1
|
Zhao X, Yang C, Liu W, Lu K, Yin H. Inhibition of insulin fibrillation by carboxyphenylboronic acid-modified chitosan oligosaccharide based on electrostatic interactions and hydrophobic interactions. Biophys Chem 2024; 310:107236. [PMID: 38615538 DOI: 10.1016/j.bpc.2024.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/25/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
A novel inhibitor, carboxyphenylboronic acid-modified chitosan oligosaccharide (COS-CPBA), was developed by coupling carboxyphenylboronic acid (CPBA) with chitosan oligosaccharide (COS) to inhibit insulin fibrillation. Extensive biophysical assays indicated that COS-CPBA could decelerate insulin aggregation, hinder the conformational transition from α-helix to β-sheet structure, change the morphology of insulin aggregates and alter fibrillation pathway. A mechanism for the inhibition of insulin fibrillation by COS-CPBA was proposed. It considers that insulin molecules bind to COS-CPBA via hydrophobic interactions, while the positively charged groups in COS-CPBA exert electrostatic repulsion on the bound insulin molecules. These two opposite forces cause the insulin molecules to display extended conformations and hinder the conformational transition of insulin from α-helix to β-sheet structure necessary for fibrillation, thus decelerating aggregation and altering the fibrillation pathway of insulin. The studies provide novel ideas for the development of more effective inhibitors of amyloid fibrillation.
Collapse
Affiliation(s)
- Xiangyuan Zhao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Chunyan Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300401, China.
| | - Wei Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300401, China
| | - Ke Lu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Hao Yin
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
2
|
Mallegni N, Milazzo M, Cristallini C, Barbani N, Fredi G, Dorigato A, Cinelli P, Danti S. Characterization of Cyclic Olefin Copolymers for Insulin Reservoir in an Artificial Pancreas. J Funct Biomater 2023; 14:jfb14030145. [PMID: 36976069 PMCID: PMC10053537 DOI: 10.3390/jfb14030145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Type-1 diabetes is one of the most prevalent metabolic disorders worldwide. It results in a significant lack of insulin production by the pancreas and the ensuing hyperglycemia, which needs to be regulated through a tailored administration of insulin throughout the day. Recent studies have shown great advancements in developing an implantable artificial pancreas. However, some improvements are still required, including the optimal biomaterials and technologies to produce the implantable insulin reservoir. Here, we discuss the employment of two types of cyclic olefin copolymers (Topas 5013L-10 and Topas 8007S-04) for an insulin reservoir fabrication. After a preliminary thermomechanical analysis, Topas 8007S-04 was selected as the best material to fabricate a 3D-printed insulin reservoir due to its higher strength and lower glass transition temperature (Tg). Fiber deposition modeling was used to manufacture a reservoir-like structure, which was employed to assess the ability of the material to prevent insulin aggregation. Although the surface texture presents a localized roughness, the ultraviolet analysis did not detect any significant insulin aggregation over a timeframe of 14 days. These interesting results make Topas 8007S-04 cyclic olefin copolymer a potential candidate biomaterial for fabricating structural components in an implantable artificial pancreas.
Collapse
Affiliation(s)
- Norma Mallegni
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56126 Pisa, Italy
- National Interuniversity Consortium for Materials Science and Technology (INSTM), Via Giuseppe Giusti 9, 50121 Florence, Italy
| | - Mario Milazzo
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56126 Pisa, Italy
- National Interuniversity Consortium for Materials Science and Technology (INSTM), Via Giuseppe Giusti 9, 50121 Florence, Italy
- Correspondence: (M.M.); (S.D.)
| | - Caterina Cristallini
- National Interuniversity Consortium for Materials Science and Technology (INSTM), Via Giuseppe Giusti 9, 50121 Florence, Italy
- Institute for Chemical and Physical Processes (IPCF), National Council of Researches (CNR), Via Giuseppe Moruzzi 1, 56126 Pisa, Italy
| | - Niccoletta Barbani
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56126 Pisa, Italy
- National Interuniversity Consortium for Materials Science and Technology (INSTM), Via Giuseppe Giusti 9, 50121 Florence, Italy
- Institute for Chemical and Physical Processes (IPCF), National Council of Researches (CNR), Via Giuseppe Moruzzi 1, 56126 Pisa, Italy
| | - Giulia Fredi
- National Interuniversity Consortium for Materials Science and Technology (INSTM), Via Giuseppe Giusti 9, 50121 Florence, Italy
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Andrea Dorigato
- National Interuniversity Consortium for Materials Science and Technology (INSTM), Via Giuseppe Giusti 9, 50121 Florence, Italy
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Patrizia Cinelli
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56126 Pisa, Italy
- National Interuniversity Consortium for Materials Science and Technology (INSTM), Via Giuseppe Giusti 9, 50121 Florence, Italy
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56126 Pisa, Italy
- National Interuniversity Consortium for Materials Science and Technology (INSTM), Via Giuseppe Giusti 9, 50121 Florence, Italy
- Institute for Chemical and Physical Processes (IPCF), National Council of Researches (CNR), Via Giuseppe Moruzzi 1, 56126 Pisa, Italy
- Correspondence: (M.M.); (S.D.)
| |
Collapse
|
3
|
Maity D. Inhibition of Amyloid Protein Aggregation Using Selected Peptidomimetics. ChemMedChem 2023; 18:e202200499. [PMID: 36317359 DOI: 10.1002/cmdc.202200499] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Indexed: 11/24/2022]
Abstract
Aberrant protein aggregation leads to the formation of amyloid fibrils. This phenomenon is linked to the development of more than 40 irremediable diseases such as Alzheimer's disease, Parkinson's disease, type 2 diabetes, and cancer. Plenty of research efforts have been given to understanding the underlying mechanism of protein aggregation, associated toxicity, and the development of amyloid inhibitors. Recently, the peptidomimetic approach has emerged as a potential tool to modulate several protein-protein interactions (PPIs). In this review, we discussed selected peptidomimetic-based approaches for the modulation of important amyloid proteins (Islet Amyloid Polypeptide, Amyloid Beta, α-synuclein, mutant p53, and insulin) aggregation. This approach holds a powerful platform for creating an essential stepping stone for the vital development of anti-amyloid therapeutic agents.
Collapse
Affiliation(s)
- Debabrata Maity
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
4
|
Abstract
Primary nucleation is the fundamental event that initiates the conversion of proteins from their normal physiological forms into pathological amyloid aggregates associated with the onset and development of disorders including systemic amyloidosis, as well as the neurodegenerative conditions Alzheimer's and Parkinson's diseases. It has become apparent that the presence of surfaces can dramatically modulate nucleation. However, the underlying physicochemical parameters governing this process have been challenging to elucidate, with interfaces in some cases having been found to accelerate aggregation, while in others they can inhibit the kinetics of this process. Here we show through kinetic analysis that for three different fibril-forming proteins, interfaces affect the aggregation reaction mainly through modulating the primary nucleation step. Moreover, we show through direct measurements of the Gibbs free energy of adsorption, combined with theory and coarse-grained computer simulations, that overall nucleation rates are suppressed at high and at low surface interaction strengths but significantly enhanced at intermediate strengths, and we verify these regimes experimentally. Taken together, these results provide a quantitative description of the fundamental process which triggers amyloid formation and shed light on the key factors that control this process.
Collapse
|
5
|
Hsiao WW, Le T, Chang H. Applications of Fluorescent Nanodiamond in Biology. ENCYCLOPEDIA OF ANALYTICAL CHEMISTRY 2022:1-43. [DOI: 10.1002/9780470027318.a9776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Abstract
Fluorescent nanodiamond (FND) has emerged as a promising material in several multidisciplinary areas, including biology, chemistry, physics, and materials science. Composed of sp
3
‐carbon atoms, FND offers superior biocompatibility, chemical inertness, a large surface area, tunable surface structure, and excellent mechanical characteristics. The nanoparticle is unique in that it comprises a high‐density ensemble of negatively charged nitrogen‐vacancy (NV
−
) centers that act as built‐in fluorophores and exhibit a number of remarkable optical and magnetic properties. These properties make FND particularly well suited for a wide range of applications, including cell labeling, long‐term cell tracking, super‐resolution imaging, nanoscale sensing, and drug delivery. This article discusses recent applications of FND‐enabled developments in biology.
Collapse
|
6
|
Determinants of IGF-II influencing stability, receptor binding and activation. Sci Rep 2022; 12:4695. [PMID: 35304516 PMCID: PMC8933565 DOI: 10.1038/s41598-022-08467-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
Insulin like growth factor II (IGF-II) is involved in metabolic and mitogenic signalling in mammalian cells and plays important roles in normal fetal development and postnatal growth. It is structurally similar to insulin and binds not only with high affinity to the type 1 insulin-like growth factor receptor (IGF-1R) but also to the insulin receptor isoform A (IR-A). As IGF-II expression is commonly upregulated in cancer and its signalling promotes cancer cell survival, an antagonist that blocks IGF-II action without perturbing insulin signalling would be invaluable. The high degree of structural homology between the IR and IGF-1R makes selectively targeting either receptor in the treatment of IGF-II-dependent cancers very challenging. However, there are sequence differences between insulin and IGF-II that convey receptor selectivity and influence binding affinity and signalling outcome. Insulin residue YB16 is a key residue involved in maintaining insulin stability, dimer formation and IR binding. Mutation of this residue to glutamine (as found in IGF-II) results in reduced binding affinity. In this study we sought to determine if the equivalent residue Q18 in IGF-II plays a similar role. We show through site-directed mutagenesis of Q18 that this residue contributes to IGF-II structural integrity, selectivity of IGF-1R/IR binding, but surprisingly does not influence IR-A signalling activation. These findings provide insights into a unique IGF-II residue that can influence receptor binding specificity whilst having little influence on signalling outcome.
Collapse
|
7
|
Zhou X, Fennema Galparsoro D, Østergaard Madsen A, Vetri V, van de Weert M, Mørck Nielsen H, Foderà V. Polysorbate 80 controls Morphology, structure and stability of human insulin Amyloid-Like spherulites. J Colloid Interface Sci 2022; 606:1928-1939. [PMID: 34695760 DOI: 10.1016/j.jcis.2021.09.132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 01/09/2023]
Abstract
Amyloid protein aggregates are not only associated with neurodegenerative diseases and may also occur as unwanted by-products in protein-based therapeutics. Surfactants are often employed to stabilize protein formulations and reduce the risk of aggregation. However, surfactants alter protein-protein interactions and may thus modulate the physicochemical characteristics of any aggregates formed. Human insulin aggregation was induced at low pH in the presence of varying concentrations of the surfactant polysorbate 80. Various spectroscopic and imaging methods were used to study the aggregation kinetics, as well as structure and morphology of the formed aggregates. Molecular dynamics simulations were employed to investigate the initial interaction between the surfactant and insulin. Addition of polysorbate 80 slowed down, but did not prevent, aggregation of insulin. Amyloid spherulites formed under all conditions, with a higher content of intermolecular beta-sheets in the presence of the surfactant above its critical micelle concentration. In addition, a denser packing was observed, leading to a more stable aggregate. Molecular dynamics simulations suggested a tendency for insulin to form dimers in the presence of the surfactant, indicating a change in protein-protein interactions. It is thus shown that surfactants not only alter aggregation kinetics, but also affect physicochemical properties of any aggregates formed.
Collapse
Affiliation(s)
- Xin Zhou
- Drug Delivery and Biophysics of Biopharmaceuticals, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Dirk Fennema Galparsoro
- Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Ed. 18, Palermo 90128, Italy
| | - Anders Østergaard Madsen
- Manufacturing and Materials, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Valeria Vetri
- Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Ed. 18, Palermo 90128, Italy.
| | - Marco van de Weert
- Drug Delivery and Biophysics of Biopharmaceuticals, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Hanne Mørck Nielsen
- Drug Delivery and Biophysics of Biopharmaceuticals, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Vito Foderà
- Drug Delivery and Biophysics of Biopharmaceuticals, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark.
| |
Collapse
|
8
|
Mukherjee S, Acharya S, Mondal S, Banerjee P, Bagchi B. Structural Stability of Insulin Oligomers and Protein Association-Dissociation Processes: Free Energy Landscape and Universal Role of Water. J Phys Chem B 2021; 125:11793-11811. [PMID: 34674526 DOI: 10.1021/acs.jpcb.1c05811] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Association and dissociation of proteins are important biochemical events. In this Feature Article, we analyze the available studies of these processes for insulin oligomers in aqueous solution. We focus on the solvation of the insulin monomer in water, stability and dissociation of its dimer, and structural integrity of the hexamer. The intricate role of water in solvation of the dimer- and hexamer-forming surfaces, in long-range interactions between the monomers and the stability of the oligomers, is discussed. Ten water molecules inside the central cavity stabilize the structure of the insulin hexamer. We discuss how different order parameters can be used to understand the dissociation of the insulin dimer. The calculation of the rate using a recently computed multidimensional free energy provides considerable insight into the interplay between protein and water dynamics.
Collapse
Affiliation(s)
- Saumyak Mukherjee
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Subhajit Acharya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Sayantan Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Puja Banerjee
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
9
|
Gangarde YM, Das A, Ajit J, Saraogi I. Synthesis and Evaluation of Arylamides with Hydrophobic Side Chains for Insulin Aggregation Inhibition. Chempluschem 2021; 86:750-757. [PMID: 33949802 DOI: 10.1002/cplu.202100036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/17/2021] [Indexed: 11/10/2022]
Abstract
Insulin, a peptide hormone, forms fibrils under aberrant physiological conditions leading to a reduction in its biological activity. To ameliorate insulin aggregation, we have synthesized a small library of oligopyridylamide foldamers decorated with different combination of hydrophobic side chains. Screening of these compounds for insulin aggregation inhibition using a Thioflavin-T assay resulted in the identification of a few hit molecules. The best hit molecule, BPAD2 inhibited insulin aggregation with an IC50 value of 0.9 μM. Mechanistic analyses suggested that BPAD2 inhibited secondary nucleation and elongation processes during aggregation. The hit molecules worked in a mechanistically distinct manner, thereby underlining the importance of structure-activity relationship studies in obtaining a molecular understanding of protein aggregation.
Collapse
Affiliation(s)
- Yogesh M Gangarde
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India
| | - Anirban Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India
| | - Jainu Ajit
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India
| | - Ishu Saraogi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India.,Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India
| |
Collapse
|
10
|
Das A, Dutta T, Gadhe L, Koner AL, Saraogi I. Biocompatible Fluorescent Probe for Selective Detection of Amyloid Fibrils. Anal Chem 2020; 92:10336-10341. [DOI: 10.1021/acs.analchem.0c00379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Anirban Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri 462066, MP India
| | - Tanoy Dutta
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri 462066, MP India
| | - Laxmikant Gadhe
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Apurba Lal Koner
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri 462066, MP India
| | - Ishu Saraogi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri 462066, MP India
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri 462066, MP India
| |
Collapse
|
11
|
Das A, Gangarde YM, Tomar V, Shinde O, Upadhyay T, Alam S, Ghosh S, Chaudhary V, Saraogi I. Small-Molecule Inhibitor Prevents Insulin Fibrillogenesis and Preserves Activity. Mol Pharm 2020; 17:1827-1834. [PMID: 32347728 DOI: 10.1021/acs.molpharmaceut.9b01080] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Amyloidosis is a well-known but poorly understood phenomenon caused by the aggregation of proteins, often leading to pathological conditions. For example, the aggregation of insulin poses significant challenges during the preparation of pharmaceutical insulin formulations commonly used to treat diabetic patients. Therefore, it is essential to develop inhibitors of insulin aggregation for potential biomedical applications and for important mechanistic insights into amyloidogenic pathways. Here, we have identified a small molecule M1, which causes a dose-dependent reduction in insulin fibril formation. Biophysical analyses and docking results suggest that M1 likely binds to partially unfolded insulin intermediates. Further, M1-treated insulin had lower cytotoxicity and remained functionally active in regulating cell proliferation in cultured Drosophila wing epithelium. Thus, M1 is of great interest as a novel agent for inhibiting insulin aggregation during biopharmaceutical manufacturing.
Collapse
|
12
|
Strazdaite S, Navakauskas E, Kirschner J, Sneideris T, Niaura G. Structure Determination of Hen Egg-White Lysozyme Aggregates Adsorbed to Lipid/Water and Air/Water Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4766-4775. [PMID: 32251594 DOI: 10.1021/acs.langmuir.9b03826] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We use vibrational sum-frequency generation (VSFG) spectroscopy to study the structure of hen egg-white lysozyme (HEWL) aggregates adsorbed to DOPG/D2O and air/D2O interfaces. We find that aggregates with a parallel and antiparallel β-sheet structure together with smaller unordered aggregates and a denaturated protein are adsorbed to both interfaces. We demonstrate that to retrieve this information, fitting of the VSFG spectra is essential. The number of bands contributing to the VSFG spectrum might be misinterpreted, due to interference between peaks with opposite orientation and a nonresonant background. Our study identified hydrophobicity as the main driving force for adsorption to the air/D2O interface. Adsorption to the DOPG/D2O interface is also influenced by hydrophobic interaction; however, electrostatic interaction between the charged protein's groups and the lipid's headgroups has the most significant effect on the adsorption. We find that the intensity of the VSFG spectrum at the DOPG/D2O interface is strongly enhanced by varying the pH of the solution. We show that this change is not due to a change of lysozyme's and its aggregates' charge but due to dipole reorientation at the DOPG/D2O interface. This finding suggests that extra care must be taken when interpreting the VSFG spectrum of proteins adsorbed at the lipid/water interface.
Collapse
Affiliation(s)
- S Strazdaite
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
| | - E Navakauskas
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
| | - J Kirschner
- Institute of Solid State Physics, Vienna Technical University, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria
| | - T Sneideris
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania
| | - G Niaura
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
| |
Collapse
|
13
|
L. Almeida Z, M. M. Brito R. Structure and Aggregation Mechanisms in Amyloids. Molecules 2020; 25:molecules25051195. [PMID: 32155822 PMCID: PMC7179426 DOI: 10.3390/molecules25051195] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/27/2022] Open
Abstract
The aggregation of a polypeptide chain into amyloid fibrils and their accumulation and deposition into insoluble plaques and intracellular inclusions is the hallmark of several misfolding diseases known as amyloidoses. Alzheimer′s, Parkinson′s and Huntington’s diseases are some of the approximately 50 amyloid diseases described to date. The identification and characterization of the molecular species critical for amyloid formation and disease development have been the focus of intense scrutiny. Methods such as X-ray and electron diffraction, solid-state nuclear magnetic resonance spectroscopy (ssNMR) and cryo-electron microscopy (cryo-EM) have been extensively used and they have contributed to shed a new light onto the structure of amyloid, revealing a multiplicity of polymorphic structures that generally fit the cross-β amyloid motif. The development of rational therapeutic approaches against these debilitating and increasingly frequent misfolding diseases requires a thorough understanding of the molecular mechanisms underlying the amyloid cascade. Here, we review the current knowledge on amyloid fibril formation for several proteins and peptides from a kinetic and thermodynamic point of view, the structure of the molecular species involved in the amyloidogenic process, and the origin of their cytotoxicity.
Collapse
|
14
|
Paudyal S, Sharma SK, da Silva RL, Mintz KJ, Liyanage PY, Al-Youbi AO, Bashammakh AS, El-Shahawi MS, Leblanc RM. Tyrosinase enzyme Langmuir monolayer: Surface chemistry and spectroscopic study. J Colloid Interface Sci 2020; 564:254-263. [DOI: 10.1016/j.jcis.2019.12.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/25/2019] [Accepted: 12/26/2019] [Indexed: 02/08/2023]
|
15
|
Cheung DL. The air-water interface stabilizes α-helical conformations of the insulin B-chain. J Chem Phys 2019. [DOI: 10.1063/1.5100253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- David L. Cheung
- School of Chemistry, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
16
|
Iacovacci V, Tamadon I, Rocchi M, Dario P, Menciassi A. Toward Dosing Precision and Insulin Stability in an Artificial Pancreas System. J Med Device 2019. [DOI: 10.1115/1.4042459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A fully implantable artificial pancreas (AP) still represents the holy grail for diabetes treatment. The quest for efficient miniaturized implantable insulin pumps, able to accurately regulate the blood glucose profile and to keep insulin stability, is still persistent. This work describes the design and testing of a microinjection system connected to a variable volume insulin reservoir devised to favor insulin stability during storage. The design, the constitutive materials, and the related fabrication techniques were selected to favor insulin stability by avoiding—or at least limiting—hormone aggregation. We compared substrates made of nylon 6 and Teflon, provided with different surface roughness values due to the employed fabrication procedures (i.e., standard machining and spray deposition). Insulin stability was tested in a worst case condition for 14 days, and pumping system reliability and repeatability in dosing were tested over an entire reservoir emptying cycle. We found that nylon 6 guarantees a higher insulin stability than Teflon and that independent of the material used, larger roughness determines a higher amount of insulin aggregates. A dedicated rotary pump featured by a 1-μL delivery resolution was developed and connected through a proper gear mechanism to a variable volume air-tight insulin reservoir. The microinjection system was also able to operate in a reverse mode to enable the refilling of the implanted reservoir. The developed system represents a fundamental building block toward the development of a fully implantable AP and could be advantageously integrated even in different implantable drug delivery apparatus (e.g., for pain management).
Collapse
Affiliation(s)
- Veronica Iacovacci
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale R. Piaggio 34, Pontedera (Pisa), 56025, Italy e-mail:
| | - Izadyar Tamadon
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale R. Piaggio 34, Pontedera (Pisa), 56025, Italy
| | - Matteo Rocchi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale R. Piaggio 34, Pontedera (Pisa), 56025, Italy
| | - Paolo Dario
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale R. Piaggio 34, Pontedera (Pisa), 56025, Italy
| | - Arianna Menciassi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale R. Piaggio 34, Pontedera (Pisa), 56025, Italy
| |
Collapse
|
17
|
Jie X, Xu D, Wei W. Enantiomeric helical TiO2 nanofibers modulate different peptide assemblies and subsequent cellular behaviors. RSC Adv 2019; 9:29149-29153. [PMID: 35528423 PMCID: PMC9071841 DOI: 10.1039/c9ra04660g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/11/2019] [Indexed: 01/17/2023] Open
Abstract
The effect of the morphological chirality of inorganic TiO2 nanofibers on peptide assembly and cellular behaviors was investigated. Model peptide insulin maintains its native structure and served as a growth factor for promoting proliferation and differentiation of PC12 cells on the surface of right-handed TiO2. In contrast, insulin forms amyloid fibrils and loses its bioactivity on the left-handed TiO2. Enantiomeric inorganic helical TiO2 nanofibers directed the different assembly processes of insulin and subsequent cellular behaviors.![]()
Collapse
Affiliation(s)
- Xu Jie
- School of Pharmaceutical Sciences and Innovative Drug Research Centre
- Chongqing University
- Chongqing 401331
- China
| | - Deng Xu
- Chongqing Institute for Food and Drug Control
- Chongqing 401121
- China
| | - Weili Wei
- School of Pharmaceutical Sciences and Innovative Drug Research Centre
- Chongqing University
- Chongqing 401331
- China
| |
Collapse
|
18
|
A mechanistic insight into protein-ligand interaction, folding, misfolding, aggregation and inhibition of protein aggregates: An overview. Int J Biol Macromol 2018; 106:1115-1129. [DOI: 10.1016/j.ijbiomac.2017.07.185] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 07/28/2017] [Accepted: 07/30/2017] [Indexed: 11/22/2022]
|
19
|
Karaballi RA, Merchant S, Power SR, Brosseau CL. Electrochemical surface-enhanced Raman spectroscopy (EC-SERS) study of the interaction between protein aggregates and biomimetic membranes. Phys Chem Chem Phys 2018; 20:4513-4526. [DOI: 10.1039/c7cp06838g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
EC-SERS is used for the first time to characterize protein aggregate–biomembrane interactions.
Collapse
Affiliation(s)
| | | | - Sasha R. Power
- Department of Chemistry
- Saint Mary's University
- Halifax
- Canada
| | | |
Collapse
|
20
|
Shimanovich U, Michaels TCT, De Genst E, Matak-Vinkovic D, Dobson CM, Knowles TPJ. Sequential Release of Proteins from Structured Multishell Microcapsules. Biomacromolecules 2017; 18:3052-3059. [PMID: 28792742 DOI: 10.1021/acs.biomac.7b00351] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In nature, a wide range of functional materials is based on proteins. Increasing attention is also turning to the use of proteins as artificial biomaterials in the form of films, gels, particles, and fibrils that offer great potential for applications in areas ranging from molecular medicine to materials science. To date, however, most such applications have been limited to single component materials despite the fact that their natural analogues are composed of multiple types of proteins with a variety of functionalities that are coassembled in a highly organized manner on the micrometer scale, a process that is currently challenging to achieve in the laboratory. Here, we demonstrate the fabrication of multicomponent protein microcapsules where the different components are positioned in a controlled manner. We use molecular self-assembly to generate multicomponent structures on the nanometer scale and droplet microfluidics to bring together the different components on the micrometer scale. Using this approach, we synthesize a wide range of multiprotein microcapsules containing three well-characterized proteins: glucagon, insulin, and lysozyme. The localization of each protein component in multishell microcapsules has been detected by labeling protein molecules with different fluorophores, and the final three-dimensional microcapsule structure has been resolved by using confocal microscopy together with image analysis techniques. In addition, we show that these structures can be used to tailor the release of such functional proteins in a sequential manner. Moreover, our observations demonstrate that the protein release mechanism from multishell capsules is driven by the kinetic control of mass transport of the cargo and by the dissolution of the shells. The ability to generate artificial materials that incorporate a variety of different proteins with distinct functionalities increases the breadth of the potential applications of artificial protein-based materials and provides opportunities to design more refined functional protein delivery systems.
Collapse
Affiliation(s)
- Ulyana Shimanovich
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom.,Department of Materials and Interfaces, Weizmann Institute of Science , Rehovot 76100, Israel
| | - Thomas C T Michaels
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom.,School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Erwin De Genst
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Dijana Matak-Vinkovic
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom.,Cavendish Laboratory, Department of Physics, University of Cambridge , J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
21
|
Schöne AC, Roch T, Schulz B, Lendlein A. Evaluating polymeric biomaterial-environment interfaces by Langmuir monolayer techniques. J R Soc Interface 2017; 14:20161028. [PMID: 28468918 PMCID: PMC5454283 DOI: 10.1098/rsif.2016.1028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/05/2017] [Indexed: 12/18/2022] Open
Abstract
Polymeric biomaterials are of specific relevance in medical and pharmaceutical applications due to their wide range of tailorable properties and functionalities. The knowledge about interactions of biomaterials with their biological environment is of crucial importance for developing highly sophisticated medical devices. To achieve optimal in vivo performance, a description at the molecular level is required to gain better understanding about the surface of synthetic materials for tailoring their properties. This is still challenging and requires the comprehensive characterization of morphological structures, polymer chain arrangements and degradation behaviour. The review discusses selected aspects for evaluating polymeric biomaterial-environment interfaces by Langmuir monolayer methods as powerful techniques for studying interfacial properties, such as morphological and degradation processes. The combination of spectroscopic, microscopic and scattering methods with the Langmuir techniques adapted to polymers can substantially improve the understanding of their in vivo behaviour.
Collapse
Affiliation(s)
- Anne-Christin Schöne
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow, Germany
| | - Toralf Roch
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow, Germany
- Helmholtz Virtual Institute-Multifunctional Biomaterials for Medicine, Kantstrasse 55, 14513 Teltow, Germany
| | - Burkhard Schulz
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow, Germany
| | - Andreas Lendlein
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow, Germany
- Helmholtz Virtual Institute-Multifunctional Biomaterials for Medicine, Kantstrasse 55, 14513 Teltow, Germany
| |
Collapse
|
22
|
Raynes JK, Day L, Crepin P, Horrocks MH, Carver JA. Coaggregation of κ-Casein and β-Lactoglobulin Produces Morphologically Distinct Amyloid Fibrils. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603591. [PMID: 28146312 DOI: 10.1002/smll.201603591] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/20/2016] [Indexed: 06/06/2023]
Abstract
The unfolding, misfolding, and aggregation of proteins lead to a variety of structural species. One form is the amyloid fibril, a highly aligned, stable, nanofibrillar structure composed of β-sheets running perpendicular to the fibril axis. β-Lactoglobulin (β-Lg) and κ-casein (κ-CN) are two milk proteins that not only individually form amyloid fibrillar aggregates, but can also coaggregate under environmental stress conditions such as elevated temperature. The aggregation between β-Lg and κ-CN is proposed to proceed via disulfide bond formation leading to amorphous aggregates, although the exact mechanism is not known. Herein, using a range of biophysical techniques, it is shown that β-Lg and κ-CN coaggregate to form morphologically distinct co-amyloid fibrillar structures, a phenomenon previously limited to protein isoforms from different species or different peptide sequences from an individual protein. A new mechanism of aggregation is proposed whereby β-Lg and κ-CN not only form disulfide-linked aggregates, but also amyloid fibrillar coaggregates. The coaggregation of two structurally unrelated proteins into cofibrils suggests that the mechanism can be a generic feature of protein aggregation as long as the prerequisites for sequence similarity are met.
Collapse
Affiliation(s)
- Jared K Raynes
- CSIRO Agriculture and Food, Werribee, Victoria, 3031, Australia
| | - Li Day
- AgResearch Limited, Grasslands Research Centre, Tennent Drive, Palmerston North, 4442, New Zealand
| | - Pauline Crepin
- École Nationale Supérieure de Chimie, Biologie et Physique, Bordeaux, 33607, France
| | - Mathew H Horrocks
- Proteostasis and Disease Research Centre, School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, Australian Capital Territory, 2601, Australia
| |
Collapse
|
23
|
Frachon T, Bruckert F, Le Masne Q, Monnin E, Weidenhaupt M. Insulin Aggregation at a Dynamic Solid-Liquid-Air Triple Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13009-13019. [PMID: 27951683 DOI: 10.1021/acs.langmuir.6b03314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Therapeutic proteins are privileged in drug development because of their exquisite specificity, which is due to their three-dimensional conformation in solution. During their manufacture, storage, and delivery, interactions with material surfaces and air interfaces are known to affect their stability. The growing use of automated devices for handling and injection of therapeutics increases their exposure to protocols involving intermittent wetting, during which the solid-liquid and liquid-air interfaces meet at a triple contact line, which is often dynamic. Using a microfluidic setup, we analyze the effect of a moving triple interface on insulin aggregation in real time over a hydrophobic surface. We combine thioflavin T fluorescence and reflection interference microscopy to concomitantly monitor insulin aggregation and the morphology of the liquid as it dewets the surface. We demonstrate that insulin aggregates in the region of a moving triple interface and not in regions submitted to hydrodynamic shear stress alone, induced by the moving liquid. During dewetting, liquid droplets form on the surface anchored by adsorbed proteins, and the accumulation of amyloid aggregates is observed exclusively as fluorescent rings growing eccentrically around these droplets. The fluorescent rings expand until the entire channel surface sweeped by the triple interface is covered by amyloid fibers. On the basis of our experimental results, we propose a model describing the growth mechanism of insulin amyloid fibers at a moving triple contact line, where proteins adsorbed at a hydrophobic surface are exposed to the liquid-air interface.
Collapse
Affiliation(s)
- Thibaut Frachon
- LMGP, University Grenoble Alpes, CNRS , F-38000 Grenoble, France
- Eveon S.A.S. , Inovallée, F-38330 Montbonnot Saint Martin, France
| | - Franz Bruckert
- LMGP, University Grenoble Alpes, CNRS , F-38000 Grenoble, France
| | - Quentin Le Masne
- Eveon S.A.S. , Inovallée, F-38330 Montbonnot Saint Martin, France
| | - Emmanuel Monnin
- Eveon S.A.S. , Inovallée, F-38330 Montbonnot Saint Martin, France
| | | |
Collapse
|
24
|
Lu S, Guo S, Xu P, Li X, Zhao Y, Gu W, Xue M. Hydrothermal synthesis of nitrogen-doped carbon dots with real-time live-cell imaging and blood-brain barrier penetration capabilities. Int J Nanomedicine 2016; 11:6325-6336. [PMID: 27932880 PMCID: PMC5135288 DOI: 10.2147/ijn.s119252] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nitrogen-doped carbon dots (N-CDs) were synthesized using a one-pot hydrothermal treatment with citric acid in the presence of polyethylenimine. Transmission electron microscopy analysis revealed that the N-CDs were monodispersed and quasi-spherical with an average size of ~2.6 nm. Under ultraviolet irradiation the N-CDs emitted a strong blue luminescence with a quantum yield as high as 51%. Moreover, the N-CDs exhibited a negligible cytotoxicity and could be applied as efficient nanoprobes for real-time imaging of live cells. In addition, the ability of the N-CDs to cross the blood–brain barrier (BBB) in a concentration-dependent manner was demonstrated using an in vitro BBB model. Therefore, these PEI-passivated N-CDs with real-time live-cell imaging and BBB-penetration capabilities hold promise for traceable drug delivery to the brain.
Collapse
Affiliation(s)
- Shousi Lu
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University; China Rehabilitation Research Center
| | - Shanshan Guo
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University
| | - Pingxiang Xu
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University
| | - Xiaorong Li
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University
| | - Yuming Zhao
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University
| | - Wei Gu
- Department of Chemistry and Biology, School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Ming Xue
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University
| |
Collapse
|
25
|
Sharma SK, Li S, Micic M, Orbulescu J, Weissbart D, Nakahara H, Shibata O, Leblanc RM. β-Galactosidase Langmuir Monolayer at Air/X-gal Subphase Interface. J Phys Chem B 2016; 120:12279-12286. [DOI: 10.1021/acs.jpcb.6b09020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shiv K. Sharma
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Shanghao Li
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Miodrag Micic
- MP Biomedicals LLC, 3 Hutton
Center, Santa Ana, California 92707, United States
- Department
of Engineering Design Technology, Cerritos College, 11110 Alondra
Boulevard, Norwalk, California 9265, United States
| | - Jhony Orbulescu
- MP Biomedicals LLC, 3 Hutton
Center, Santa Ana, California 92707, United States
| | - Daniel Weissbart
- MP Biomedicals SAS, Parc d’innovation-Rue Geiler de Kaysersberg, Illkirch-Graffenstaden 67402, France
| | - Hiromichi Nakahara
- Department
of Biophysical Chemistry, Nagasaki International University, Huis Ten
Bosch, Sasebo, Nagasaki 859-3298, Japan
| | - Osamu Shibata
- Department
of Biophysical Chemistry, Nagasaki International University, Huis Ten
Bosch, Sasebo, Nagasaki 859-3298, Japan
| | - Roger M. Leblanc
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| |
Collapse
|
26
|
Abstract
The formation of insulin amyloid can dramatically impact glycemic control in patients with diabetes, making it an important therapeutic consideration. In addition, the cost associated with the excess insulin required by patients with amyloid is estimated to be $3K per patient per year, which adds to the growing financial burden of this disease. Insulin amyloid has been observed with every mode of therapeutic insulin administration (infusion, injection and inhalation), and the number of reported cases has increased significantly since 2002. The new cases represent a much broader demographic, and include many patients who have used exclusively human insulin and human insulin analogs. The reason for the increase in case reports is unknown, but this review explores the possibility that changes in patient care, improved differential diagnosis and/or changes in insulin type and insulin delivery systems may be important factors. The goal of this review is to raise key questions that will inspire proactive measures to prevent, identify and treat insulin amyloid. Furthermore, this comprehensive examination of insulin amyloid can provide insight into important considerations for other injectable drugs that are prone to form amyloid deposits.
Collapse
Affiliation(s)
- Melanie R Nilsson
- a Department of Chemistry , McDaniel College , Westminster , MD , USA
| |
Collapse
|
27
|
Hedegaard SF, Cárdenas M, Barker R, Jorgensen L, van de Weert M. Lipidation Effect on Surface Adsorption and Associated Fibrillation of the Model Protein Insulin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7241-7249. [PMID: 27348237 DOI: 10.1021/acs.langmuir.6b00522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Lipidation of proteins is used in the pharmaceutical field to increase the therapeutic efficacy of proteins. In this study, we investigate the effect of a 14-carbon fatty acid modification on the adsorption behavior of human insulin to a hydrophobic solid surface and the subsequent fibrillation development under highly acidic conditions and elevated temperature by comparing to the fibrillation of human insulin. At these stressed conditions, the lipid modification accelerates the rate of fibrillation in bulk solution. With the use of several complementary surface-sensitive techniques, including quartz crystal microbalance with dissipation monitoring (QCM-D), atomic force microscopy (AFM), and neutron reflectivity (NR), we show that there are two levels of structurally different protein organization at a hydrophobic surface for both human insulin and the lipidated analogue: a dense protein layer formed within minutes on the surface and a diffuse outer layer of fibrillar structures which took hours to form. The two layers may only be weakly connected, and proteins from both layers are able to desorb from the surface. The lipid modification increases the protein surface coverage and the thickness of both layer organizations. Upon lipidation not only the fibrillation extent but also the morphology of the fibrillar structures changes from fibril clusters on the surface to a more homogeneous network of fibrils covering the entire hydrophobic surface.
Collapse
Affiliation(s)
- Sofie Fogh Hedegaard
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, 2100 Copenhagen O, Denmark
| | - Marité Cárdenas
- Department of Biomedical Science and Biofilms Research Center for Biointerfaces, Faculty of Health and Society, Malmo University , Per Albin Hanssons väg 35, 214 32 Malmö, Sweden
- Department of Chemistry, Faculty of Science, University of Copenhagen , Universitetsparken 5, 2100 Copenhagen O, Denmark
| | - Robert Barker
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - Lene Jorgensen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, 2100 Copenhagen O, Denmark
| | - Marco van de Weert
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, 2100 Copenhagen O, Denmark
| |
Collapse
|
28
|
Patel KA, Sethi R, Dhara AR, Roy I. Challenges with osmolytes as inhibitors of protein aggregation: Can nucleic acid aptamers provide an answer? Int J Biol Macromol 2016; 100:75-88. [PMID: 27156694 DOI: 10.1016/j.ijbiomac.2016.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 02/07/2023]
Abstract
Protein aggregation follows some common motifs. Whether in the formation of inclusion bodies in heterologous overexpression systems or inclusions in protein conformational diseases, or aggregation during storage or transport of protein formulations, aggregates form cross beta-sheet structures and stain with amyloidophilic dyes like Thioflavin T and Congo Red, irrespective of the concerned protein. Traditionally, osmolytes are used to stabilize proteins against stress conditions. They are employed right from protein expression, through production and purification, to formulation and administration. As osmolytes interact with the solvent, the differential effect of the stress condition on the solvent mostly determines the effect of the osmolyte on protein stability. Nucleic acid aptamers, on the other hand, are highly specific for their targets. When selected against monomeric, natively folded proteins, they bind to them with very high affinity. This binding inhibits the unfolding of the protein and/or monomer-monomer interaction which are the initial common steps of protein aggregation. Thus, by changing the approach to a protein-centric model, aptamers are able to function as universal stabilizers of proteins. The review discusses cases where osmolytes were unable to provide stabilization to proteins against different stress conditions, a gap which the aptamers seem to be able to fill.
Collapse
Affiliation(s)
- Kinjal A Patel
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Ratnika Sethi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Anita R Dhara
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India.
| |
Collapse
|
29
|
Li S, Peng Z, Dallman J, Baker J, Othman AM, Blackwelder PL, Leblanc RM. Crossing the blood-brain-barrier with transferrin conjugated carbon dots: A zebrafish model study. Colloids Surf B Biointerfaces 2016; 145:251-256. [PMID: 27187189 DOI: 10.1016/j.colsurfb.2016.05.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/02/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022]
Abstract
Drug delivery to the central nervous system (CNS) in biological systems remains a major medical challenge due to the tight junctions between endothelial cells known as the blood-brain-barrier (BBB). Here we use a zebrafish model to explore the possibility of using transferrin-conjugated carbon dots (C-Dots) to ferry compounds across the BBB. C-Dots have previously been reported to inhibit protein fibrillation, and they are also used to deliver drugs for disease treatment. In terms of the potential medical application of C-Dots for the treatment of CNS diseases, one of the most formidable challenges is how to deliver them inside the CNS. To achieve this in this study, human transferrin was covalently conjugated to C-Dots. The conjugates were then injected into the vasculature of zebrafish to examine the possibility of crossing the BBB in vivo via transferrin receptor-mediated endocytosis. The experimental observations suggest that the transferrin-C-Dots can enter the CNS while C-Dots alone cannot.
Collapse
Affiliation(s)
- Shanghao Li
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, United States
| | - Zhili Peng
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, United States
| | - Julia Dallman
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, United States
| | - James Baker
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, United States
| | - Abdelhameed M Othman
- Department of Chemistry, Faculty of Science in Yanbu, Taibah University, Yanbu, Saudi Arabia; Department of Environmental Biotechnology, Genetic Engineering and Biotechnology, University of Sadat City, Sadat City, Egypt
| | - Patrica L Blackwelder
- University of Miami Center for Advanced Microscopy and Marine Geosciences, 1301 Memorial Drive, University of Miami, Coral Gables, FL, 33146, United States; Nova Southeastern University Oceanographic Center, 8000 North Ocean Drive, Dania, FL, 33004, United States
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, United States.
| |
Collapse
|
30
|
Dubé A, Leggiadro C, Ewart KV. Rapid amyloid fibril formation by a winter flounder antifreeze protein requires specific interaction with ice. FEBS Lett 2016; 590:1335-44. [DOI: 10.1002/1873-3468.12175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/31/2016] [Accepted: 04/05/2016] [Indexed: 11/10/2022]
Affiliation(s)
- André Dubé
- Department of Biochemistry and Molecular Biology; Dalhousie University; Halifax Canada
| | - Cindy Leggiadro
- Aquatic and Crop Resource Development; National Research Council; Halifax Canada
| | - Kathryn Vanya Ewart
- Department of Biochemistry and Molecular Biology; Dalhousie University; Halifax Canada
- Department of Biology; Dalhousie University; Halifax Canada
| |
Collapse
|
31
|
Mishra NK, Krishna Deepak RNV, Sankararamakrishnan R, Verma S. Controlling in Vitro Insulin Amyloidosis with Stable Peptide Conjugates: A Combined Experimental and Computational Study. J Phys Chem B 2015; 119:15395-406. [DOI: 10.1021/acs.jpcb.5b08215] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Narendra Kumar Mishra
- Department of Chemistry, DST Thematic
Unit of Excellence on Soft
Nanofabrication and ‡Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016 Uttar Pradesh, India
| | - R. N. V. Krishna Deepak
- Department of Chemistry, DST Thematic
Unit of Excellence on Soft
Nanofabrication and ‡Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016 Uttar Pradesh, India
| | - Ramasubbu Sankararamakrishnan
- Department of Chemistry, DST Thematic
Unit of Excellence on Soft
Nanofabrication and ‡Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016 Uttar Pradesh, India
| | - Sandeep Verma
- Department of Chemistry, DST Thematic
Unit of Excellence on Soft
Nanofabrication and ‡Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016 Uttar Pradesh, India
| |
Collapse
|
32
|
Fu L, Wang Z, Batista VS, Yan ECY. New Insights from Sum Frequency Generation Vibrational Spectroscopy into the Interactions of Islet Amyloid Polypeptides with Lipid Membranes. J Diabetes Res 2015; 2016:7293063. [PMID: 26697504 PMCID: PMC4677203 DOI: 10.1155/2016/7293063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/24/2015] [Indexed: 11/17/2022] Open
Abstract
Studies of amyloid polypeptides on membrane surfaces have gained increasing attention in recent years. Several studies have revealed that membranes can catalyze protein aggregation and that the early products of amyloid aggregation can disrupt membrane integrity, increasing water permeability and inducing ion cytotoxicity. Nonetheless, probing aggregation of amyloid proteins on membrane surfaces is challenging. Surface-specific methods are required to discriminate contributions of aggregates at the membrane interface from those in the bulk phase and to characterize protein secondary structures in situ and in real time without the use of perturbing spectroscopic labels. Here, we review the most recent applications of sum frequency generation (SFG) vibrational spectroscopy applied in conjunction with computational modeling techniques, a joint experimental and computational methodology that has provided valuable insights into the aggregation of islet amyloid polypeptide (IAPP) on membrane surfaces. These applications show that SFG can provide detailed information about structures, kinetics, and orientation of IAPP during interfacial aggregation, relevant to the molecular mechanisms of type II diabetes. These recent advances demonstrate the promise of SFG as a new approach for studying amyloid diseases at the molecular level and for the rational drug design targeting early aggregation products on membrane surfaces.
Collapse
Affiliation(s)
- Li Fu
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Zhuguang Wang
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520, USA
| | - Victor S. Batista
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520, USA
| | - Elsa C. Y. Yan
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520, USA
| |
Collapse
|
33
|
Fang X, Yang T, Wang L, Yu J, Wei X, Zhou Y, Wang C, Liang W. Nano-cage-mediated refolding of insulin by PEG-PE micelle. Biomaterials 2015; 77:139-48. [PMID: 26595505 DOI: 10.1016/j.biomaterials.2015.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 10/22/2022]
Abstract
Insulin aggregation has pronounced pharmaceutical implications and biological importance. Deposition of insulin aggregates is associated with type II diabetes and instability of pharmaceutical formulations. We present in this study the renaturation effect of PEG-PE micelle on dithiothreitol (DTT)-denatured insulin revealed by techniques including turbidity assay, circular dichroism (CD), thioflavinT (ThT) binding assay, bis-ANS binding assay, agarose gel electrophoresis and MALDI-TOF MS. The obtained results show that PEG-PE micelle having a hydrophilic nano-cage-like structure in which with a negative charge layer, can capture DTT-induced insulin A and B chains, and block their hydrophobic interaction, thereby preventing aggregation. The reduced insulin A and B chain in the nano-cage are capable of recognizing each other and form the native insulin with yields of ∼30% as measured by hypoglycemic activity analysis in mice. The observed insulin refolding assisted by PEG-PE micelle may be applicable to other proteins.
Collapse
Affiliation(s)
- Xiaocui Fang
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No.11 ZhongGuanCun BeiYiTiao, Beijing 100190, China
| | - Tao Yang
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; University of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Luoyang Wang
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; University of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jibing Yu
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Xiuli Wei
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Yinjian Zhou
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Chen Wang
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No.11 ZhongGuanCun BeiYiTiao, Beijing 100190, China.
| | - Wei Liang
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.
| |
Collapse
|
34
|
Noormägi A, Valmsen K, Tõugu V, Palumaa P. Insulin Fibrillization at Acidic and Physiological pH Values is Controlled by Different Molecular Mechanisms. Protein J 2015; 34:398-403. [DOI: 10.1007/s10930-015-9634-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
Hung A. Effects of interfaces on aggregates of peptides derived from pancreatic islet amyloid polypeptide. MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2015.1089990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Crawford NF, Micic M, Orbulescu J, Weissbart D, Leblanc RM. Surface chemistry and spectroscopy of the β-galactosidase Langmuir monolayer. J Colloid Interface Sci 2015; 453:202-208. [DOI: 10.1016/j.jcis.2015.04.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 01/05/2023]
|
37
|
Sessions K, Sacks S, Li S, Leblanc RM. epi-Fluorescence imaging at the air-water interface of fibrillization of bovine serum albumin and human insulin. Chem Commun (Camb) 2015; 50:8955-7. [PMID: 24976597 DOI: 10.1039/c4cc04030a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protein fibrillization is associated with many devastating neurodegenerative diseases. This process has been studied using spectroscopic and microscopic methods. In this study, epi-fluorescence at the air-water interface was developed as an innovative technique for observing fibrillization of bovine serum albumin and human insulin.
Collapse
Affiliation(s)
- Kristen Sessions
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA.
| | | | | | | |
Collapse
|
38
|
Affiliation(s)
- Chung-Lun Lin
- Institute of Atomic
and Molecular Sciences, Academic Sinica, 1 Sec. 4, Roosevelt Rd., Taipei, Taiwan 10617, R.O.C
- Department
of Chemistry, National Taiwan Normal University, 88 Sec. 4, Ting-Chow Rd., Taipei, Taiwan 11677, R.O.C
| | - Cheng-Huang Lin
- Department
of Chemistry, National Taiwan Normal University, 88 Sec. 4, Ting-Chow Rd., Taipei, Taiwan 11677, R.O.C
| | - Huan-Cheng Chang
- Institute of Atomic
and Molecular Sciences, Academic Sinica, 1 Sec. 4, Roosevelt Rd., Taipei, Taiwan 10617, R.O.C
| | - Meng-Chih Su
- Department
of Chemistry, Sonoma State University, 1801 E. Cotati Ave., Rohnert Park, California 94928, United States
| |
Collapse
|
39
|
pH-responsive modulation of insulin aggregation and structural transformation of the aggregates. Biochimie 2015; 109:49-59. [DOI: 10.1016/j.biochi.2014.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/09/2014] [Indexed: 12/19/2022]
|
40
|
Smirnova E, Safenkova I, Stein-Margolina V, Shubin V, Gurvits B. Can aggregation of insulin govern its fate in the intestine? Implications for oral delivery of the drug. Int J Pharm 2014; 471:65-8. [DOI: 10.1016/j.ijpharm.2014.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
|