1
|
Wang K, Wang W, Fan C, Li J, Lei T, Zhang W, Shi B, Chen Y, Liu M, Lian C, Wang Z, Ge M. Reactions of C 12-C 14 n-Alkylcyclohexanes with Cl Atoms: Kinetics and Secondary Organic Aerosol Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4859-4870. [PMID: 35319183 DOI: 10.1021/acs.est.1c08958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Long-chain alkanes are a type of intermediate volatility organic compound (IVOC) in the atmosphere and a potential source of secondary organic aerosols (SOAs). C12-C14 n-alkylcyclohexanes are important compositions of IVOCs, with considerable concentrations and emission rates. The reaction rate constants and SOA formation of the reactions of C12-C14 n-alkylcyclohexanes with Cl atoms were investigated in the present study. The reaction rate constants of the long-chain alkanes obtained via the relative-rate method at 298 ± 0.2 K (in units of ×10-10 cm3 molecule-1 s-1) were as follows: khexylcyclohexane = 5.11 ± 0.28, kheptylcyclohexane = 5.56 ± 0.30, and koctylcyclohexane = 5.74 ± 0.31. The gas-phase products of the reactions were identified as mainly small molecules of aldehydes, ketones, and acids. The particle-phase products were mostly monomers and oligomers, but there were still trimers even under high-NOx conditions. Moreover, under high-NOx conditions (urban atmosphere), the SOA yields of hexylcyclohexane are higher than that under low-NOx conditions (remote atmosphere), indicating that more attention should be given to the SOA formation of Cl-initiated n-alkylcyclohexane oxidations in polluted regions. This research can further clarify the oxidation processes and SOA formation of n-alkylcyclohexanes in the atmosphere.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Cici Fan
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Junling Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| | - Ting Lei
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Wenyu Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bo Shi
- Hebei Normal University, Shijiazhuang 050010, P. R. China
| | - Yan Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mingyuan Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chaofan Lian
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhe Wang
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR 999077, P. R. China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Li J, Li K, Li H, Wang X, Wang W, Wang K, Ge M. Long-chain alkanes in the atmosphere: A review. J Environ Sci (China) 2022; 114:37-52. [PMID: 35459500 DOI: 10.1016/j.jes.2021.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 06/14/2023]
Abstract
As a representative species of intermediate volatile organic compounds (IVOCs), long-chain alkanes are considered to be important precursors of secondary organic aerosols (SOA) in the atmosphere. This work reviews the previous studies on long-chain alkanes in the atmosphere: (1) the detection methods and filed observations of long-chain alkanes in both gas and particle phases are summarized briefly; (2) the laboratory studies of long chain alkanes are reviewed, the kinetic data, reaction mechanism, SOA yields, and physicochemical properties of SOA are included in detail; (3) the research progress related to model simulations of long-chain alkanes are also discussed. In addition, based on available research results, several perspective contents are proposed that can be used as a guideline for future research plans.
Collapse
Affiliation(s)
- Junling Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kun Li
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Hong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xuezhong Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Ke Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
3
|
Jahn LG, Wang DS, Dhulipala SV, Ruiz LH. Gas-Phase Chlorine Radical Oxidation of Alkanes: Effects of Structural Branching, NO x, and Relative Humidity Observed during Environmental Chamber Experiments. J Phys Chem A 2021; 125:7303-7317. [PMID: 34383508 DOI: 10.1021/acs.jpca.1c03516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chlorine-initiated oxidation of alkanes has been shown to rapidly form secondary organic aerosol (SOA) at higher yields than OH-alkane reactions. However, the effects of alkane volatile organic compound precursor structure and the reasons for the differences in SOA yield from OH-alkane reactions remain unclear. In this work, we investigated the effects of alkane molecular structure on oxidation by chlorine radical (Cl) and resulting formation of SOA through a series of laboratory chamber experiments, utilizing data from an iodide chemical ionization mass spectrometer and an aerosol chemical speciation monitor. Experiments were conducted with linear, branched, and branched cyclic C10 alkane precursors under different NOx and RH conditions. Observed product fragmentation patterns during the oxidation of branched alkanes demonstrate the abstraction of primary hydrogens by Cl, confirming a key difference between OH- and Cl-initiated oxidation of alkanes and providing a possible explanation for higher SOA production from Cl-initiated oxidation. Low-NOx conditions led to higher SOA production. SOA formed from butylcyclohexane under low NOx conditions contained higher fractions of organic acids and lower volatility molecules that were less prone to oligomerization relative to decane SOA. Branched alkanes produced less SOA, and branched cycloalkanes produced more SOA than linear n-alkanes, consistent with past work on OH-initiated reactions. Overall, our work provides insights into the differences between Cl- and OH-initiated oxidation of alkanes of different structures and the potential significance of Cl as an atmospheric oxidant.
Collapse
Affiliation(s)
- Leif G Jahn
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 78712 Texas, United States
| | - Dongyu S Wang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 78712 Texas, United States.,Now at Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Surya Venkatesh Dhulipala
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 78712 Texas, United States.,Now at Department of Mechanical Engineering, The University of British Columbia, V6T 1Z4 Vancouver, Canada
| | - Lea Hildebrandt Ruiz
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 78712 Texas, United States
| |
Collapse
|
4
|
Tapavicza E, von Rudorff GF, De Haan DO, Contin M, George C, Riva M, von Lilienfeld OA. Elucidating an Atmospheric Brown Carbon Species-Toward Supplanting Chemical Intuition with Exhaustive Enumeration and Machine Learning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8447-8457. [PMID: 34080853 DOI: 10.1021/acs.est.1c00885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Brown carbon (BrC) is involved in atmospheric light absorption and climate forcing and can cause adverse health effects. Understanding the formation mechanisms and molecular structure of BrC is of key importance in developing strategies to control its environment and health impact. Structure determination of BrC is challenging, due to the lack of experiments providing molecular fingerprints and the sheer number of molecular candidates with identical mass. Suggestions based on chemical intuition are prone to errors due to the inherent bias. We present an unbiased algorithm, using graph-based molecule generation and machine learning, which can identify all molecular structures of compounds involved in biomass burning and the composition of BrC. We apply this algorithm to C12H12O7, a light-absorbing "test case" molecule identified in chamber experiments on the aqueous photo-oxidation of syringol, a prevalent marker in wood smoke. Of the 260 million molecular graphs, the algorithm leaves only 36,518 (0.01%) as viable candidates matching the spectrum. Although no unique molecular structure is obtained from only a chemical formula and a UV/vis absorption spectrum, we discuss further reduction strategies and their efficacy. With additional data, the method can potentially more rapidly identify isomers extracted from lab and field aerosol particles without introducing human bias.
Collapse
Affiliation(s)
- Enrico Tapavicza
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840, United States
| | - Guido Falk von Rudorff
- Faculty of Physics, University of Vienna, Kolingasse 14-16, AT-1090 Wien, Austria
- Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - David O De Haan
- Department of Chemistry and Biochemistry, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| | - Mario Contin
- Facultad de Farmacia y Bioquímica, Departamento de Química Analitica y Fisicoquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires C1113AAD, Argentina
| | - Christian George
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626 Villeurbanne, France
| | - Matthieu Riva
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626 Villeurbanne, France
| | - O Anatole von Lilienfeld
- Faculty of Physics, University of Vienna, Kolingasse 14-16, AT-1090 Wien, Austria
- Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|
5
|
Li J, Wang W, Li K, Zhang W, Peng C, Liu M, Chen Y, Zhou L, Li H, Ge M. Effect of chemical structure on optical properties of secondary organic aerosols derived from C 12 alkanes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141620. [PMID: 32889456 DOI: 10.1016/j.scitotenv.2020.141620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/05/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
With the development of the economy, anthropogenic emissions in the atmospheric environment increases, and air pollution has caused wide public concern. Vehicle exhaust is an important emission source in the atmosphere, and alkanes are the representative components in it. In this study, the optical properties of secondary organic aerosol (SOA) derived from several C12 alkanes (2-methylundecane, hexylcyclohexane, and cyclododecane) in the absence of NOX were determined. Absorption (imaginary part of the refractive index (RI), k) at 532 nm was negligible for all the derived SOA, and the scattering (real part of RI, n) of the SOA at 532 nm followed the order of cyclododecane SOA < hexylcyclohexane SOA < 2-methylundecane SOA, at both room- (25 °C) and low- (5 °C) temperature. The chemical compositions of the SOA formed were analyzed with an electrospray ionization time-of-flight mass spectrometer (ESI-TOF-MS). The mass spectra showed that the oligomers were generated in the reactions. It was shown that the different reaction pathways (due to various alkane structures) leaded to the difference in SOA chemical composition, which changed the RI values. The low-temperature condition promoted the progress of the oligomerization reaction so that the final RI values also changed. This work suggested that when estimating the radiative forcing of SOA using regional or global models, the structure of the precursors and reaction conditions should be taken into account.
Collapse
Affiliation(s)
- Junling Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Kun Li
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
| | - Wenyu Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Chao Peng
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Mingyuan Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yan Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Li Zhou
- College of Architecture and Environment, Sichuan University, Chengdu, PR China
| | - Hong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
6
|
Liu Q, Liggio J, Wu D, Saini A, Halappanavar S, Wentzell JJB, Harner T, Li K, Lee P, Li SM. Experimental Study of OH-Initiated Heterogeneous Oxidation of Organophosphate Flame Retardants: Kinetics, Mechanism, and Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14398-14408. [PMID: 31756294 DOI: 10.1021/acs.est.9b05327] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The environmental risks and health impacts associated with particulate organophosphate flame retardants (OPFRs), which are ubiquitous in the global atmosphere, have not been adequately assessed due to the lack of data on the reaction kinetics, products, and toxicity associated with their atmospheric transformations. Here, the importance of such transformations for OPFRs are explored by investigating the reaction kinetics, degradation chemical mechanisms, and toxicological evolution of two OPFRs (2-ethylhexyl diphenyl phosphate (EHDP) and diphenyl phosphate (DPhP)) coated on (NH4)2SO4 particles upon heterogeneous OH oxidation. The derived reaction rate constants for the heterogeneous loss of EHDP and DPhP are (1.12 ± 0.22) × 10-12 and (2.33 ± 0.14) × 10-12 cm3 molecules-1 s-1, respectively. Using recently developed real-time particle chemical composition measurements, particulate products from heterogeneous photooxidation and the associated degradation mechanisms for particulate OPFRs are reported for the first time. Subsequent cytotoxicity analysis of the unreacted and oxidized OPFR particles indicated that the overall particle cytotoxicity was reduced by up to 94% with heterogeneous photooxidation, likely due to a significantly lower cytotoxicity associated with the oxidized OPFR products relative to the parent OPFRs. The present work not only provides guidance for future field sampling for the detection of transformation products of OPFRs, but also strongly supports the ongoing risk assessment of these emerging chemicals and most critically, their products.
Collapse
Affiliation(s)
- Qifan Liu
- Air Quality Research Division , Environment and Climate Change Canada , Toronto , Ontario M3H 5T4 , Canada
| | - John Liggio
- Air Quality Research Division , Environment and Climate Change Canada , Toronto , Ontario M3H 5T4 , Canada
| | - Dongmei Wu
- Environmental Health Science and Research Bureau , Health Canada , Ottawa , Ontario K1A 0K9 , Canada
| | - Amandeep Saini
- Air Quality Research Division , Environment and Climate Change Canada , Toronto , Ontario M3H 5T4 , Canada
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau , Health Canada , Ottawa , Ontario K1A 0K9 , Canada
| | - Jeremy J B Wentzell
- Air Quality Research Division , Environment and Climate Change Canada , Toronto , Ontario M3H 5T4 , Canada
| | - Tom Harner
- Air Quality Research Division , Environment and Climate Change Canada , Toronto , Ontario M3H 5T4 , Canada
| | - Kun Li
- Air Quality Research Division , Environment and Climate Change Canada , Toronto , Ontario M3H 5T4 , Canada
| | - Patrick Lee
- Air Quality Research Division , Environment and Climate Change Canada , Toronto , Ontario M3H 5T4 , Canada
| | - Shao-Meng Li
- Air Quality Research Division , Environment and Climate Change Canada , Toronto , Ontario M3H 5T4 , Canada
| |
Collapse
|
7
|
Comparison of Measurement-Based Methodologies to Apportion Secondary Organic Carbon (SOC) in PM2.5: A Review of Recent Studies. ATMOSPHERE 2018. [DOI: 10.3390/atmos9110452] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Secondary organic aerosol (SOA) is known to account for a major fraction of airborne particulate matter, with significant impacts on air quality and climate at the global scale. Despite the substantial amount of research studies achieved during these last decades, the source apportionment of the SOA fraction remains difficult due to the complexity of the physicochemical processes involved. The selection and use of appropriate approaches are a major challenge for the atmospheric science community. Several methodologies are nowadays available to perform quantitative and/or predictive assessments of the SOA amount and composition. This review summarizes the current knowledge on the most commonly used approaches to evaluate secondary organic carbon (SOC) contents: elemental carbon (EC) tracer method, chemical mass balance (CMB), SOA tracer method, radiocarbon (14C) measurement and positive matrix factorization (PMF). The principles, limitations, challenges and good practices of each of these methodologies are discussed in the present article. Based on a comprehensive—although not exhaustive—review of research papers published during the last decade (2006–2016), SOC estimates obtained using these methodologies are also summarized for different regions across the world. Conclusions of some studies which are directly comparing the performances of different methodologies are then specifically discussed. An overall picture of SOC contributions and concentrations obtained worldwide for urban sites under similar conditions (i.e., geographical and seasonal ones) is also proposed here. Finally, further needs to improve SOC apportionment methodologies are also identified and discussed.
Collapse
|
8
|
Yahia D, El-Amir YO, Abd El-Maguid DS, Elsharkawy EE. Co-administration of glutathione alleviates the toxic effects of 2,3,7,8 TCDF on the DNA integrity of sperm and in the testes of mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:32572-32581. [PMID: 30242650 DOI: 10.1007/s11356-018-3259-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to investigate the toxic impact prompted in the testes of adult mice exposed to 2,3,7,8-tetrachlorodibenzofuran (TCDF). Four groups of 12 mice each were used in the present study. Group 1 mice were kept as control and administered corn oil only. Group 2 animals were given glutathione (GSH) in a dose of 100 mg/kg body weight by oral gavage twice a week. Group 3 was given TCDF orally twice per week, in a dose of 0.5 μg/kg body weight for 8 weeks. Group 4 was administered GSH orally in a dosage of 100 mg/kg body weight plus TCDF twice a week for 8 weeks. Animals were sacrificed after 2, 4, and 8 weeks of exposure, serum samples were collected for estimation of testosterone hormone, the testes were dissected and one part was used for estimation of superoxide dismutase (SOD), malondialdehyde (MDA), lactate dehydrogenase (LDH), and 3β-hydroxysteroid dehydrogenase. Another portion of the testis was kept in formalin for histopathological examination. The results showed that the activities of SOD were decreased while the levels of lipid peroxidation MDA were increased in the testicular tissues of the exposed mice. The serum testosterone level and the steroidogenic enzyme 3β-hydroxysteroid dehydrogenase activity of testicular homogenate were essentially decreased in TCDF-treated mice. A significant increment in the testicular LDH activity in testicular tissues was recorded in mice exposed to TCDF. The percentage of DNA chromatin disintegration was significantly increased in TCDF-treated mice. Histopathological changes were recorded in TCDF-exposed group as degenerative changes of the seminiferous tubules with formation of spermatid giant cells at 2 weeks in addition to exhaustion of germinal epithelium and detachment of the germ cells from the basal lamina at 4 and 8 weeks. Co-administration of GSH could reestablish MDA and LDH levels besides reduction in percentage of sperm DNA damage and improvement of the testicular tissue architecture.
Collapse
Affiliation(s)
- Doha Yahia
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.
| | - Yasmin O El-Amir
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Doaa S Abd El-Maguid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Branch of New Valley, Assiut University, Assiut, Egypt
| | - Eman E Elsharkawy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
9
|
Gentner DR, Jathar SH, Gordon TD, Bahreini R, Day DA, El Haddad I, Hayes PL, Pieber SM, Platt SM, de Gouw J, Goldstein AH, Harley RA, Jimenez JL, Prévôt ASH, Robinson AL. Review of Urban Secondary Organic Aerosol Formation from Gasoline and Diesel Motor Vehicle Emissions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:1074-1093. [PMID: 28000440 DOI: 10.1021/acs.est.6b04509] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Secondary organic aerosol (SOA) is formed from the atmospheric oxidation of gas-phase organic compounds leading to the formation of particle mass. Gasoline- and diesel-powered motor vehicles, both on/off-road, are important sources of SOA precursors. They emit complex mixtures of gas-phase organic compounds that vary in volatility and molecular structure-factors that influence their contributions to urban SOA. However, the relative importance of each vehicle type with respect to SOA formation remains unclear due to conflicting evidence from recent laboratory, field, and modeling studies. Both are likely important, with evolving contributions that vary with location and over short time scales. This review summarizes evidence, research needs, and discrepancies between top-down and bottom-up approaches used to estimate SOA from motor vehicles, focusing on inconsistencies between molecular-level understanding and regional observations. The effect of emission controls (e.g., exhaust aftertreatment technologies, fuel formulation) on SOA precursor emissions needs comprehensive evaluation, especially with international perspective given heterogeneity in regulations and technology penetration. Novel studies are needed to identify and quantify "missing" emissions that appear to contribute substantially to SOA production, especially in gasoline vehicles with the most advanced aftertreatment. Initial evidence suggests catalyzed diesel particulate filters greatly reduce emissions of SOA precursors along with primary aerosol.
Collapse
Affiliation(s)
- Drew R Gentner
- Department of Chemical & Environmental Engineering, Yale University , New Haven, Connecticut 06511, United States
- School of Forestry & Environmental Science, Yale University , New Haven, Connecticut 06511, United States
| | - Shantanu H Jathar
- Department of Mechanical Engineering, Colorado State University , Fort Collins, Colorado 80523, United States
| | - Timothy D Gordon
- Cooperative Institute for Research in Environmental Sciences, University of Colorado , Boulder, Colorado 80309, United States
- NOAA Earth System Research Laboratory , Boulder, Colorado 80305, United States
| | - Roya Bahreini
- Department of Environmental Sciences, University of California , Riverside, California 92521, United States
| | - Douglas A Day
- Cooperative Institute for Research in Environmental Sciences, University of Colorado , Boulder, Colorado 80309, United States
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| | - Imad El Haddad
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute , Villigen, Switzerland
| | - Patrick L Hayes
- Department of Chemistry, Université de Montréal , Montréal, QC, Canada
| | - Simone M Pieber
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute , Villigen, Switzerland
| | - Stephen M Platt
- Department of Atmosphere and Climate, Norwegian Institute for Air Research , 2007 Kjeller, Norway
| | - Joost de Gouw
- Cooperative Institute for Research in Environmental Sciences, University of Colorado , Boulder, Colorado 80309, United States
- NOAA Earth System Research Laboratory , Boulder, Colorado 80305, United States
| | - Allen H Goldstein
- Department of Environmental Science, Policy and Management, University of California , Berkeley, California 94720, United States
- Department of Civil and Environmental Engineering, University of California , Berkeley, California 94720, United States
| | - Robert A Harley
- Department of Civil and Environmental Engineering, University of California , Berkeley, California 94720, United States
| | - Jose L Jimenez
- Cooperative Institute for Research in Environmental Sciences, University of Colorado , Boulder, Colorado 80309, United States
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| | - André S H Prévôt
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute , Villigen, Switzerland
| | - Allen L Robinson
- Department of Mechanical Engineering, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
10
|
Li J, Li K, Wang W, Wang J, Peng C, Ge M. Optical properties of secondary organic aerosols derived from long-chain alkanes under various NO x and seed conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:1699-1705. [PMID: 27916309 DOI: 10.1016/j.scitotenv.2016.11.189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 11/25/2016] [Accepted: 11/25/2016] [Indexed: 06/06/2023]
Abstract
Long-chain alkanes are a type of important intermediate-volatile organic compounds (IVOCs) in the atmosphere, which contribute to a large proportion of secondary organic aerosol (SOA). However, the optical properties of SOA derived from long-chain alkanes remain poorly understood. Here, we investigate the refractive index (RI) of SOA derived from photo-oxidation of dodecane (C12), pentadecane (C15) and heptadecane (C17) under low-NOx and high-NOx conditions with the absence or presence of inorganic aerosol seeds. The RIs of these SOAs are found to be in the range of 1.33 to 1.57 at the wavelength of 532nm. The results from mass spectroscopy indicate that both reaction mechanisms influenced by NOx level and gas-particle partitioning influenced by seeds have important impact on the chemical compositions of SOAs, which further influence the optical properties like RI. Finally, by comparing the RI values to other literature and model results, we suggest that various RIs of SOAs derived from long-chain alkanes should be applied in atmospheric and climate models.
Collapse
Affiliation(s)
- Junling Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Kun Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Jing Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chao Peng
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| |
Collapse
|
11
|
Lamkaddam H, Gratien A, Pangui E, Cazaunau M, Picquet-Varrault B, Doussin JF. High-NO x Photooxidation of n-Dodecane: Temperature Dependence of SOA Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:192-201. [PMID: 27966908 DOI: 10.1021/acs.est.6b03821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The temperature and concentration dependence of secondary organic aerosol (SOA) yields has been investigated for the first time for the photooxidation of n-dodecane (C12H26) in the presence of NOx in the CESAM chamber (French acronym for "Chamber for Atmospheric Multiphase Experimental Simulation"). Experiments were performed with and without seed aerosol between 283 and 304.5 K. In order to quantify the SOA yields, a new parametrization is proposed to account for organic vapor loss to the chamber walls. Deposition processes were found to impact the aerosol yields by a factor from 1.3 to 1.8 between the lowest and the highest value. As with other photooxidation systems, experiments performed without seed and at low concentration of oxidant showed a lower SOA yield than other seeded experiments. Temperature did not significantly influence SOA formation in this study. This unforeseen behavior indicates that the SOA is dominated by sufficiently low volatility products for which a change in their partitioning due to temperature would not significantly affect the condensed quantities.
Collapse
Affiliation(s)
- Houssni Lamkaddam
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR7583, CNRS, Université Paris-Est-Créteil (UPEC) et Université Paris Diderot (UPD), Institut Pierre Simon Laplace (IPSL) , Créteil, France
| | - Aline Gratien
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR7583, CNRS, Université Paris-Est-Créteil (UPEC) et Université Paris Diderot (UPD), Institut Pierre Simon Laplace (IPSL) , Créteil, France
| | - Edouard Pangui
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR7583, CNRS, Université Paris-Est-Créteil (UPEC) et Université Paris Diderot (UPD), Institut Pierre Simon Laplace (IPSL) , Créteil, France
| | - Mathieu Cazaunau
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR7583, CNRS, Université Paris-Est-Créteil (UPEC) et Université Paris Diderot (UPD), Institut Pierre Simon Laplace (IPSL) , Créteil, France
| | - Bénédicte Picquet-Varrault
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR7583, CNRS, Université Paris-Est-Créteil (UPEC) et Université Paris Diderot (UPD), Institut Pierre Simon Laplace (IPSL) , Créteil, France
| | - Jean-François Doussin
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR7583, CNRS, Université Paris-Est-Créteil (UPEC) et Université Paris Diderot (UPD), Institut Pierre Simon Laplace (IPSL) , Créteil, France
| |
Collapse
|
12
|
Riva M, Budisulistiorini SH, Chen Y, Zhang Z, D'Ambro EL, Zhang X, Gold A, Turpin BJ, Thornton JA, Canagaratna MR, Surratt JD. Chemical Characterization of Secondary Organic Aerosol from Oxidation of Isoprene Hydroxyhydroperoxides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9889-99. [PMID: 27466979 DOI: 10.1021/acs.est.6b02511] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Atmospheric oxidation of isoprene under low-NOx conditions leads to the formation of isoprene hydroxyhydroperoxides (ISOPOOH). Subsequent oxidation of ISOPOOH largely produces isoprene epoxydiols (IEPOX), which are known secondary organic aerosol (SOA) precursors. Although SOA from IEPOX has been previously examined, systematic studies of SOA characterization through a non-IEPOX route from 1,2-ISOPOOH oxidation are lacking. In the present work, SOA formation from the oxidation of authentic 1,2-ISOPOOH under low-NOx conditions was systematically examined with varying aerosol compositions and relative humidity. High yields of highly oxidized compounds, including multifunctional organosulfates (OSs) and hydroperoxides, were chemically characterized in both laboratory-generated SOA and fine aerosol samples collected from the southeastern U.S. IEPOX-derived SOA constituents were observed in all experiments, but their concentrations were only enhanced in the presence of acidified sulfate aerosol, consistent with prior work. High-resolution aerosol mass spectrometry (HR-AMS) reveals that 1,2-ISOPOOH-derived SOA formed through non-IEPOX routes exhibits a notable mass spectrum with a characteristic fragment ion at m/z 91. This laboratory-generated mass spectrum is strongly correlated with a factor recently resolved by positive matrix factorization (PMF) of aerosol mass spectrometer data collected in areas dominated by isoprene emissions, suggesting that the non-IEPOX pathway could contribute to ambient SOA measured in the Southeastern United States.
Collapse
Affiliation(s)
- Matthieu Riva
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599 United States
| | - Sri H Budisulistiorini
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599 United States
| | - Yuzhi Chen
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599 United States
| | - Zhenfa Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599 United States
| | - Emma L D'Ambro
- Department of Atmospheric Sciences, University of Washington , Seattle, Washington 98195 United States
| | - Xuan Zhang
- Center for Aerosol and Cloud Chemistry, Aerodyne Research , Billerica, Massachusetts 01821 United States
| | - Avram Gold
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599 United States
| | - Barbara J Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599 United States
| | - Joel A Thornton
- Department of Atmospheric Sciences, University of Washington , Seattle, Washington 98195 United States
| | - Manjula R Canagaratna
- Center for Aerosol and Cloud Chemistry, Aerodyne Research , Billerica, Massachusetts 01821 United States
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
13
|
Formation and emission of large furans and oxygenated hydrocarbons from flames. Proc Natl Acad Sci U S A 2016; 113:8374-9. [PMID: 27410045 DOI: 10.1073/pnas.1604772113] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many oxygenated hydrocarbon species formed during combustion, such as furans, are highly toxic and detrimental to human health and the environment. These species may also increase the hygroscopicity of soot and strongly influence the effects of soot on regional and global climate. However, large furans and associated oxygenated species have not previously been observed in flames, and their formation mechanism and interplay with polycyclic aromatic hydrocarbons (PAHs) are poorly understood. We report on a synergistic computational and experimental effort that elucidates the formation of oxygen-embedded compounds, such as furans and other oxygenated hydrocarbons, during the combustion of hydrocarbon fuels. We used ab initio and probabilistic computational techniques to identify low-barrier reaction mechanisms for the formation of large furans and other oxygenated hydrocarbons. We used vacuum-UV photoionization aerosol mass spectrometry and X-ray photoelectron spectroscopy to confirm these predictions. We show that furans are produced in the high-temperature regions of hydrocarbon flames, where they remarkably survive and become the main functional group of oxygenates that incorporate into incipient soot. In controlled flame studies, we discovered ∼100 oxygenated species previously unaccounted for. We found that large alcohols and enols act as precursors to furans, leading to incorporation of oxygen into the carbon skeletons of PAHs. Our results depart dramatically from the crude chemistry of carbon- and oxygen-containing molecules previously considered in hydrocarbon formation and oxidation models and spearhead the emerging understanding of the oxidation chemistry that is critical, for example, to control emissions of toxic and carcinogenic combustion by-products, which also greatly affect global warming.
Collapse
|
14
|
Pöschl U, Shiraiwa M. Multiphase chemistry at the atmosphere-biosphere interface influencing climate and public health in the anthropocene. Chem Rev 2015; 115:4440-75. [PMID: 25856774 DOI: 10.1021/cr500487s] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Manabu Shiraiwa
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| |
Collapse
|