Japan
| | - Shintaro Kobayashi
- Diffraction and Scattering Division, Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Shogo Kawaguchi
- Diffraction and Scattering Division, Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Keiichi Osaka
- Industrial Application and Partnership Division, Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Kazutaka Ikeda
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 203-1 Shirakata, Tokai, Ibaraki, 319-1106, Japan
- J-PARC Center, High Energy Accelerator Research Organization (KEK), 2-4 Shirakata-Shirane, Tokai, Ibaraki, 319-1106, Japan
- School of High Energy Accelerator Science, The Graduate University for Advanced Studies, 203-1 Shirakata, Tokai, Ibaraki, 319-1106, Japan
| | - Toshiya Otomo
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 203-1 Shirakata, Tokai, Ibaraki, 319-1106, Japan
- J-PARC Center, High Energy Accelerator Research Organization (KEK), 2-4 Shirakata-Shirane, Tokai, Ibaraki, 319-1106, Japan
- School of High Energy Accelerator Science, The Graduate University for Advanced Studies, 203-1 Shirakata, Tokai, Ibaraki, 319-1106, Japan
- Graduate School of Science and Engineering, Ibaraki University, 162-1 Shirakata, Tokai, Ibaraki, 319-1106, Japan
| | - Masatomo Yashima
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-W4-17, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan.
| |
Collapse
|
2
|
Abstract
Half a century ago, F. Albert Cotton emphasized the relevance of metal-metal bonding in the constitution of cluster materials. Based on his description, nanoscale polyoxometalates (POMs) normally would not be regarded as cluster materials. One reason is that metal-metal bonding is typically associated with inorganic systems featuring metal centres in low oxidation states, a feature that is not common for POMs. However, over the past decades, there have been increasing reports on POMs integrating different types of metal-metal bonding. This article conceptualises and reviews the area of metal-metal bonded POMs, and their preparation and physicochemical properties. Attention is given to the changes in the electronic structure of POMs, the emergence of covalent dynamics and its impact on the development of applications in catalysis, nanoswitches, donor-acceptor systems, electron storage materials and nanoelectronics (i.e., "POMtronics").
Collapse
Affiliation(s)
- Aleksandar Kondinski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive Cambridge CB3 0AS, United Kingdom.
| |
Collapse
|
3
|
Haouas M, Trébosc J, Roch-Marchal C, Cadot E, Taulelle F, Martineau-Corcos C. High-field 95 Mo and 183 W static and MAS NMR study of polyoxometalates. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:902-908. [PMID: 28437584 DOI: 10.1002/mrc.4601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
The potential of high-field NMR to measure solid-state 95 Mo and 183 W NMR in polyoxometalates (POMs) is explored using some archetypical structures like Lindqvist, Keggin and Dawson as model compounds that are well characterized in solution. NMR spectra in static and under magic angle spinning (MAS) were obtained, and their analysis allowed extraction of the NMR parameters, including chemical shift anisotropy and quadrupolar coupling parameters. Despite the inherent difficulties of measurement in solid state of these low-gamma NMR nuclei, due mainly to the low spectral resolution and poor signal-to-noise ratio, the observed global trends compare well with the solution-state NMR data. This would open an avenue for application of solid-state NMR to POMs, especially when liquid-state NMR is not possible, e.g., for poorly soluble or unstable compounds in solution, and for giant molecules with slow tumbling motion. This is the case of Keplerate where we provide here the first NMR characterization of this class of POMs in the solid state. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mohamed Haouas
- ILV, UMR CNRS 8180, UVSQ, Versailles, 78035, Cedex, France
| | - Julien Trébosc
- Univ. de Lille Nord de France, Lille, 59000, France
- CNRS UMR 8181, UCCS; USTL, Villeneuve d'Ascq, 59652, France
| | | | - Emmanuel Cadot
- ILV, UMR CNRS 8180, UVSQ, Versailles, 78035, Cedex, France
| | | | - Charlotte Martineau-Corcos
- ILV, UMR CNRS 8180, UVSQ, Versailles, 78035, Cedex, France
- CEMHTI, CNRS UPR 3079, Orléans Cedex 2, 45071, France
| |
Collapse
|
4
|
Iijima T, Yamase T, Nishimura K. Molecular and electron-spin structures of a ring-shaped mixed-valence polyoxovanadate (IV, V) studied by (11)B and (23)Na solid-state NMR spectroscopy and DFT calculations. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2016; 76-77:15-23. [PMID: 27018827 DOI: 10.1016/j.ssnmr.2016.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 06/05/2023]
Abstract
(11)B and (23)Na solid-state nuclear magnetic resonance (NMR) spectra of ring-shaped paramagnetic crystals of H15[V7(IV)V5(V)B32O84Na4]·13H2O containing seven d(1) electrons from V(IV) were studied. Magic-angle-spinning (MAS) and multiple-quantum MAS NMR experiments were performed at moderate (9.4T) and ultrahigh magnetic fields (21.6T). The NMR parameters for quadrupole and isotropic chemical shift interactions were estimated by simulation of the NMR spectra and from relativistic density functional theory (DFT) calculations. Four Na ions incorporated into the framework were found to occupy four distinct sites with different populations. The DFT calculation showed that d(1) electrons with effectively one up-spin caused by strong antiferromagnetic interactions were delocalized over the 12V ions.
Collapse
Affiliation(s)
- Takahiro Iijima
- Institute of Arts and Sciences, Yamagata University, Yamagata 990-8560, Japan.
| | - Toshihiro Yamase
- Tokyo Institute of Technology, Nagatsuta, Yokohama 226-8503, Japan; MO Device Corporation, Kanazawa 920-0335, Japan
| | | |
Collapse
|