1
|
Chauhan N, Karanastasis A, Ullal CK, Wang X. Homologous pairing in short double-stranded DNA-grafted colloidal microspheres. Biophys J 2022; 121:4819-4829. [PMID: 36196058 PMCID: PMC9811663 DOI: 10.1016/j.bpj.2022.09.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/04/2022] [Accepted: 09/28/2022] [Indexed: 01/07/2023] Open
Abstract
Homologous pairing (HP), i.e., the pairing of similar or identical double-stranded DNA, is an insufficiently understood fundamental biological process. HP is now understood to also occur without protein mediation, but crucial mechanistic details remain poorly established. Unfortunately, systematic studies of sequence dependence are not practical due to the enormous number of nucleotide permutations and multiple possible conformations involved in existing biophysical strategies even when using as few as 150 basepairs. Here, we show that HP can occur in DNA as short as 18 basepairs in a colloidal microparticle-based system. Exemplary systematic studies include resolving opposing reports of the impact of % AT composition, validating the impact of nucleotide order and triplet framework and revealing isotropic bendability to be crucial for HP. These studies are enabled by statistical analysis of crystal size and fraction within coexisting fluid-crystal phases of double-stranded DNA-grafted colloidal microspheres, where crystallization is predicated by HP.
Collapse
Affiliation(s)
- Neha Chauhan
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Apostolos Karanastasis
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Chaitanya K Ullal
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Xing Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois; Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
2
|
Haddadi S, Skepö M, Forsman J. From Attraction to Repulsion to Attraction: Non-monotonic Temperature Dependence of Polymer-Mediated Interactions in Colloidal Dispersions. ACS NANOSCIENCE AU 2021; 1:69-80. [PMID: 37102117 PMCID: PMC10125165 DOI: 10.1021/acsnanoscienceau.1c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
In this work, we have synthesized polystyrene particles that carry short end-grafted polyethylene glycol (PEG) chains. We then added dissolved 100 kDa PEG polymers and monitored potential flocculation by confocal microscopy. Qualitative predictions, based on previous theoretical developments in this field (Xie, F.; et al. Soft Matter 2016, 12, 658), suggest a non-monotonic temperature response. These theories propose that the "free" (dissolved) polymers will mediate attractive depletion interactions at room temperature, with a concomitant clustering/flocculation at a sufficiently high polymer concentration. At high temperatures, where the solvent is poorer, this is predicted to be replaced by attractive bridging interactions, again resulting in particle condensation. Interestingly enough, our theoretical framework, based on classical density functional theory, predicts an intermediate temperature regime where the polymer-mediated interactions are repulsive! This obviously implies a homogeneous dispersion in this regime. These qualitative predictions have been experimentally tested and confirmed in this work, where flocs of particles start to form at room temperature for a high enough polymer dosage. At temperatures near 45 °C, the flocs redisperse, and we obtain a homogeneous sample. However, samples at about 75 °C will again display clusters and eventually phase separation. Using results from these studies, we have been able to fine-tune parameters of our coarse-grained theoretical model, resulting in predictions of temperature-dependent stability that display semiquantitative accuracy. A crucial aspect is that under "intermediate" conditions, where the polymers neither adsorb nor desorb at the particle surfaces, the polymer-mediated equilibrium interaction is repulsive.
Collapse
|
3
|
Buzzaccaro S, Mollame AF, Piazza R. Relaxation in aging thermoreversible gels: the role of thermal history. SOFT MATTER 2021; 17:7623-7627. [PMID: 34382994 DOI: 10.1039/d1sm00711d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The fast setting of gels originating from an arrested phase separation leads to solid structures that incorporate a substantial amount of frozen-in stresses. Using a colloidal system made of particles whose interactions can accurately be tuned with temperature and exploiting Photon Correlation Imaging (PCI), an optical correlation technique blending the powers of scattering and imaging, we show that the relaxation of these internal stresses, which occurs through a cascade of microscopic restructuring events, is strongly influenced by the thermal history of the sample. By changing with a temperature jump the interparticle interactions in an already set gel, we specifically show that gels formed by a deep quench within the coexistence region store a lot of residual stress. This stress quickly relaxes when the interparticle attractions are weakened by decreasing temperature. Conversely, the relaxation of stresses accumulated in gels obtained by a shallower quench comes to a halt by a temperature jump that hardens the gel structure. The evidence we collected may provide useful hints about tempering and annealing processes in disordered solids.
Collapse
Affiliation(s)
- Stefano Buzzaccaro
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | | | | |
Collapse
|
4
|
Filiberti Z, Piazza R, Buzzaccaro S. Multiscale relaxation in aging colloidal gels: From localized plastic events to system-spanning quakes. Phys Rev E 2019; 100:042607. [PMID: 31770945 DOI: 10.1103/physreve.100.042607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Indexed: 06/10/2023]
Abstract
Relaxation of internal stresses through a cascade of microscopic restructuring events is the hallmark of many materials, ranging from amorphous solids like glasses and gels to geological structures subjected to a persistent external load. By means of photon correlation imaging, a recently developed technique that blends the powers of scattering and imaging, we provide a spatially and temporally resolved survey of the restructuring and aging processes that spontaneously occur in physical gels originating from an arrested phase separation. We show that the temporal dynamics is characterized by an intermittent sequence of spatially localized "microquakes" that eventually lead to global rearrangements occurring at a rate that scales with the gel age. Notably, these dramatic upheavals of the gel structure are heralded by a progressive acceleration of the microscopic gel dynamics that originates from recognizable active spots and then spreads at a large but finite speed through the gel. Within the "slack" phase between two of these "macroquakes," the fluctuations of the degree of temporal correlation obey a non-Gaussian statistics described by a generalized logistic distribution. The evidence we obtained bear consistent analogies with the stress relaxation processes taking place in earthquake sequences and with the intermittent restructuring of plastic crystals at the microscale.
Collapse
Affiliation(s)
- Zeno Filiberti
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Roberto Piazza
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Stefano Buzzaccaro
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
5
|
Jonsson GK, Ulama J, Persson RAX, Oskolkova MZ, Sztucki M, Narayanan T, Bergenholtz J. Stabilizing Colloidal Particles against Salting-out by Shortening Surface Grafts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11836-11842. [PMID: 31430161 DOI: 10.1021/acs.langmuir.9b02093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A dramatic improvement is reported in the stability of colloidal particles when stabilizing surface grafts are systematically shortened from small polymers to single monomers. The colloidal dispersions consist of fluorinated latex particles, exhibiting a weak van der Waals attraction, with grafted steric layers of poly(ethylene glycol) (PEG) of different chain lengths. Using an effective salting-out electrolyte, Na2CO3, particle aggregates are detected above a threshold salt concentration that is independent of the particle concentration. The results are interpreted in terms of a sudden onset of nondispersibility of single particles, triggered by the solvent not completely wetting particle surfaces. By decreasing the PEG chain length, the threshold salt concentration is found to increase sharply. For grafts with just a single ethylene glycol group, dispersions remain stable up to exceedingly high concentrations of Na2CO3. However, on removal of the surface coverage altogether, the classical stability behavior of charge-stabilized dispersions is recovered. The behavior can be captured by a simple model that incorporates effective polymer-solvent interactions in the presence of an electrolyte.
Collapse
Affiliation(s)
- G Kristin Jonsson
- Department of Chemistry and Molecular Biology , University of Gothenburg , SE-41296 Göteborg , Sweden
| | - Jeanette Ulama
- Department of Chemistry and Molecular Biology , University of Gothenburg , SE-41296 Göteborg , Sweden
| | - Rasmus A X Persson
- Department of Chemistry and Molecular Biology , University of Gothenburg , SE-41296 Göteborg , Sweden
| | | | - Michael Sztucki
- ESRF - The European Synchrotron Radiation Facility , 71 avenue des Martyrs, CS 40220 , 38043 Grenoble Cedex 9 , France
| | - Theyencheri Narayanan
- ESRF - The European Synchrotron Radiation Facility , 71 avenue des Martyrs, CS 40220 , 38043 Grenoble Cedex 9 , France
| | - Johan Bergenholtz
- Department of Chemistry and Molecular Biology , University of Gothenburg , SE-41296 Göteborg , Sweden
| |
Collapse
|
6
|
Roca AG, Gutiérrez L, Gavilán H, Fortes Brollo ME, Veintemillas-Verdaguer S, Morales MDP. Design strategies for shape-controlled magnetic iron oxide nanoparticles. Adv Drug Deliv Rev 2019; 138:68-104. [PMID: 30553951 DOI: 10.1016/j.addr.2018.12.008] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/20/2018] [Accepted: 12/11/2018] [Indexed: 01/01/2023]
Abstract
Ferrimagnetic iron oxide nanoparticles (magnetite or maghemite) have been the subject of an intense research, not only for fundamental research but also for their potentiality in a widespread number of practical applications. Most of these studies were focused on nanoparticles with spherical morphology but recently there is an emerging interest on anisometric nanoparticles. This review is focused on the synthesis routes for the production of uniform anisometric magnetite/maghemite nanoparticles with different morphologies like cubes, rods, disks, flowers and many others, such as hollow spheres, worms, stars or tetrapods. We critically analyzed those procedures, detected the key parameters governing the production of these nanoparticles with particular emphasis in the role of the ligands in the final nanoparticle morphology. The main structural and magnetic features as well as the nanotoxicity as a function of the nanoparticle morphology are also described. Finally, the impact of each morphology on the different biomedical applications (hyperthermia, magnetic resonance imaging and drug delivery) are analysed in detail. We would like to dedicate this work to Professor Carlos J. Serna, Instituto de Ciencia de Materiales de Madrid, ICMM/CSIC, for his outstanding contribution in the field of monodispersed colloids and iron oxide nanoparticles. We would like to express our gratitude for all these years of support and inspiration on the occasion of his retirement.
Collapse
Affiliation(s)
- Alejandro G Roca
- Dept. Energía, Medio Ambiente y Salud, Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain; Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, E-08193 Barcelona, Spain.
| | - Lucía Gutiérrez
- Dept. Energía, Medio Ambiente y Salud, Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain; Dept. Química Analítica, Instituto de Nanociencia de Aragón, Universidad de Zaragoza and CIBER-BBN, E-50018 Zaragoza, Spain.
| | - Helena Gavilán
- Dept. Energía, Medio Ambiente y Salud, Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain.
| | - Maria Eugênia Fortes Brollo
- Dept. Energía, Medio Ambiente y Salud, Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain.
| | - Sabino Veintemillas-Verdaguer
- Dept. Energía, Medio Ambiente y Salud, Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain.
| | - María Del Puerto Morales
- Dept. Energía, Medio Ambiente y Salud, Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain.
| |
Collapse
|
7
|
Lunn AM, Perrier S. Synthesis of Sub-100 nm Glycosylated Nanoparticles via a One Step, Free Radical, and Surfactant Free Emulsion Polymerization. Macromol Rapid Commun 2018; 39:e1800122. [PMID: 29722103 DOI: 10.1002/marc.201800122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/09/2018] [Indexed: 01/21/2023]
Abstract
The facile synthesis of sub-100 nm glyco nanoparticles is presented via a one-step, free radical, and surfactant free emulsion polymerization. It is shown that by using sterically large, hydrophilic glycomonomers such as a lactose acrylamide with the charged azo initiator 4,4'-azobis(4-cyanovaleric acid), growing particles are stabilized enough to reproducibly produce well defined (PDi ≤ 0.1) glycoparticles with diameters below 100 nm.
Collapse
Affiliation(s)
- Andrew M Lunn
- Department of Chemistry, The University of Warwick, Gibbet Hill, Coventry, CV4 7AL, UK
| | - Sébastien Perrier
- Department of Chemistry, The University of Warwick, Gibbet Hill, Coventry, CV4 7AL, UK
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
8
|
Effects of temperature and solvent condition on phase separation induced molecular fractionation of gum arabic/hyaluronan aqueous mixtures. Int J Biol Macromol 2018; 116:683-690. [DOI: 10.1016/j.ijbiomac.2018.05.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 12/14/2022]
|
9
|
Capasso Palmiero U, Agostini A, Lattuada E, Gatti S, Singh J, Canova CT, Buzzaccaro S, Moscatelli D. Use of RAFT macro-surfmers for the synthesis of transparent aqueous colloids with tunable interactions. SOFT MATTER 2017; 13:6439-6449. [PMID: 28876353 DOI: 10.1039/c7sm01084b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We propose a new method to produce fluorinated nanoparticles (NPs) based on ab initio reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization without the use of toxic surfactants. NP size, surface charge, and chemistry can be controlled via the adoption of different macromolecular transfer agents produced via RAFT polymerization of amphiphilic monomers. Thanks to this versatility, interparticle interactions can be easily tuned by changing solvent composition and temperature. In addition, the refractive index and density of the solvent can simultaneously match those of the NPs by adding sodium polytungstate, an organic salt widely used for density gradient centrifugation. These colloids may be used as model systems for the study of self-assembly and aggregation in aqueous media when optical methods are required.
Collapse
Affiliation(s)
- Umberto Capasso Palmiero
- Department of Chemistry, Material Science, and Chemical Engineering "Giulio Natta", Politecnico di Milano, 20133 Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Semi-batch synthesis of colloidal spheres with fluorinated cores and varying grafts of poly(ethylene glycol). Colloid Polym Sci 2017; 295:1983-1991. [PMID: 28989224 PMCID: PMC5602058 DOI: 10.1007/s00396-017-4172-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 11/02/2022]
Abstract
Fluorinated spheres with grafted poly(ethylene glycol) (PEG) have been synthesized using a semi-batch emulsion polymerization in which the initiator is fed slowly to the reaction. In this way, PEG-grafted colloidal spheres can be fabricated with varying PEG chain length, different cores and varying degrees of crosslinking. The resulting batches have been characterized using disc centrifuge photosedimentometry and small-angle X-ray scattering. The size distribution is shown to be a sensitive function of the molar ratio of the reactive PEG macromonomer to fluorinated monomer, and with some optimization latices of very low polydispersity can be obtained with this simple synthesis method. For short PEG grafts too high a molar ratio results in a build up of smaller size particles and a broadening of the size distribution, whereas for longer grafts the mean particle size increases with decreasing molar ratio.
Collapse
|
11
|
Liu Y, Claes N, Trepka B, Bals S, Lang PR. A combined 3D and 2D light scattering study on aqueous colloidal model systems with tunable interactions. SOFT MATTER 2016; 12:8485-8494. [PMID: 27722609 DOI: 10.1039/c6sm01376g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this article we report on the synthesis and characterization of a system of colloidal spheres suspended in an aqueous solvent which can be refractive index-matched, thus allowing for investigations of the particle near-wall dynamics by evanescent wave dynamic light scattering at concentrations up to the isotropic to ordered transition and beyond. The particles are synthesized by copolymerization of a fluorinated acrylic ester monomer with a polyethylene-glycol (PEG) oligomer by surfactant free emulsion polymerization. Static and dynamic light scattering experiments in combination with cryo transmission electron microscopy reveal that the particles have a core shell structure with a significant enrichment of the PEG chains on the particles surface. In index-matching DMSO/water suspensions the particles arrange in an ordered phase at volume fraction above 7%, if no additional electrolyte is present. The near-wall dynamics at low volume fraction are quantitatively described by the combination of electrostatic repulsion and hydrodynamic interaction between the particles and the wall. At volume fractions close to the isotropic to ordered transition, the near-wall dynamics are more complex and qualitatively reminiscent of the behaviour which was observed in hard sphere suspensions at high concentrations.
Collapse
Affiliation(s)
- Yi Liu
- Forschugszentrum Jülich, Institute of Complex Systems ICS-3, Jülich, Germany.
| | - Nathalie Claes
- Electron Microscopy for Materials Research (EMAT), University of Antwerp, Belgium
| | | | - Sara Bals
- Electron Microscopy for Materials Research (EMAT), University of Antwerp, Belgium
| | - Peter R Lang
- Forschugszentrum Jülich, Institute of Complex Systems ICS-3, Jülich, Germany. and Heinrich-Heine Universität, Düsseldorf, Germany
| |
Collapse
|
12
|
Ulama J, Oskolkova MZ, Bergenholtz J. Polymer-Graft-Mediated Interactions between Colloidal Spheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:2882-2890. [PMID: 26949834 DOI: 10.1021/acs.langmuir.5b04739] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Aqueous dispersions of fluorinated colloidal spheres bearing grafted poly(ethylene glycol) (PEG) are studied as a function of salt and particle concentration with the aim of improving the understanding of interactions among polymer-grafted particles. These dispersions can sustain large concentrations of salt, but crystals nucleate in dilute dispersions when a sufficient Na2CO3 concentration is reached, which is attributed to the presence of attractions between particles. On further increasing the Na2CO3 concentration, the solvent is rapidly cleared of particles. Small-angle X-ray scattering and cryogenic transmission electron microscopy are employed in order to quantify the attractions. The former is used to extract a second virial coefficient, and the latter shows that the PEG-graft contracts as a function of increasing salt concentration. The contraction not only leads to a reduction in excluded volume but also is accompanied by attractions of moderate magnitude. In contrast, dispersion of the particles in ethanol, in which bulk PEG solutions crystallize, lead to fractal structures caused by strong attractions.
Collapse
Affiliation(s)
- Jeanette Ulama
- Department of Chemistry and Molecular Biology, University of Gothenburg , SE-41296 Göteborg, Sweden
| | - Malin Zackrisson Oskolkova
- Division of Physical Chemistry, Center of Chemistry and Chemical Engineering, Lund University , SE-22100 Lund, Sweden
| | - Johan Bergenholtz
- Department of Chemistry and Molecular Biology, University of Gothenburg , SE-41296 Göteborg, Sweden
- Division of Physical Chemistry, Center of Chemistry and Chemical Engineering, Lund University , SE-22100 Lund, Sweden
| |
Collapse
|
13
|
Bergenholtz J, Ulama J, Zackrisson Oskolkova M. Analysis of small-angle X-ray scattering data in the presence of significant instrumental smearing. J Appl Crystallogr 2016; 49:47-54. [PMID: 26937235 PMCID: PMC4762572 DOI: 10.1107/s1600576715023444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 12/06/2015] [Indexed: 11/10/2022] Open
Abstract
A new, numerically efficient method has been developed to account for instrumental resolution effects on isotropic small-angle X-ray scattering with pinhole collimation. A laboratory-scale small-angle X-ray scattering instrument with pinhole collimation has been used to assess smearing effects due to instrumental resolution. A new, numerically efficient method to smear ideal model intensities is developed and presented. It allows for directly using measured profiles of isotropic but otherwise arbitrary beams in smearing calculations. Samples of low-polydispersity polymer spheres have been used to show that scattering data can in this way be quantitatively modeled even when there is substantial distortion due to instrumental resolution.
Collapse
Affiliation(s)
- Johan Bergenholtz
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Göteborg, Sweden; Division of Physical Chemistry, Center of Chemistry and Chemical Engineering, Lund University, SE-221 00 Lund, Sweden
| | - Jeanette Ulama
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Göteborg, Sweden
| | - Malin Zackrisson Oskolkova
- Division of Physical Chemistry, Center of Chemistry and Chemical Engineering, Lund University, SE-221 00 Lund, Sweden
| |
Collapse
|
14
|
Oskolkova MZ, Stradner A, Ulama J, Bergenholtz J. Concentration-dependent effective attractions between PEGylated nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra00731c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Effective attractions between colloidal particles bearing a grafted PEG layer in water have been studied and, from a quantitative SANS analysis, are found to be concentration dependent.
Collapse
Affiliation(s)
- Malin Zackrisson Oskolkova
- Division of Physical Chemistry
- Center of Chemistry and Chemical Engineering
- Lund University
- SE-22100 Lund
- Sweden
| | - Anna Stradner
- Division of Physical Chemistry
- Center of Chemistry and Chemical Engineering
- Lund University
- SE-22100 Lund
- Sweden
| | - Jeanette Ulama
- Department of Chemistry and Molecular Biology
- University of Gothenburg
- SE-41296 Göteborg
- Sweden
| | - Johan Bergenholtz
- Division of Physical Chemistry
- Center of Chemistry and Chemical Engineering
- Lund University
- SE-22100 Lund
- Sweden
| |
Collapse
|