1
|
Osti NC, Jalarvo N, Mamontov E. Backscattering silicon spectrometer (BASIS): sixteen years in advanced materials characterization. MATERIALS HORIZONS 2024; 11:4535-4572. [PMID: 39162617 DOI: 10.1039/d4mh00690a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Quasielastic neutron scattering (QENS) is an experimental technique that can measure parameters of mobility, such as diffusion jump rate and jump length, as well as localized relaxations of chemical species (molecules, ions, and segments) at atomic and nanometer length scales. Due to the high penetrative power of neutrons and their sensitivity to neutron scattering cross-section of chemical species, QENS can effectively probe mobility inside most bulk materials. This review focuses on QENS experiments performed using a neutron backscattering silicon spectrometer (BASIS) to explore the dynamics in various materials and understand their structure-property relationship. BASIS is a time-of-flight near-backscattering inverted geometry spectrometer with very high energy resolution (approximately 0.0035 meV of full width at half maximum), allowing measurements of dynamics on nano to picosecond timescales. The science areas studied with BASIS are diverse, with a focus on soft matter topics, including traditional biological and polymer science experiments, as well as measurements of fluids ranging from simple hydrocarbons and aqueous solutions to relatively complex room-temperature ionic liquids and deep-eutectic solvents, either in the bulk state or confined. Additionally, hydrogen confined in various materials is routinely measured on BASIS. Other topics successfully investigated at BASIS include quantum fluids, spin glasses, and magnetism. BASIS has been in the user program since 2007 at the Spallation Neutron Source of the Oak Ridge National Laboratory, an Office of Science User Facility supported by the U.S. Department of Energy. Over the past sixteen years, BASIS has contributed to various scientific disciplines, exploring the structure and dynamics of many chemical species and their fabrication for practical applications. A comprehensive review of BASIS contributions and capabilities would be an asset to the materials science community, providing insights into employing the neutron backscattering technique for advanced materials characterization.
Collapse
Affiliation(s)
- Naresh C Osti
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Niina Jalarvo
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Eugene Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
2
|
Camacho-Zarco AR, Schnapka V, Guseva S, Abyzov A, Adamski W, Milles S, Jensen MR, Zidek L, Salvi N, Blackledge M. NMR Provides Unique Insight into the Functional Dynamics and Interactions of Intrinsically Disordered Proteins. Chem Rev 2022; 122:9331-9356. [PMID: 35446534 PMCID: PMC9136928 DOI: 10.1021/acs.chemrev.1c01023] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Intrinsically disordered
proteins are ubiquitous throughout all
known proteomes, playing essential roles in all aspects of cellular
and extracellular biochemistry. To understand their function, it is
necessary to determine their structural and dynamic behavior and to
describe the physical chemistry of their interaction trajectories.
Nuclear magnetic resonance is perfectly adapted to this task, providing
ensemble averaged structural and dynamic parameters that report on
each assigned resonance in the molecule, unveiling otherwise inaccessible
insight into the reaction kinetics and thermodynamics that are essential
for function. In this review, we describe recent applications of NMR-based
approaches to understanding the conformational energy landscape, the
nature and time scales of local and long-range dynamics and how they
depend on the environment, even in the cell. Finally, we illustrate
the ability of NMR to uncover the mechanistic basis of functional
disordered molecular assemblies that are important for human health.
Collapse
Affiliation(s)
| | - Vincent Schnapka
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Serafima Guseva
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Anton Abyzov
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Wiktor Adamski
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Sigrid Milles
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | | | - Lukas Zidek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 82500 Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Kamenice 5, 82500 Brno, Czech Republic
| | - Nicola Salvi
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | | |
Collapse
|
3
|
Fagerberg E, Lenton S, Nylander T, Seydel T, Skepö M. Self-Diffusive Properties of the Intrinsically Disordered Protein Histatin 5 and the Impact of Crowding Thereon: A Combined Neutron Spectroscopy and Molecular Dynamics Simulation Study. J Phys Chem B 2022; 126:789-801. [PMID: 35044776 PMCID: PMC8819652 DOI: 10.1021/acs.jpcb.1c08976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Intrinsically disordered
proteins (IDPs) are proteins that, in
comparison with globular/structured proteins, lack a distinct tertiary
structure. Here, we use the model IDP, Histatin 5, for studying its
dynamical properties under self-crowding conditions with quasi-elastic
neutron scattering in combination with full atomistic molecular dynamics
(MD) simulations. The aim is to determine the effects of crowding
on the center-of-mass diffusion as well as the internal diffusive
behavior. The diffusion was found to decrease significantly, which
we hypothesize can be attributed to some degree of aggregation at
higher protein concentrations, (≥100 mg/mL), as indicated by
recent small-angle X-ray scattering studies. Temperature effects are
also considered and found to, largely, follow Stokes–Einstein
behavior. Simple geometric considerations fail to accurately predict
the rates of diffusion, while simulations show semiquantitative agreement
with experiments, dependent on assumptions of the ratio between translational
and rotational diffusion. A scaling law that previously was found
to successfully describe the behavior of globular proteins was found
to be inadequate for the IDP, Histatin 5. Analysis of the MD simulations
show that the width of the distribution with respect to diffusion
is not a simplistic mirroring of the distribution of radius of gyration,
hence, displaying the particular features of IDPs that need to be
accounted for.
Collapse
Affiliation(s)
- Eric Fagerberg
- Theoretical Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden
| | - Samuel Lenton
- Physical Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden
| | - Tommy Nylander
- Physical Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden
| | - Tilo Seydel
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, CS 20156, F-38042 Grenoble, France
| | - Marie Skepö
- Theoretical Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden.,LINXS - Lund Institute of Advanced Neutron and X-ray Science, Scheelevägen 19, SE-223 70 Lund, Sweden
| |
Collapse
|
4
|
Nakagawa H, Appavou MS, Wuttke J, Zamponi M, Holderer O, Schrader TE, Richter D, Doster W. Nanosecond structural dynamics of intrinsically disordered β-casein micelles by neutron spectroscopy. Biophys J 2021; 120:5408-5420. [PMID: 34717964 PMCID: PMC8715185 DOI: 10.1016/j.bpj.2021.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 09/17/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022] Open
Abstract
β-casein undergoes a reversible endothermic self-association, forming protein micelles of limited size. In its functional state, a single β-casein monomer is unfolded, which creates a high structural flexibility, which is supposed to play a major role in preventing the precipitation of calcium phosphate particles. We characterize the structural flexibility in terms of nanosecond molecular motions, depending on the temperature by quasielastic neutron scattering. Our major questions are: Does the self-association reduce the chain flexibility? How does the dynamic spectrum of disordered caseins differ from a compactly globular protein? How does the dynamic spectrum of β-casein in solution differ from that of a protein in hydrated powder states? We report on two relaxation processes on a nanosecond and a sub-nanosecond timescale for β-casein in solution. Both processes are analyzed by Brownian oscillator model, by which the spring constant can be defined in the isotropic parabolic potential. The slower process, which is analyzed by neutron spin echo, seems a characteristic feature of the unfolded structure. It requires bulk solvent and is not seen in hydrated protein powders. The faster process, which is analyzed by neutron backscattering, has a smaller amplitude and requires hydration water, which is also observed with folded proteins in the hydrated state. The self-association had no significant influence on internal relaxation, and thus, a β-casein protein monomer flexibility is preserved in the micelle. We derive spring constants of the faster and slower motions of β-caseins in solution and compared them with those of some proteins in various states (folded or hydrated powder).
Collapse
Affiliation(s)
- Hiroshi Nakagawa
- Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki, Japan; Forschungszentrum Jülich, Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Garching, Germany; J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki, Japan.
| | - Marie-Sousai Appavou
- Forschungszentrum Jülich, Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Garching, Germany
| | - Joachim Wuttke
- Forschungszentrum Jülich, Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Garching, Germany
| | - Michaela Zamponi
- Forschungszentrum Jülich, Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Garching, Germany
| | - Olaf Holderer
- Forschungszentrum Jülich, Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Garching, Germany
| | - Tobias E Schrader
- Forschungszentrum Jülich, Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Garching, Germany
| | - Dieter Richter
- Forschungszentrum Jülich, Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Garching, Germany
| | - Wolfgang Doster
- Technische Universität München, Physik-Department, Garching, Germany
| |
Collapse
|
5
|
Evidence for an Ordering Transition near 120 K in an Intrinsically Disordered Protein, Casein. Molecules 2021; 26:molecules26195971. [PMID: 34641515 PMCID: PMC8512290 DOI: 10.3390/molecules26195971] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are proteins that possess large unstructured regions. Their importance is increasingly recognized in biology but their characterization remains a challenging task. We employed field swept Electron Spin Echoes in pulsed EPR to investigate low-temperature stochastic molecular librations in a spin-labeled IDP, casein (the main protein of milk). For comparison, a spin-labeled globular protein, hen egg white lysozyme, is also investigated. For casein these motions were found to start at 100 K while for lysozyme only above 130 K, which was ascribed to a denser and more ordered molecular packing in lysozyme. However, above 120 K, the motions in casein were found to depend on temperature much slower than those in lysozyme. This abrupt change in casein was assigned to an ordering transition in which peptide residues rearrange making the molecular packing more rigid and/or more cohesive. The found features of molecular motions in these two proteins turned out to be very similar to those known for gel-phase lipid bilayers composed of conformationally ordered and conformationally disordered lipids. This analogy with a simpler molecular system may appear helpful for elucidation properties of molecular packing in IDPs.
Collapse
|
6
|
Dong M. A Minireview on Temperature Dependent Protein Conformational Sampling. Protein J 2021; 40:545-553. [PMID: 34181188 DOI: 10.1007/s10930-021-10012-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2021] [Indexed: 12/01/2022]
Abstract
In this minireview we discuss the role of the more subtle conformational change-protein conformational sampling and connect it to the classic relationship of protein structure and function. The theory of pre-existing functional states of protein are discussed in context of alternate protein conformational sampling. Last, we discuss how temperature, ligand binding and mutations affect the protein conformational sampling mode which is linked to the protein function regulation. The review includes several protein systems that showed temperature dependent protein conformational sampling. We also specifically included two enzyme systems, thermophilic alcohol dehydrogenase (ht-ADH) and thermolysin which we previously studied when discussing temperature dependent protein conformational sampling.
Collapse
Affiliation(s)
- Ming Dong
- Department of Chemistry, North Carolina Agricultural and Technical State University, 1601 E Market Street, Greensboro, NC, 27410, USA.
| |
Collapse
|
7
|
Hindley JP, Oliver MA, Thorpe C, Cullinane A, Wuenschmann S, Chapman MD. Bos d 11 in baked milk poses a risk for adverse reactions in milk-allergic patients. Clin Exp Allergy 2020; 51:132-140. [PMID: 33141480 DOI: 10.1111/cea.13774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/06/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Patients are commonly challenged with foods containing baked milk, for example muffins, yet little is known about the specific allergen content of muffins used in milk challenges or of the effect that baking has on allergenicity. OBJECTIVE Our objective was to compare the levels of major milk allergens in uncooked and baked muffins using monoclonal immunoassays and IgE antibody binding before and after baking. METHODS Uncooked and baked muffins were prepared using recipes from Mount Sinai and Imperial College. Allergen levels were compared by ELISA for Bos d 5 (β-lactoglobulin) and Bos d 11 (β-casein). IgE reactivity was assessed using sera from milk-sensitized donors in direct binding and inhibition ELISA. RESULTS Bos d 5 was reduced from 680 µg/g in uncooked muffin mix to 0.17 µg/g in baked muffins, representing a >99% decrease after baking. Conversely, Bos d 11 levels in baked muffin remained high and only decreased by 30% from a mean of 4249 µg/g in uncooked muffin mix to 2961 µg/g when baked (~181 mg Bos d 11 per muffin). Baked muffins retained ~70% of the IgE binding to uncooked muffin mix. Baked muffin extract inhibited IgE binding to uncooked muffin mix by up to 80%, demonstrating retention of in vitro IgE reactivity. CONCLUSIONS AND CLINICAL RELEVANCE High levels of Bos d 11 in baked muffins pose a risk for adverse reactions, especially in patients who have high anti-casein IgE antibodies.
Collapse
Affiliation(s)
| | | | - Cathy Thorpe
- Indoor Biotechnologies Inc, Charlottesville, VA, USA
| | | | | | | |
Collapse
|
8
|
Mora-Gutierrez A, Attaie R, Núñez de González MT, Jung Y, Marquez SA. Interface Compositions as Determinants of Resveratrol Stability in Nanoemulsion Delivery Systems. Foods 2020; 9:foods9101394. [PMID: 33023075 PMCID: PMC7601424 DOI: 10.3390/foods9101394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 01/07/2023] Open
Abstract
The incorporation of hydrophobic ingredients, such as resveratrol (a fat-soluble phytochemical), in nanoemulsions can increase the water solubility and stability of these hydrophobic ingredients. The nanodelivery of resveratrol can result in a marked improvement in the bioavailability of this health-promoting ingredient. The current study hypothesized that resveratrol can bind to caprine casein, which may result in the preservation of the biological properties of resveratrol. The fluorescence spectra provided proof of this complex formation by demonstrating that resveratrol binds to caprine casein in the vicinity of tryptophan amino acid residues. The caprine casein/resveratrol complex is stabilized by hydrophobic interactions and hydrogen bonds. Hence, to study the rate of resveratrol degradation during processing/storage, resveratrol losses were determined by reversed-phase high performance liquid chromatography (RP-HPLC) in nanoemulsions stabilized by bovine and caprine caseins individually and in combination with polysorbate-20. At 48 h oxidation, 88.33% and 89.08% was left of resveratrol in the nanoemulsions stabilized by caprine casein (αs1-I)/polysorbate-20 complex and caprine (αs1-II)/polysorbate-20 complex, while there was less resveratrol left in the nanoemulsions stabilized by bovine casein/polysorbate-20 complex, suggesting that oxygen degradation was involved. The findings of this study are crucial for the food industry since they imply the potential use of caprine casein/polysorbate-20 complex to preserve the biological properties of resveratrol.
Collapse
Affiliation(s)
- Adela Mora-Gutierrez
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (R.A.); (M.T.N.d.G.); (Y.J.)
- Correspondence: ; Fax: +1-936-261-9975
| | - Rahmat Attaie
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (R.A.); (M.T.N.d.G.); (Y.J.)
| | - Maryuri T. Núñez de González
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (R.A.); (M.T.N.d.G.); (Y.J.)
| | - Yoonsung Jung
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (R.A.); (M.T.N.d.G.); (Y.J.)
| | - Sixto A. Marquez
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
9
|
Zhao D, Sheng B, Li H, Wu Y, Xu D, Li C. Glycation from α-dicarbonyl compounds has different effects on the heat-induced aggregation of bovine serum albumin and β-casein. Food Chem 2020; 340:128108. [PMID: 33010643 DOI: 10.1016/j.foodchem.2020.128108] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/24/2020] [Accepted: 09/12/2020] [Indexed: 10/23/2022]
Abstract
α-Dicarbonyl compounds are generated in large amounts during heat treatment in food production. This work compared the influence of glycation by α-dicarbonyl on the hydrothermal aggregation of bovine serum albumin (BSA) and of β-casein (β-CN). Glycation by α-dicarbonyl compounds was found to be more efficient than glycation by glucose in reducing the free amino groups, surface hydrophobicity and isoelectric point of BSA, thus greatly inhibited the hydrothermal aggregation of BSA. In addition, glycation by α-dicarbonyl greatly transformed the rigid BSA aggregates into flexible structures, based on analysis by fluorescence spectrum, transmission electron microscope and small-angle X-ray scattering. In contrast, both the aggregation process and aggregates conformation of β-CN were found to be minimally affected by glycation, possibly due to the intrinsic disorder of β-CN. This work highlights the substantial influences of α-dicarbonyl on dietary proteins during heat treatment depending on the protein structural characteristics.
Collapse
Affiliation(s)
- Di Zhao
- Key Laboratory of Meat Processing, MOA, Key Laboratory of Meat Processing and Quality Control, MOE, Jiang Synergetic Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Bulei Sheng
- Department of Food Science, Aarhus University, Blichers Allé 20, Tjele 8830, Denmark
| | - Hao Li
- Key Laboratory of Meat Processing, MOA, Key Laboratory of Meat Processing and Quality Control, MOE, Jiang Synergetic Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yi Wu
- College of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, PR China
| | - Dan Xu
- College of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, PR China
| | - Chunbao Li
- Key Laboratory of Meat Processing, MOA, Key Laboratory of Meat Processing and Quality Control, MOE, Jiang Synergetic Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
10
|
Xu D, Li L, Wu Y, Zhang X, Wu M, Li Y, Gai Z, Li B, Zhao D, Li C. Influence of ultrasound pretreatment on the subsequent glycation of dietary proteins. ULTRASONICS SONOCHEMISTRY 2020; 63:104910. [PMID: 31945554 DOI: 10.1016/j.ultsonch.2019.104910] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/07/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
The influence of ultrasound treatment on the subsequent glycation process of proteins is controversial. Glycation behaviors of bovine serum albumin (BSA), β-lactoglobulin (β-Lg) and β-casein (β-CN) after ultrasound pretreatment (UP) were compared by both evaluating glycation kinetics and analyzing structural changes of proteins. UP resulted in both unfolding and aggregation behavior in protein samples, which altered the accessibility of the Lys and Arg. Five cycles of UP up-regulated the glycation degree of BSA and β-Lg, possibly due to the unfolding behavior induced by UP, which exposed additional glycation sites. In contrast, 30 cycles of UP induced a dramatic increase (by 97.9 nm) in particle size of BSA, thus burying portions of glycation sites and suppressing the glycation process. Notably, UP had minimal influence on glycation kinetics of β-CN, due to its intrinsic disordered structure. Based on proteomics analysis, the preference of Lys and Arg during glycation was found to be changed by UP in BSA and β-Lg. Four, 3 and 3 unique carboxyethylated lysine residues were identified in glycated BSA after 0, 5 and 30 cycles of UP, respectively. This study suggests that the protein glycation can be affected by UP, depending on the ultrasonication duration and native structure of the protein.
Collapse
Affiliation(s)
- Dan Xu
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Lin Li
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China; School of Chemical Engineering and Energy Technology, Dongguan University of Technology, College Road 1, Dongguan 523808, China
| | - Yi Wu
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Xia Zhang
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Ming Wu
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Yuting Li
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, College Road 1, Dongguan 523808, China
| | - Zuoqi Gai
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Bing Li
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China.
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
Application of preheating treatment in up- and down-regulating the glycation process of dietary proteins. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105264] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Hu X, Zhang X, Chen D, Li N, Hemar Y, Yu B, Tang S, Sun Y. How much can we trust polysorbates as food protein stabilizers - The case of bovine casein. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Tian B, Garcia Sakai V, Pappas C, van der Goot AJ, Bouwman WG. Fibre formation in calcium caseinate influenced by solvent isotope effect and drying method – A neutron spectroscopy study. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Nakagawa H, Joti Y, Kitao A, Yamamuro O, Kataoka M. Universality and Structural Implications of the Boson Peak in Proteins. Biophys J 2019; 117:229-238. [PMID: 31255295 DOI: 10.1016/j.bpj.2019.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/19/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022] Open
Abstract
The softness and rigidity of proteins are reflected in the structural dynamics, which are in turn affected by the environment. The characteristic low-frequency vibrational spectrum of a protein, known as boson peak, is an indication of the structural rigidity of the protein at a cryogenic temperature or dehydrated conditions. In this article, the effect of hydration, temperature, and pressure on the boson peak and volumetric properties of a globular protein are evaluated by using inelastic neutron scattering and molecular dynamics simulation. Hydration, pressurization, and cooling shift the boson peak position to higher energy and depress the peak intensity and decreases the protein and cavity volumes. We found the correlation between the boson peak and cavity volume in a protein. A decrease of cavity volume means the increase of rigidity, which is the origin of the boson peak shift. Boson peak is the universal property of a protein, which is rationalized by the correlation.
Collapse
Affiliation(s)
- Hiroshi Nakagawa
- Hierarchical Structure Research Group, Materials Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki, Japan.
| | - Yasumasa Joti
- XFEL Utilization Division, Japan Synchrotron Radiation Research Institute, Sayo-cho, Sayo-gun, Hyogo, Japan
| | - Akio Kitao
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro, Tokyo, Japan
| | - Osamu Yamamuro
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba, Japan
| | - Mikio Kataoka
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, Tokai, Naka, Ibaraki, Japan.
| |
Collapse
|
15
|
Bavaro SL, De Angelis E, Barni S, Pilolli R, Mori F, Novembre EM, Monaci L. Modulation of Milk Allergenicity by Baking Milk in Foods: A Proteomic Investigation. Nutrients 2019; 11:E1536. [PMID: 31284583 PMCID: PMC6683078 DOI: 10.3390/nu11071536] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 12/26/2022] Open
Abstract
Cow's milk is considered the best wholesome supplement for children since it is highly enriched with micro and macro nutrients. Although the protein fraction is composed of more than 25 proteins, only a few of them are capable of triggering allergic reactions in sensitive consumers. The balance in protein composition plays an important role in the sensitization capacity of cow's milk, and its modification can increase the immunological response in allergic patients. In particular, the heating treatments in the presence of a food matrix have demonstrated a decrease in the milk allergenicity and this has also proved to play a pivotal role in developing tolerance towards milk. In this paper we investigated the effect of thermal treatment like baking of cow's milk proteins that were employed as ingredients in the preparation of muffins. A proteomic workflow was applied to the analysis of the protein bands highlighted along the SDS gel followed by western blot analyses with sera of milk allergic children in order to have deeper information on the impact of the heating on the epitopes and consequent IgE recognition. Our results show that incorporating milk in muffins might promote the formation of complex milk-food components and induce a modulation of the immunoreactivity towards milk allergens compared to milk baked in the oven at 180 °C for ten minutes. The interactions between milk proteins and food components during heating proved to play a role in the potential reduction of allergenicity as assessed by in vitro tests. This would help, in perspective, in designing strategies for improving milk tolerance in young patients affected from severe milk allergies.
Collapse
Affiliation(s)
- Simona L Bavaro
- Institute of Sciences of Food Production, Italian National Research Council (ISPA-CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Elisabetta De Angelis
- Institute of Sciences of Food Production, Italian National Research Council (ISPA-CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Simona Barni
- Allergy Unit, Department of Pediatrics, Anna Meyer Children's University Hospital, University of Florence, 50139 Florence, Italy
| | - Rosa Pilolli
- Institute of Sciences of Food Production, Italian National Research Council (ISPA-CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Francesca Mori
- Allergy Unit, Department of Pediatrics, Anna Meyer Children's University Hospital, University of Florence, 50139 Florence, Italy
| | - Elio M Novembre
- Allergy Unit, Department of Pediatrics, Anna Meyer Children's University Hospital, University of Florence, 50139 Florence, Italy
| | - Linda Monaci
- Institute of Sciences of Food Production, Italian National Research Council (ISPA-CNR), Via Amendola 122/O, 70126 Bari, Italy.
| |
Collapse
|
16
|
Abstract
AbstractThe dynamics of proteins in solution includes a variety of processes, such as backbone and side-chain fluctuations, interdomain motions, as well as global rotational and translational (i.e. center of mass) diffusion. Since protein dynamics is related to protein function and essential transport processes, a detailed mechanistic understanding and monitoring of protein dynamics in solution is highly desirable. The hierarchical character of protein dynamics requires experimental tools addressing a broad range of time- and length scales. We discuss how different techniques contribute to a comprehensive picture of protein dynamics, and focus in particular on results from neutron spectroscopy. We outline the underlying principles and review available instrumentation as well as related analysis frameworks.
Collapse
|
17
|
Zhao D, Li L, Le TT, Larsen LB, Xu D, Jiao W, Sheng B, Li B, Zhang X. Digestibility of glycated milk proteins and the peptidomics of their in vitro digests. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3069-3077. [PMID: 30511448 DOI: 10.1002/jsfa.9520] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/25/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Milk proteins are widely used in food production and are often glycated by reducing sugar. Although many studies have reported the digestibility of glycated milk protein, most have focused on measuring degree of hydrolysis (DH), showing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) image of digests. Detailed information on the changes in peptide composition of digests has seldom been revealed. Therefore, in addition to measuring the DH and showing the SGS-PAGE images of digests, we also analyzed the peptidomics in digests using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) and Mascot database in this work to further reveal the influence of glycation on protein nutrition. RESULTS Compared with β-lactoglobulin and bovine serum albumin (BSA), DH of β-casein was suppressed to a lesser extent by glycation in both gastric and intestinal stages. Aggregates of glycated BSA were less sensitive to the action of digestive enzymes throughout gastrointestinal digestion according to SDS-PAGE images. Changes in the peptide composition of digests induced by glycation were distinctly displayed, showing both absence of peptides and occurrence of new peptides, based on the results obtained from LC-ESI-MS/MS. CONCLUSIONS Glycation can greatly change the peptide composition in digests of milk protein. The nutritional impact of the change in the peptide composition requires further investigation, and the impact of MRPs in unabsorbed digests on the gut flora should be an interesting field for further studies. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Di Zhao
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
- Key Laboratory of Meat Processing, MOA, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, Nanjing, China
- Jiang Synergetic Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University, Nanjing, China
| | - Lin Li
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| | - Thao T Le
- Department of Food Science, Aarhus University, Tjele, Denmark
| | - Lotte B Larsen
- Department of Food Science, Aarhus University, Tjele, Denmark
| | - Dan Xu
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Wenjuan Jiao
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Bulei Sheng
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Bing Li
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Xia Zhang
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| |
Collapse
|
18
|
Zhou M, Xia Y, Cao F, Li N, Hemar Y, Tang S, Sun Y. A theoretical and experimental investigation of the effect of sodium dodecyl sulfate on the structural and conformational properties of bovine β-casein. SOFT MATTER 2019; 15:1551-1561. [PMID: 30663758 DOI: 10.1039/c8sm01967c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A predicted three-dimensional structure of bovine β-casein was constructed using homology modeling with the aid of MODELLER and I-TASSER programs, with the validity and reliability of the models evaluated according to stereochemical qualities and small angle X-ray scattering. By comparing the results obtained from the two models using the CRYSOL program, an optimal model of the β-casein structure derived from I-TASSER was selected and used in subsequent molecular dynamics (MD) analysis. 300 ns MD simulations of β-casein in water and in the presence of different SDS concentrations at 300 K were performed. The results of the MD simulations indicated that SDS molecules played a dual role in modifying the conformation of β-casein at 300 K. Concentrations of SDS below its CMC (1 mM), at which only the monomer form of SDS was present, induced β-casein to lose its secondary structure by converting helices into random coils; however the conformation of the complex was still comparable with that of native β-casein. In the presence of 10 mM SDS (above its CMC), the helical content of β-casein was increased along with reduced random coils, and the structural rearrangement led to a more compact conformation. The latter change is likely related to the hydrophobic interactions that dominate the binding of the C-terminal region, along with the anchoring of sulfate groups of SDS on the positively charged N-terminal portion via electrostatic attraction. Hydrogen bonding supplemented the SDS-induced stabilization of β-casein. A correlated "necklace and bead" model, in which the micelles nucleate on the protein hydrophobic sites, was proposed for the structure of β-casein-SDS complexes.
Collapse
Affiliation(s)
- Meng Zhou
- School of Food Science and Technology & School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Carver JA, Holt C. Functional and dysfunctional folding, association and aggregation of caseins. PROTEIN MISFOLDING 2019; 118:163-216. [DOI: 10.1016/bs.apcsb.2019.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
The yeast GRASP Grh1 displays a high polypeptide backbone mobility along with an amyloidogenic behavior. Sci Rep 2018; 8:15690. [PMID: 30356074 PMCID: PMC6200761 DOI: 10.1038/s41598-018-33955-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 10/06/2018] [Indexed: 12/25/2022] Open
Abstract
GRASPs are proteins involved in cell processes that seem paradoxical: responsible for shaping the Golgi cisternae and involved in unconventional secretion mechanisms that bypass the Golgi. Despite its physiological relevance, there is still a considerable lack of studies on full-length GRASPs. Our group has previously reported an unexpected behavior of the full-length GRASP from the fungus C. neoformans: its intrinsically-disordered characteristic. Here, we generalize this finding by showing that it is also observed in the GRASP from S. cerevisae (Grh1), which strongly suggests it might be a general property within the GRASP family. Furthermore, Grh1 is also able to form amyloid-like fibrils either upon heating or when submitted to changes in the dielectric constant of its surroundings, a condition that is experienced by the protein when in close contact with membranes of cell compartments, such as the Golgi apparatus. Intrinsic disorder and fibril formation can thus be two structural properties exploited by GRASP during its functional cycle.
Collapse
|
21
|
Sun Y, Zhang J, Wang H, Wang T, Cheng H, Yu B, Oliveira CL. Sulfate dodecyl sodium-induced stability of a model intrinsically disordered protein, bovine casein. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.03.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
22
|
Effect of glycation derived from α-dicarbonyl compounds on the in vitro digestibility of β-casein and β-lactoglobulin: A model study with glyoxal, methylglyoxal and butanedione. Food Res Int 2017; 102:313-322. [DOI: 10.1016/j.foodres.2017.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 12/23/2022]
|
23
|
Salvi N, Abyzov A, Blackledge M. Atomic resolution conformational dynamics of intrinsically disordered proteins from NMR spin relaxation. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 102-103:43-60. [PMID: 29157493 DOI: 10.1016/j.pnmrs.2017.06.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 05/08/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful experimental approaches for investigating the conformational behaviour of intrinsically disordered proteins (IDPs). IDPs represent a significant fraction of all proteomes, and, despite their importance for understanding fundamental biological processes, the molecular basis of their activity still remains largely unknown. The functional mechanisms exploited by IDPs in their interactions with other biomolecules are defined by their intrinsic dynamic modes and associated timescales, justifying the considerable interest over recent years in the development of technologies adapted to measure and describe this behaviour. NMR spin relaxation delivers information-rich, site-specific data reporting on conformational fluctuations occurring throughout the molecule. Here we review recent progress in the use of 15N relaxation to identify local backbone dynamics and long-range chain-like motions in unfolded proteins.
Collapse
Affiliation(s)
- Nicola Salvi
- Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble 38044, France
| | - Anton Abyzov
- Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble 38044, France
| | - Martin Blackledge
- Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble 38044, France.
| |
Collapse
|
24
|
Zhao D, Le TT, Nielsen SD, Larsen LB. Effect of Storage on Lactase-Treated β-Casein and β-Lactoglobulin with Respect to Bitter Peptide Formation and Subsequent in Vitro Digestibility. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8409-8417. [PMID: 28885022 DOI: 10.1021/acs.jafc.7b02985] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Using active lactose to hydrolyze lactose during storage is a common process to produce lactose-hydrolyzed (LH) milk. Proteolysis induced by residual proteases in commercial lactase was studied in a system using purified β-casein or β-lactoglobulin during a 60-day storage period at 22 or 38 °C. The proteolysis of β-casein by residual proteases occurred more extensively than that of β-lactoglobulin. Peptidomic analysis by LC-ESI-MS/MS revealed that Ile, Leu, Tyr, and Phe residues near the C-terminus of β-casein were the main sites of cleavage by the residual proteases, generating assumed bitter peptides. In the subsequent in vitro digestion study, proteolysis during storage was shown to greatly affect the subsequent digestibility of β-casein, leading to an elevated degree of hydrolysis and the formation of new digested peptides. This study highlights the potential influence of residual proteases in commercial lactase on the storage quality and digestibility of LH milk containing active lactase.
Collapse
Affiliation(s)
- Di Zhao
- College of Food Science and Engineering, South China University of Technology , 381 Wushan Road, Tianhe District, Guangzhou 510640, China
- Department of Food Science, Aarhus University , Blichers Allé 20, Tjele 8830, Denmark
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , 381 Wushan Road, Guangzhou 510640, China
| | - Thao T Le
- Department of Food Science, Aarhus University , Blichers Allé 20, Tjele 8830, Denmark
| | - Søren Drud Nielsen
- Department of Food Science, Aarhus University , Blichers Allé 20, Tjele 8830, Denmark
| | - Lotte Bach Larsen
- Department of Food Science, Aarhus University , Blichers Allé 20, Tjele 8830, Denmark
| |
Collapse
|
25
|
Jhingree JR, Bellina B, Pacholarz KJ, Barran PE. Charge Mediated Compaction and Rearrangement of Gas-Phase Proteins: A Case Study Considering Two Proteins at Opposing Ends of the Structure-Disorder Continuum. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1450-1461. [PMID: 28585116 PMCID: PMC5486678 DOI: 10.1007/s13361-017-1692-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 05/22/2023]
Abstract
Charge reduction in the gas phase provides a direct means of manipulating protein charge state, and when coupled to ion mobility mass spectrometry (IM-MS), it is possible to monitor the effect of charge on protein conformation in the absence of solution. Use of the electron transfer reagent 1,3-dicyanobenzene, coupled with IM-MS, allows us to monitor the effect of charge reduction on the conformation of two proteins deliberately chosen from opposite sides of the order to disorder continuum: bovine pancreatic trypsin inhibitor (BPTI) and beta casein. The ordered BPTI presents compact conformers for each of three charge states accompanied by narrow collision cross-section distributions (TWCCSDN2→He). Upon reduction of BPTI, irrespective of precursor charge state, the TWCCSN2→He decreases to a similar distribution as found for the nESI generated ion of identical charge. The behavior of beta casein upon charge reduction is more complex. It presents over a wide charge state range (9-28), and intermediate charge states (13-18) have broad TWCCSDN2→He with multiple conformations, where both compaction and rearrangement are seen. Further, we see that the TWCCSDN2→He of the latter charge states are even affected by the presence of radical anions. Overall, we conclude that the flexible nature of some proteins result in broad conformational distributions comprised of many families, even for single charge states, and the barrier between different states can be easily overcome by an alteration of the net charge. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jacquelyn R Jhingree
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Bruno Bellina
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Kamila J Pacholarz
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Perdita E Barran
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
26
|
Frontzek (neé Svanidze) AV, Embs JP, Paccou L, Guinet Y, Hédoux A. Low-Frequency Dynamics of BSA Complementarily Studied by Raman and Inelastic Neutron Spectroscopy. J Phys Chem B 2017; 121:5125-5132. [DOI: 10.1021/acs.jpcb.7b01395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anna V. Frontzek (neé Svanidze)
- Jülich
Center for Neutron Science (JCNS), Forschungszentrum Jülich GmbH, Outstation
at MLZ, Lichtenbergstraße 1, 85747 Garching, Germany
- A.F. Ioffe Physical Technical Institute, ul. Politekhnicheskaya 26, 194021 St. Petersburg, Russian Federation
| | - Jan Peter Embs
- Laboratory
for Neutron Scattering and Imaging, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | | | - Yannick Guinet
- Université Lille Nord de France, F-59000 Lille, France
- USTL UMET UMR CNRS 8207, F-59655 Villeneuve d’Ascq, France
| | - Alain Hédoux
- Université Lille Nord de France, F-59000 Lille, France
- USTL UMET UMR CNRS 8207, F-59655 Villeneuve d’Ascq, France
| |
Collapse
|
27
|
Shrestha UR, Bhowmik D, Van Delinder KW, Mamontov E, O’Neill H, Zhang Q, Alatas A, Chu XQ. Collective Excitations in Protein as a Measure of Balance Between its Softness and Rigidity. J Phys Chem B 2017; 121:923-930. [DOI: 10.1021/acs.jpcb.6b10245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Utsab R. Shrestha
- Department
of Physics and Astronomy, Wayne State University, Detroit, MI 48201, United States
| | - Debsindhu Bhowmik
- Computational
Science and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Kurt W. Van Delinder
- Department
of Physics and Astronomy, Wayne State University, Detroit, MI 48201, United States
| | - Eugene Mamontov
- Chemical
and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Hugh O’Neill
- Biology
and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Qiu Zhang
- Biology
and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Ahmet Alatas
- Advanced
Photon Source, Argonne National laboratory, Argonne, IL 60439, United States
| | - Xiang-Qiang Chu
- Department
of Physics and Astronomy, Wayne State University, Detroit, MI 48201, United States
| |
Collapse
|
28
|
Ehlers G, Podlesnyak AA, Kolesnikov AI. The cold neutron chopper spectrometer at the Spallation Neutron Source-A review of the first 8 years of operation. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:093902. [PMID: 27782573 DOI: 10.1063/1.4962024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/20/2016] [Indexed: 06/06/2023]
Abstract
The first eight years of operation of the Cold Neutron Chopper Spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge is being reviewed. The instrument has been part of the facility user program since 2009, and more than 250 individual user experiments have been performed to date. CNCS is an extremely powerful and versatile instrument and offers leading edge performance in terms of beam intensity, energy resolution, and flexibility to trade one for another. Experiments are being routinely performed with the sample at extreme conditions: T ≲ 0.05 K, p ≳ 2 GPa, and B = 8 T can be achieved individually or in combination. In particular, CNCS is in a position to advance the state of the art with inelastic neutron scattering under pressure, and some of the recent accomplishments in this area will be presented in more detail.
Collapse
Affiliation(s)
- G Ehlers
- Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - A A Podlesnyak
- Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - A I Kolesnikov
- Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
29
|
Grimaldo M, Roosen-Runge F, Hennig M, Zanini F, Zhang F, Jalarvo N, Zamponi M, Schreiber F, Seydel T. Hierarchical molecular dynamics of bovine serum albumin in concentrated aqueous solution below and above thermal denaturation. Phys Chem Chem Phys 2016; 17:4645-55. [PMID: 25587698 DOI: 10.1039/c4cp04944f] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dynamics of proteins in solution is a complex and hierarchical process, affected by the aqueous environment as well as temperature. We present a comprehensive study on nanosecond time and nanometer length scales below, at, and above the denaturation temperature Td. Our experimental data evidence dynamical processes in protein solutions on three distinct time scales. We suggest a consistent physical picture of hierarchical protein dynamics: (i) self-diffusion of the entire protein molecule is confirmed to agree with colloid theory for all temperatures where the protein is in its native conformational state. At higher temperatures T > Td, the self-diffusion is strongly obstructed by cross-linking or entanglement. (ii) The amplitude of backbone fluctuations grows with increasing T, and a transition in its dynamics is observed above Td. (iii) The number of mobile side-chains increases sharply at Td while their average dynamics exhibits only little variations. The combination of quasi-elastic neutron scattering and the presented analytical framework provides a detailed microscopic picture of the protein molecular dynamics in solution, thereby reflecting the changes of macroscopic properties such as cluster formation and gelation.
Collapse
Affiliation(s)
- Marco Grimaldo
- Institut Max von Laue - Paul Langevin (ILL), CS 20156, F-38042 Grenoble, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Fujiwara S, Araki K, Matsuo T, Yagi H, Yamada T, Shibata K, Mochizuki H. Dynamical Behavior of Human α-Synuclein Studied by Quasielastic Neutron Scattering. PLoS One 2016; 11:e0151447. [PMID: 27097022 PMCID: PMC4838215 DOI: 10.1371/journal.pone.0151447] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/29/2016] [Indexed: 12/02/2022] Open
Abstract
α-synuclein (αSyn) is a protein consisting of 140 amino acid residues and is abundant in the presynaptic nerve terminals in the brain. Although its precise function is unknown, the filamentous aggregates (amyloid fibrils) of αSyn have been shown to be involved in the pathogenesis of Parkinson's disease, which is a progressive neurodegenerative disorder. To understand the pathogenesis mechanism of this disease, the mechanism of the amyloid fibril formation of αSyn must be elucidated. Purified αSyn from bacterial expression is monomeric but intrinsically disordered in solution and forms amyloid fibrils under various conditions. As a first step toward elucidating the mechanism of the fibril formation of αSyn, we investigated dynamical behavior of the purified αSyn in the monomeric state and the fibril state using quasielastic neutron scattering (QENS). We prepared the solution sample of 9.5 mg/ml purified αSyn, and that of 46 mg/ml αSyn in the fibril state, both at pD 7.4 in D2O. The QENS experiments on these samples were performed using the near-backscattering spectrometer, BL02 (DNA), at the Materials and Life Science Facility at the Japan Accelerator Research Complex, Japan. Analysis of the QENS spectra obtained shows that diffusive global motions are observed in the monomeric state but largely suppressed in the fibril state. However, the amplitude of the side chain motion is shown to be larger in the fibril state than in the monomeric state. This implies that significant solvent space exists within the fibrils, which is attributed to the αSyn molecules within the fibrils having a distribution of conformations. The larger amplitude of the side chain motion in the fibril state than in the monomeric state implies that the fibril state is entropically favorable.
Collapse
Affiliation(s)
- Satoru Fujiwara
- Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai, Ibaraki, Japan
- * E-mail:
| | - Katsuya Araki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tatsuhito Matsuo
- Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai, Ibaraki, Japan
| | - Hisashi Yagi
- Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan
| | - Takeshi Yamada
- Research Center for Neutron Science and Technology, CROSS-Tokai, Tokai, Ibaraki, Japan
| | - Kaoru Shibata
- Neutron Science Section, J-PARC Center, Tokai, Ibaraki, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
31
|
Roh JH. Dynamics of Biopolymers: Role of Hydration and Electrostatic Interactions. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Joon Ho Roh
- Institute for Basic Science; Center for Self-Assembly and Complexity; 77 Cheongam-Ro Nam-gu Pohang 790-784 South Korea
- Biomolecular Science; University of Science and Technology; 217 Gajeong-ro Yuseong-gu Daejeon 305-350 South Korea
| |
Collapse
|
32
|
Perticaroli S, Ehlers G, Jalarvo N, Katsaras J, Nickels JD. Elasticity and Inverse Temperature Transition in Elastin. J Phys Chem Lett 2015; 6:4018-4025. [PMID: 26722771 DOI: 10.1021/acs.jpclett.5b01890] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Elastin is a structural protein and biomaterial that provides elasticity and resilience to a range of tissues. This work provides insights into the elastic properties of elastin and its peculiar inverse temperature transition (ITT). These features are dependent on hydration of elastin and are driven by a similar mechanism of hydrophobic collapse to an entropically favorable state. Using neutron scattering, we quantify the changes in the geometry of molecular motions above and below the transition temperature, showing a reduction in the displacement of water-induced motions upon hydrophobic collapse at the ITT. We also measured the collective vibrations of elastin gels as a function of elongation, revealing no changes in the spectral features associated with local rigidity and secondary structure, in agreement with the entropic origin of elasticity.
Collapse
Affiliation(s)
- Stefania Perticaroli
- Joint Institute for Neutron Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
- Chemical and Materials Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
- Department of Chemistry, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Georg Ehlers
- Quantum Condensed Matter Division, Oak Ridge National Laboratory , P.O. Box 2008, Oak Ridge, Tennessee 37831, United States
| | - Niina Jalarvo
- Jülich Centre for Neutron Science (JCNS), Forschungszentrum Jülich , D-52425 Jülich, Germany
- Chemical and Engineering Materials Division, Neutron Sciences Directorate, and JCNS Outstation at the Spallation Neutron Source (SNS), Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - John Katsaras
- Joint Institute for Neutron Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
- Biology and Soft Matter Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Jonathan D Nickels
- Joint Institute for Neutron Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
- Biology and Soft Matter Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
- The Department of Physics and Astronomy, University of Tennessee, Knoxville , Knoxville, Tennessee 37996, United States
| |
Collapse
|
33
|
Fichou Y, Heyden M, Zaccai G, Weik M, Tobias DJ. Molecular Dynamics Simulations of a Powder Model of the Intrinsically Disordered Protein Tau. J Phys Chem B 2015; 119:12580-9. [PMID: 26351734 DOI: 10.1021/acs.jpcb.5b05849] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The tau protein, whose aggregates are involved in Alzheimer's disease, is an intrinsically disordered protein (IDP) that regulates microtubule activity in neurons. An IDP lacks a single, well-defined structure and, rather, constantly exchanges among multiple conformations. In order to study IDP dynamics, the combination of experimental techniques, such as neutron scattering, and computational techniques, such as molecular dynamics (MD) simulations, is a powerful approach. Amorphous hydrated powder samples have been very useful for studying protein internal dynamics experimentally, e.g., using neutron scattering. Thus, there is demand for realistic in silico models of hydrated protein powders. Here we present an MD simulation analysis of a powder hydrated at 0.4 g water/g protein of the IDP tau in the temperature range 20-300 K. By comparing with neutron scattering data, we identify the protein-water interface as the predominant feature determining IDP dynamics. The so-called protein dynamical transition is shown to be attenuated, but not suppressed, in the parts of the protein that are not exposed to the solvent. In addition, we find similarities in the mean-squared displacements of the core of a globular protein and "dry" clusters formed by the IDP in hydrated powders. Thus, the ps to ns dynamics of proteins in hydrated powders originate mainly from those residues in contact with solvent. We propose that by measuring the dynamics of protein assemblies, such as aggregates, one might assess qualitatively their state of hydration.
Collapse
Affiliation(s)
- Yann Fichou
- Université Grenoble Alpes, IBS, F-38044 Grenoble, France.,CNRS, IBS, F-38044 Grenoble, France.,CEA, IBS, F-38044 Grenoble, France
| | - Matthias Heyden
- Max-Planck-Institut für Kohlenforschung , D-45470 Mülheim an der Ruhr, Germany
| | | | - Martin Weik
- Université Grenoble Alpes, IBS, F-38044 Grenoble, France.,CNRS, IBS, F-38044 Grenoble, France.,CEA, IBS, F-38044 Grenoble, France
| | - Douglas J Tobias
- Department of Chemistry, University of California , Irvine, California 92697-2025, United States
| |
Collapse
|
34
|
Lenton S, Seydel T, Nylander T, Holt C, Härtlein M, Teixeira S, Zaccai G. Dynamic footprint of sequestration in the molecular fluctuations of osteopontin. J R Soc Interface 2015; 12:0506. [PMID: 26354827 PMCID: PMC4614460 DOI: 10.1098/rsif.2015.0506] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/19/2015] [Indexed: 11/12/2022] Open
Abstract
The sequestration of calcium phosphate by unfolded proteins is fundamental to the stabilization of biofluids supersaturated with respect to hydroxyapatite, such as milk, blood or urine. The unfolded state of osteopontin (OPN) is thought to be a prerequisite for this activity, which leads to the formation of core-shell calcium phosphate nanoclusters. We report on the structures and dynamics of a native OPN peptide from bovine milk, studied by neutron spectroscopy and small-angle X-ray and neutron scattering. The effects of sequestration are quantified on the nanosecond- ångström resolution by elastic incoherent neutron scattering. The molecular fluctuations of the free phosphopeptide are in agreement with a highly flexible protein. An increased resilience to diffusive motions of OPN is corroborated by molecular fluctuations similar to those observed for globular proteins, yet retaining conformational flexibilities. The results bring insight into the modulation of the activity of OPN and phosphopeptides with a role in the control of biomineralization. The quantification of such effects provides an important handle for the future design of new peptides based on the dynamics-activity relationship.
Collapse
Affiliation(s)
- S Lenton
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble cedex 9, France Environment, Physical Sciences and Applied Mathematics Research Institute, Keele University, Staffordshire ST5 5BG, UK
| | - T Seydel
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble cedex 9, France
| | - T Nylander
- Division of Physical Chemistry, Lund University, PO Box 124, 221 00 Lund, Sweden
| | - C Holt
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK
| | - M Härtlein
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble cedex 9, France
| | - S Teixeira
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble cedex 9, France Environment, Physical Sciences and Applied Mathematics Research Institute, Keele University, Staffordshire ST5 5BG, UK
| | - G Zaccai
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble cedex 9, France C.N.R.S., Institut de Biologie Structurale, F-38044 Grenoble, France
| |
Collapse
|
35
|
Khodadadi S, Sokolov AP. Protein dynamics: from rattling in a cage to structural relaxation. SOFT MATTER 2015; 11:4984-4998. [PMID: 26027652 DOI: 10.1039/c5sm00636h] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present an overview of protein dynamics based mostly on results of neutron scattering, dielectric relaxation spectroscopy and molecular dynamics simulations. We identify several major classes of protein motions on the time scale from faster than picoseconds to several microseconds, and discuss the coupling of these processes to solvent dynamics. Our analysis suggests that the microsecond backbone relaxation process might be the main structural relaxation of the protein that defines its glass transition temperature, while faster processes present some localized secondary relaxations. Based on the overview, we formulate a general picture of protein dynamics and discuss the challenges in this field.
Collapse
Affiliation(s)
- S Khodadadi
- Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | | |
Collapse
|
36
|
Laulumaa S, Nieminen T, Lehtimäki M, Aggarwal S, Simons M, Koza MM, Vattulainen I, Kursula P, Natali F. Dynamics of the Peripheral Membrane Protein P2 from Human Myelin Measured by Neutron Scattering--A Comparison between Wild-Type Protein and a Hinge Mutant. PLoS One 2015; 10:e0128954. [PMID: 26068118 PMCID: PMC4466134 DOI: 10.1371/journal.pone.0128954] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/01/2015] [Indexed: 12/01/2022] Open
Abstract
Myelin protein P2 is a fatty acid-binding structural component of the myelin sheath in the peripheral nervous system, and its function is related to its membrane binding capacity. Here, the link between P2 protein dynamics and structure and function was studied using elastic incoherent neutron scattering (EINS). The P38G mutation, at the hinge between the β barrel and the α-helical lid, increased the lipid stacking capacity of human P2 in vitro, and the mutated protein was also functional in cultured cells. The P38G mutation did not change the overall structure of the protein. For a deeper insight into P2 structure-function relationships, information on protein dynamics in the 10 ps to 1 ns time scale was obtained using EINS. Values of mean square displacements mainly from protein H atoms were extracted for wild-type P2 and the P38G mutant and compared. Our results show that at physiological temperatures, the P38G mutant is more dynamic than the wild-type P2 protein, especially on a slow 1-ns time scale. Molecular dynamics simulations confirmed the enhanced dynamics of the mutant variant, especially within the portal region in the presence of bound fatty acid. The increased softness of the hinge mutant of human myelin P2 protein is likely related to an enhanced flexibility of the portal region of this fatty acid-binding protein, as well as to its interactions with the lipid bilayer surface requiring conformational adaptations.
Collapse
Affiliation(s)
- Saara Laulumaa
- Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
- German Electron Synchrotron (DESY), Hamburg, Germany
- European Spallation Source (ESS), Lund, Sweden
| | - Tuomo Nieminen
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Mari Lehtimäki
- Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Shweta Aggarwal
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Mikael Simons
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | | | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Petri Kursula
- Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
- German Electron Synchrotron (DESY), Hamburg, Germany
- Department of Biomedicine, University of Bergen, Bergen, Norway
- * E-mail: (PK); (FN)
| | - Francesca Natali
- Institut Laue-Langevin (ILL), Grenoble, France
- CNR-IOM, OGG, Grenoble, France
- * E-mail: (PK); (FN)
| |
Collapse
|
37
|
Górecki A, Bonarek P, Górka AK, Figiel M, Wilamowski M, Dziedzicka-Wasylewska M. Intrinsic disorder of human Yin Yang 1 protein. Proteins 2015; 83:1284-96. [PMID: 25963536 DOI: 10.1002/prot.24822] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/27/2015] [Accepted: 05/02/2015] [Indexed: 01/26/2023]
Abstract
YY1 (Yin Yang 1) is a zinc finger protein with an essential role in various biological functions via DNA- and protein-protein interactions with numerous partners. YY1 is involved in the regulation of a broad spectrum of cellular processes such as embryogenesis, proliferation, tumorigenesis, and snRNA transcription. The more than 100 reported targets of the YY1 protein suggest that it contains intrinsically disordered regions that are involved in such diverse interactions. Here, we present a study of the structural properties of human YY1 using several biochemical and biophysical techniques (fluorescence, circular dichroism, gel filtration chromatography, proteolytic susceptibility) together with various bioinformatics approaches. To facilitate our exploration of the YY1 structure, the full-length protein as well as an N-terminal fragment (residues 1-295) and the C-terminal DNA binding domain were used. We found the N-terminus to be a non-compact fragment of YY1 with little residual secondary structure and lacking a well-defined tertiary structure. The results of our study indicate that YY1 belongs to the family of intrinsically disordered proteins (IDPs), which exist natively in a partially unfolded conformation.
Collapse
Affiliation(s)
- Andrzej Górecki
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Piotr Bonarek
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Adam Kazimierz Górka
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Małgorzata Figiel
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Mateusz Wilamowski
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| |
Collapse
|
38
|
Nickels JD, Perticaroli S, Ehlers G, Feygenson M, Sokolov AP. Rigidity of poly-L-glutamic acid scaffolds: Influence of secondary and supramolecular structure. J Biomed Mater Res A 2015; 103:2909-18. [DOI: 10.1002/jbm.a.35427] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/13/2015] [Accepted: 02/04/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Jonathan D. Nickels
- Oak Ridge National Laboratory; Joint Institute for Neutron Sciences; Oak Ridge Tennessee 37831
- Department of Chemistry; University of Tennessee; Knoxville Tennessee 37996
| | - Stefania Perticaroli
- Oak Ridge National Laboratory; Joint Institute for Neutron Sciences; Oak Ridge Tennessee 37831
- Department of Chemistry; University of Tennessee; Knoxville Tennessee 37996
- Chemical and Materials Sciences Division; Oak Ridge National Laboratory; Oak Ridge Tennessee 37831
| | - Georg Ehlers
- Quantum Condensed Matter Division; Oak Ridge National Laboratory; Oak Ridge Tennessee 37831
| | - Mikhail Feygenson
- Chemical and Engineering Materials Division; Oak Ridge National Laboratory; Oak Ridge Tennessee 37831
| | - Alexei P. Sokolov
- Oak Ridge National Laboratory; Joint Institute for Neutron Sciences; Oak Ridge Tennessee 37831
- Department of Chemistry; University of Tennessee; Knoxville Tennessee 37996
- Chemical and Materials Sciences Division; Oak Ridge National Laboratory; Oak Ridge Tennessee 37831
| |
Collapse
|
39
|
Perticaroli S, Russo D, Paolantoni M, Gonzalez MA, Sassi P, Nickels JD, Ehlers G, Comez L, Pellegrini E, Fioretto D, Morresi A. Painting biological low-frequency vibrational modes from small peptides to proteins. Phys Chem Chem Phys 2015; 17:11423-31. [DOI: 10.1039/c4cp05388e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We use experiments and simulation to investigate the validity of different model systems used to study the low-frequency vibrations of proteins.
Collapse
Affiliation(s)
- S. Perticaroli
- Joint Institute for Neutron Sciences
- Oak Ridge National Laboratory
- Oak Ridge
- USA
- Chemical and Materials Sciences Division
| | - D. Russo
- CNR-IOM
- Italy c/o Institut Laue Langevin
- France
- Institut Lumière Matière
- Université de Lyon 1
| | - M. Paolantoni
- Dipartimento di Chimica
- Biologia e Biotecnologie
- Università di Perugia
- I-06123 Perugia
- Italy
| | | | - P. Sassi
- Dipartimento di Chimica
- Biologia e Biotecnologie
- Università di Perugia
- I-06123 Perugia
- Italy
| | - J. D. Nickels
- Joint Institute for Neutron Sciences
- Oak Ridge National Laboratory
- Oak Ridge
- USA
- Department of Chemistry
| | - G. Ehlers
- Quantum Condensed Matter Division
- Oak Ridge National Laboratory
- Oak Ridge
- USA
| | - L. Comez
- IOM-CNR c/o Dipartimento di Fisica e Geologia
- Università di Perugia
- I-06123 Perugia
- Italy
- Dipartimento di Fisica e Geologia
| | | | - D. Fioretto
- Dipartimento di Fisica e Geologia
- Università di Perugia
- I-06123 Perugia
- Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN)
| | - A. Morresi
- Dipartimento di Chimica
- Biologia e Biotecnologie
- Università di Perugia
- I-06123 Perugia
- Italy
| |
Collapse
|
40
|
Hackl EV. Effect of Temperature on the Conformation of Natively Unfolded Protein 4E-BP1 in Aqueous and Mixed Solutions Containing Trifluoroethanol and Hexafluoroisopropanol. Protein J 2014; 34:18-28. [DOI: 10.1007/s10930-014-9595-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|