1
|
Lorenzo ER, Karki B, White KE, Burns KH, Elles CG. Tunable FSRS measurements with reduced background signals: Using an etalon filter to generate picosecond pump pulses in the 460-650 nm range. J Chem Phys 2024; 161:224201. [PMID: 39651813 DOI: 10.1063/5.0237444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/19/2024] [Indexed: 12/11/2024] Open
Abstract
Generating wavelength-tunable picosecond laser pulses from an ultrafast laser source is essential for femtosecond stimulated Raman scattering (FSRS) measurements. Etalon filters produce narrowband (picosecond) pulses with an asymmetric temporal profile that is ideal for stimulated resonance Raman excitation. However, direct spectral filtering of femtosecond laser pulses is typically limited to the laser's fundamental and harmonic frequencies due to very low transmission of broad bandwidth pulses through an etalon. Here, we show that a single etalon filter (15 cm-1 bandwidth; 172 cm-1 free spectral range) provides an efficient and tunable option for generating Raman pump pulses over a wide range of wavelengths when used in combination with an optical parametric amplifier and a second harmonic generation (SHG) crystal that has an appropriate phase-matching bandwidth for partial spectral compression before the etalon. Tuning the SHG wavelength to match individual transmission lines of the etalon filter gives asymmetric picosecond pump pulses over a range of 460-650 nm. Importantly, the SHG crystal length determines the temporal rise time of the filtered pulse, which is an important property for reducing background and increasing Raman signals compared with symmetric pulses having the same total energy. We examine the wavelength-dependent trade-off between spectral narrowing via SHG and the asymmetric pulse shape after transmission through the etalon. This approach provides a relatively simple and efficient method to generate tunable pump pulses with the optimum temporal profile for resonance-enhanced FSRS measurements across the visible region of the spectrum.
Collapse
Affiliation(s)
- Emmaline R Lorenzo
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | - Birendra Karki
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | - Katie E White
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | - Kristen H Burns
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | | |
Collapse
|
2
|
Beck WF. Intramolecular charge transfer and the function of vibronic excitons in photosynthetic light harvesting. PHOTOSYNTHESIS RESEARCH 2024; 162:139-156. [PMID: 38656684 DOI: 10.1007/s11120-024-01095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
A widely discussed explanation for the prevalence of pairs or clusters of closely spaced electronic chromophores in photosynthetic light-harvesting proteins is the presence of ultrafast and highly directional excitation energy transfer pathways mediated by vibronic excitons, the delocalized optical excitations derived from mixing of the electronic and vibrational states of the chromophores. We discuss herein the hypothesis that internal conversion processes between exciton states on the <100 fs timescale are possible when the excitonic potential energy surfaces are controlled by the vibrational modes that induce charge transfer character in a strongly coupled system of chromophores. We discuss two examples, the peridinin-chlorophyll protein from marine dinoflagellates and the intact phycobilisome from cyanobacteria, in which the intramolecular charge-transfer (ICT) character arising from out-of-plane distortion of the conjugation of carotenoid or bilin chromophores also results in localization of the initially delocalized optical excitation on the vibrational timescale. Tuning of the ground state conformations of the chromophores to manipulate their ICT character provides a natural photoregulatory mechanism, which would control the overall quantum yield of excitation energy transfer by turning on and off the delocalized character of the optical excitations.
Collapse
Affiliation(s)
- Warren F Beck
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
3
|
Coppola F, Cimino P, Petrone A, Rega N. Evidence of Excited-State Vibrational Mode Governing the Photorelaxation of a Charge-Transfer Complex. J Phys Chem A 2024; 128:1620-1633. [PMID: 38381887 DOI: 10.1021/acs.jpca.3c08366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Modern, nonlinear, time-resolved spectroscopic techniques have opened new doors for investigating the intriguing but complex world of photoinduced ultrafast out-of-equilibrium phenomena and charge dynamics. The interaction between light and matter introduces an additional dimension, where the complex interplay between electronic and vibrational dynamics needs the most advanced theoretical-computational protocols to be fully understood on the molecular scale. In this study, we showcase the capabilities of ab initio molecular dynamics simulation integrated with a multiresolution wavelet protocol to carefully investigate the excited-state relaxation dynamics in a noncovalent complex involving tetramethylbenzene (TMB) and tetracyanoquinodimethane (TCNQ) undergoing charge transfer (CT) upon photoexcitation. Our protocol provides an accurate description that facilitates a direct comparison between transient vibrational analysis and time-resolved spectroscopic signals. This molecular level perspective enhances our understanding of photorelaxation processes confined in the adiabatic regime and offers an improved interpretation of vibrational spectra. Furthermore, it enables the quantification of anharmonic vibrational couplings between high- and low-frequency modes, specifically the TCNQ "rocking" and "bending" modes. Additionally, it identifies the primary vibrational mode that governs the adiabaticity between the ground state and the CT state. This comprehensive understanding of photorelaxation processes holds significant importance in the rational design and precise control of more efficient photovoltaic and sensor devices.
Collapse
Affiliation(s)
- Federico Coppola
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
| | - Paola Cimino
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, 80126 Napoli, Italy
| | - Alessio Petrone
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, 80126 Napoli, Italy
- Istituto Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, 80126 Napoli, Italia
| | - Nadia Rega
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, 80126 Napoli, Italy
- Istituto Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, 80126 Napoli, Italia
| |
Collapse
|
4
|
Qiang Y, Sun K, Palacino-González E, Shen K, Rao BJ, Gelin MF, Zhao Y. Probing avoided crossings and conical intersections by two-pulse femtosecond stimulated Raman spectroscopy: Theoretical study. J Chem Phys 2024; 160:054107. [PMID: 38341700 DOI: 10.1063/5.0186583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/15/2024] [Indexed: 02/13/2024] Open
Abstract
This study leverages two-pulse femtosecond stimulated Raman spectroscopy (2FSRS) to characterize molecular systems with avoided crossings (ACs) and conical intersections (CIs) in their low-lying excited electronic states. By simulating 2FSRS spectra of microscopically inspired ACs and CIs models, we demonstrate that 2FSRS not only delivers valuable information on the molecular parameters characterizing ACs and CIs but also helps distinguish between these two systems.
Collapse
Affiliation(s)
- Yijia Qiang
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Elisa Palacino-González
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Kaijun Shen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - B Jayachander Rao
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
5
|
Vandaele E, Mališ M, Luber S. A Local Diabatisation Method for Two-State Adiabatic Conical Intersections. J Chem Theory Comput 2024; 20:856-872. [PMID: 38174710 DOI: 10.1021/acs.jctc.3c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A methodology to locally characterize conical intersections (CIs) between two adiabatic electronic states for which no nonadiabatic coupling (NAC) vectors are available is presented. Based on the Hessian and gradient at the CI, the branching space coordinates are identified. The potential energy surface around the CI in the branching space is expressed in the diabatic representation, from which the NAC vectors can be calculated in a wave-function-free, energy-based approach. To demonstrate the universality of the developed methodology, the minimum-energy CI (MECI) between the first (S1) and second (S2) singlet excited states of formamide is investigated at the state-averaged complete active space self-consistent field (SA-CASSCF) and extended multistate complete active space second-order perturbation theory (XMS-CASPT2) levels of theory. In addition, the asymmetrical MECI between the ground state (S0) and S1 of cyclopropanone is evaluated using SA-CASSCF, as well as (ME)CIs between the S1 and S2 states of benzene using SA-CASSCF and time-dependent density functional theory (TDDFT). Finally, a CI between the S1 and S2 excited states of thiophene was analyzed using TDDFT.
Collapse
Affiliation(s)
- Eva Vandaele
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Momir Mališ
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
6
|
Jacobs M, Krumland J, Valencia AM, Cocchi C. Pulse-Induced Dynamics of a Charge-Transfer Complex from First Principles. J Phys Chem A 2023; 127:8794-8805. [PMID: 37824697 PMCID: PMC10614200 DOI: 10.1021/acs.jpca.3c03709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/18/2023] [Indexed: 10/14/2023]
Abstract
The ultrafast dynamics of charge carriers in organic donor-acceptor interfaces are of primary importance to understanding the fundamental properties of these systems. In this work, we focus on a charge-transfer complex formed by quaterthiophene p-doped by tetrafluoro-tetracyanoquinodimethane and investigate electron dynamics and vibronic interactions also at finite temperatures by applying a femtosecond pulse in resonance with the two lowest energy excitations of the system with perpendicular and parallel polarization with respect to the interface. The adopted ab initio formalism based on real-time time-dependent density-functional theory coupled to Ehrenfest dynamics enables monitoring the dynamical charge transfer across the interface and assessing the role played by the nuclear motion. Our results show that the strong intermolecular interactions binding the complex already in the ground state influence the dynamics, too. The analysis of the nuclear motion involved in these processes reveals the participation of different vibrational modes depending on the electronic states stimulated by the resonant pulse. Coupled donor-acceptor modes mostly influence the excited state polarized across the interface, while intramolecular vibrations in the donor molecule dominate the excitation in the orthogonal direction. The results obtained at finite temperatures are overall consistent with this picture, although thermal disorder contributes to slightly decreasing interfacial charge transfer.
Collapse
Affiliation(s)
- Matheus Jacobs
- Physics
Department and IRIS Adlershof, Humboldt-Universität
zu Berlin, Berlin 12489, Germany
| | - Jannis Krumland
- Physics
Department and IRIS Adlershof, Humboldt-Universität
zu Berlin, Berlin 12489, Germany
| | - Ana M. Valencia
- Physics
Department and IRIS Adlershof, Humboldt-Universität
zu Berlin, Berlin 12489, Germany
- Institute
of Physics, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Caterina Cocchi
- Physics
Department and IRIS Adlershof, Humboldt-Universität
zu Berlin, Berlin 12489, Germany
- Institute
of Physics, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
- Center
for Nanoscale Dynamics (CeNaD), Carl von
Ossietzky Universität, Oldenburg 26129, Germany
| |
Collapse
|
7
|
Yoneda Y, Kuramochi H. Rapid-Scan Resonant Two-Dimensional Impulsive Stimulated Raman Spectroscopy of Excited States. J Phys Chem A 2023. [PMID: 37289973 DOI: 10.1021/acs.jpca.3c02489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photochemical reactions occur in the electronically excited state, which is effectively represented by a multidimensional potential energy surface (PES) with a vast degree of freedom of nuclear coordinates. The elucidation of the intricate shape of the PES constitutes an important topic in the field of photochemistry and has long been studied both experimentally and theoretically. Recently, fully time-domain resonant two-dimensional Raman spectroscopy has emerged as a potentially powerful tool to provide unique information about the coupling between vibrational manifolds in the excited state. However, the wide application of this technique has been significantly hampered by the technical difficulties associated with experimental implementation and remains challenging. Herein, we demonstrate time-domain resonant two-dimensional impulsive stimulated Raman spectroscopy (2D-ISRS) of excited states using sub-10 fs pulses based on the rapid scan of the time delay, which facilitates the efficient collection of time-domain vibrational signals with high sensitivity. As a proof-of-principle experiment, we performed 2D-ISRS of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) in solution. Through 2D Fourier transformation of the high-quality time-time oscillatory signal, we obtained a 2D frequency-frequency correlation map of excited-state TIPS-pentacene in the broad frequency window of 0-2000 cm-1. The data clearly resolve a number of cross peaks that signify the correlations among excited-state vibrational manifolds. The high capability of the rapid-scan-based 2D-ISRS spectrometer presented in this study enables the systematic investigation of various photochemical reaction systems, thereby further promoting the understanding and applications of this new multidimensional spectroscopy.
Collapse
Affiliation(s)
- Yusuke Yoneda
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Hikaru Kuramochi
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| |
Collapse
|
8
|
Perrella F, Coppola F, Rega N, Petrone A. An Expedited Route to Optical and Electronic Properties at Finite Temperature via Unsupervised Learning. Molecules 2023; 28:3411. [PMID: 37110644 PMCID: PMC10144358 DOI: 10.3390/molecules28083411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Electronic properties and absorption spectra are the grounds to investigate molecular electronic states and their interactions with the environment. Modeling and computations are required for the molecular understanding and design strategies of photo-active materials and sensors. However, the interpretation of such properties demands expensive computations and dealing with the interplay of electronic excited states with the conformational freedom of the chromophores in complex matrices (i.e., solvents, biomolecules, crystals) at finite temperature. Computational protocols combining time dependent density functional theory and ab initio molecular dynamics (MD) have become very powerful in this field, although they require still a large number of computations for a detailed reproduction of electronic properties, such as band shapes. Besides the ongoing research in more traditional computational chemistry fields, data analysis and machine learning methods have been increasingly employed as complementary approaches for efficient data exploration, prediction and model development, starting from the data resulting from MD simulations and electronic structure calculations. In this work, dataset reduction capabilities by unsupervised clustering techniques applied to MD trajectories are proposed and tested for the ab initio modeling of electronic absorption spectra of two challenging case studies: a non-covalent charge-transfer dimer and a ruthenium complex in solution at room temperature. The K-medoids clustering technique is applied and is proven to be able to reduce by ∼100 times the total cost of excited state calculations on an MD sampling with no loss in the accuracy and it also provides an easier understanding of the representative structures (medoids) to be analyzed on the molecular scale.
Collapse
Affiliation(s)
- Fulvio Perrella
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy; (F.P.); (F.C.); (N.R.)
| | - Federico Coppola
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy; (F.P.); (F.C.); (N.R.)
| | - Nadia Rega
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy; (F.P.); (F.C.); (N.R.)
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, via Cintia 21, I-80126 Napoli, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di M.S. Angelo ed. 6, via Cintia 21, I-80126 Napoli, Italy
| | - Alessio Petrone
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy; (F.P.); (F.C.); (N.R.)
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, via Cintia 21, I-80126 Napoli, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di M.S. Angelo ed. 6, via Cintia 21, I-80126 Napoli, Italy
| |
Collapse
|
9
|
Kim T, Feng Y, O'Connor JP, Stoddart JF, Young RM, Wasielewski MR. Coherent Vibronic Wavepackets Show Structure-Directed Charge Flow in Host-Guest Donor-Acceptor Complexes. J Am Chem Soc 2023. [PMID: 37018535 DOI: 10.1021/jacs.2c13576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Designing and controlling charge transfer (CT) pathways in organic semiconductors are important for solar energy applications. To be useful, a photogenerated, Coulombically bound CT exciton must further separate into free charge carriers; direct observations of the detailed CT relaxation pathways, however, are lacking. Here, photoinduced CT and relaxation dynamics in three host-guest complexes, where a perylene (Per) electron donor guest is incorporated into two symmetric and one asymmetric extended viologen cyclophane acceptor hosts, are presented. The central ring in the extended viologen is either p-phenylene (ExV2+) or electron-rich 2,5-dimethoxy-p-phenylene (ExMeOV2+), resulting in two symmetric cyclophanes with unsubstituted or methoxy-substituted central rings, ExBox4+ and ExMeOBox4+, respectively, and an asymmetric cyclophane with one of the central viologen rings being methoxylated ExMeOVBox4+. Upon photoexcitation, the asymmetric host-guest ExMeOVBox4+ ⊃ Per complex exhibits directional CT toward the energetically unfavorable methoxylated side due to structural restrictions that facilitate strong interactions between the Per donor and the ExMeOV2+ side. The CT state relaxation pathways are probed using ultrafast optical spectroscopy by focusing on coherent vibronic wavepackets, which are used to identify CT relaxations along charge localization and vibronic decoherence coordinates. Specific low- and high-frequency nuclear motions are direct indicators of a delocalized CT state and the degree of CT character. Our results show that the CT pathway can be controlled by subtle chemical modifications of the acceptor host in addition to illustrating how coherent vibronic wavepackets can be used to probe the nature and time evolution of the CT states.
Collapse
Affiliation(s)
- Taeyeon Kim
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Yuanning Feng
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - James P O'Connor
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - J Fraser Stoddart
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Ryan M Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
10
|
Boeije Y, Olivucci M. From a one-mode to a multi-mode understanding of conical intersection mediated ultrafast organic photochemical reactions. Chem Soc Rev 2023; 52:2643-2687. [PMID: 36970950 DOI: 10.1039/d2cs00719c] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
This review discusses how ultrafast organic photochemical reactions are controlled by conical intersections, highlighting that decay to the ground-state at multiple points of the intersection space results in their multi-mode character.
Collapse
Affiliation(s)
- Yorrick Boeije
- Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Massimo Olivucci
- Chemistry Department, University of Siena, Via Aldo Moro n. 2, 53100 Siena, Italy
- Chemistry Department, Bowling Green State University, Overman Hall, Bowling Green, Ohio 43403, USA
| |
Collapse
|
11
|
Coppola F, Cimino P, Perrella F, Crisci L, Petrone A, Rega N. Electronic and Vibrational Manifold of Tetracyanoethylene-Chloronaphthalene Charge Transfer Complex in Solution: Insights from TD-DFT and Ab Initio Molecular Dynamics. J Phys Chem A 2022; 126:7179-7192. [PMID: 36174118 PMCID: PMC9574931 DOI: 10.1021/acs.jpca.2c05001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/17/2022] [Indexed: 11/29/2022]
Abstract
The interplay between light absorption and the molecular environment has a central role in the observed photophysics of a wide range of photoinduced chemical and biological phenomena. The understanding of the interplay between vibrational and electronic transitions is the focus of this work, since it can provide a rationale to tune the optical properties of charge transfer (CT) materials used for technological applications. A clear description of these processes poses a nontrivial challenge from both the theoretical and experimental points of view, where the main issue is how to accurately describe and probe drastic changes in the electronic structure and the ultrafast molecular relaxation and dynamics. In this work we focused on the intermolecular CT reaction that occurs upon photon absorption in a π-stacked model system in dichloromethane solution, in which the 1-chloronaphthalene (1ClN) acts as the electron donor and tetracyanoethylene (TCNE) is the electron acceptor. Density functional theory calculations have been carried out to characterize both the ground-state properties and more importantly the low-lying CT electronic transition, and excellent agreement with recently available experimental results [Mathies, R. A.; et al. J. Phys. Chem. A 2018, 122 (14), 3594] was obtained. The minima of the ground state and first singlet excited state have been accurately characterized in terms of spatial arrangements and vibrational Raman frequencies, and the CT natures of the first two low-lying electronic transitions in the absorption spectra have been addressed and clarified too. Finally, by modeling the possible coordination sites of the TCNE electron acceptor with respect to monovalent ions (Na+, K+) in an implicit solution of acetonitrile, we find that TCNE can accommodate a counterion in two different arrangements, parallel and orthogonal to the C═C axis, leading to the formation of a contact ion pair. The nature of the counterion and its relative position entail structural modifications of the TCNE radical anion, mainly the central C═C and C≡N bonds, compared to the isolated case. An important red shift of the C═C stretching frequency was observed when the counterion is orthogonal to the double bond, to a greater extent for Na+. On the contrary, in the second case, where the counterion ion lies along the internuclear C═C axis, we find that K+ polarizes the electron density of the double bond more, resulting in a greater red shift than with Na+.
Collapse
Affiliation(s)
- Federico Coppola
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di M.S. Angelo, 80126 Napoli, Italy
- Scuola
Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, Italy
| | - Paola Cimino
- Department
of Pharmaceutical Sciences, University of
Salerno, 84084 Fisciano, Italy
| | - Fulvio Perrella
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di M.S. Angelo, 80126 Napoli, Italy
- Scuola
Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, Italy
| | - Luigi Crisci
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di M.S. Angelo, 80126 Napoli, Italy
| | - Alessio Petrone
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di M.S. Angelo, 80126 Napoli, Italy
- Scuola
Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, Italy
- Istituto
Nazionale di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, 80126 Napoli, Italy
| | - Nadia Rega
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di M.S. Angelo, 80126 Napoli, Italy
- Scuola
Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, Italy
- Istituto
Nazionale di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, 80126 Napoli, Italy
- Centro
Interdipartimentale di Ricerca sui Biomateriali (CRIB), Piazzale Tecchio, 80125 Napoli, Italy
| |
Collapse
|
12
|
Twisted intramolecular charge transfer of nitroaromatic push-pull chromophores. Sci Rep 2022; 12:6557. [PMID: 35449231 PMCID: PMC9023442 DOI: 10.1038/s41598-022-10565-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/11/2022] [Indexed: 12/02/2022] Open
Abstract
The structural changes during the intramolecular charge transfer (ICT) of nitroaromatic chromophores, 4-dimethylamino-4′-nitrobiphenyl (DNBP) and 4-dimethylamino-4′-nitrostilbene (DNS) were investigated by femtosecond stimulated Raman spectroscopy (FSRS) with both high spectral and temporal resolutions. The kinetically resolved Raman spectra of DNBP and DNS in the locally-excited and charge-transferred states of the S1 state appear distinct, especially in the skeletal vibrational modes of biphenyl and stilbene including ν8a and νC=C. The ν8a of two phenyls and the νC=C of the central ethylene group (only for stilbene), which are strongly coupled in the planar geometries, are broken with the twist of nitrophenyl group with the ICT. Time-resolved vibrational spectroscopy measurements and the time-dependent density functional theory simulations support the ultrafast ICT dynamics of 220–480 fs with the twist of nitrophenyl group occurring in the S1 state of the nitroaromatic chromophores. While the ICT of DNBP occurs via a barrier-less pathway, the ICT coordinates of DNS are strongly coupled to several low-frequency out-of-phase deformation modes relevant to the twist of the nitrophenyl group.
Collapse
|
13
|
Cho D, Gu B, Mukamel S. Optical Cavity Manipulation and Nonlinear UV Molecular Spectroscopy of Conical Intersections in Pyrazine. J Am Chem Soc 2022; 144:7758-7767. [PMID: 35404593 DOI: 10.1021/jacs.2c00921] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Optical cavities provide a versatile platform for manipulating the excited-state dynamics of molecules via strong light-matter coupling. We employ optical absorption and two-multidimensional electronic spectroscopy simulations to investigate the effect of optical cavity coupling in the nonadiabatic dynamics of photoexcited pyrazine. We observe the emergence of a novel polaritonic conical intersection (PCI) between the electronic dark state and photonic surfaces as the cavity frequency is tuned. The PCI could significantly change the nonadiabatic dynamics of pyrazine by doubling the decay rate constant of the S2 state population. Moreover, the absorption spectrum and excited-state dynamics could be systematically manipulated by tuning the strong light-matter interaction, e.g., the cavity frequency and cavity coupling strength. We propose that a tunable optical cavity-molecule system may provide promising approaches for manipulating the photophysical properties of molecules.
Collapse
Affiliation(s)
- Daeheum Cho
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, South Korea
| | - Bing Gu
- Department of Chemistry and Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Shaul Mukamel
- Department of Chemistry and Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
14
|
Biswas S, Kim J, Zhang X, Scholes GD. Coherent Two-Dimensional and Broadband Electronic Spectroscopies. Chem Rev 2022; 122:4257-4321. [PMID: 35037757 DOI: 10.1021/acs.chemrev.1c00623] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Over the past few decades, coherent broadband spectroscopy has been widely used to improve our understanding of ultrafast processes (e.g., photoinduced electron transfer, proton transfer, and proton-coupled electron transfer reactions) at femtosecond resolution. The advances in femtosecond laser technology along with the development of nonlinear multidimensional spectroscopy enabled further insights into ultrafast energy transfer and carrier relaxation processes in complex biological and material systems. New discoveries and interpretations have led to improved design principles for optimizing the photophysical properties of various artificial systems. In this review, we first provide a detailed theoretical framework of both coherent broadband and two-dimensional electronic spectroscopy (2DES). We then discuss a selection of experimental approaches and considerations of 2DES along with best practices for data processing and analysis. Finally, we review several examples where coherent broadband and 2DES were employed to reveal mechanisms of photoinitiated ultrafast processes in molecular, biological, and material systems. We end the review with a brief perspective on the future of the experimental techniques themselves and their potential to answer an even greater range of scientific questions.
Collapse
Affiliation(s)
- Somnath Biswas
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - JunWoo Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - Xinzi Zhang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| |
Collapse
|
15
|
Jeon K, Jen M, Lee S, Jang T, Pang Y. Intramolecular Charge Transfer of 1-Aminoanthraquinone and Ultrafast Solvation Dynamics of Dimethylsulfoxide. Int J Mol Sci 2021; 22:ijms222111926. [PMID: 34769357 PMCID: PMC8584543 DOI: 10.3390/ijms222111926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
The intramolecular charge transfer (ICT) of 1-aminoanthraquinone (AAQ) in the excited state strongly depends on its solvent properties, and the twisted geometry of its amino group has been recommended for the twisted ICT (TICT) state by recent theoretical works. We report the transient Raman spectra of AAQ in a dimethylsulfoxide (DMSO) solution by femtosecond stimulated Raman spectroscopy to provide clear experimental evidence for the TICT state of AAQ. The ultrafast (~110 fs) TICT dynamics of AAQ were observed from the major vibrational modes of AAQ including the νC-N + δCH and νC=O modes. The coherent oscillations in the vibrational bands of AAQ strongly coupled to the nuclear coordinate for the TICT process have been observed, which showed its anharmonic coupling to the low frequency out of the plane deformation modes. The vibrational mode of solvent DMSO, νS=O showed a decrease in intensity, especially in the hydrogen-bonded species of DMSO, which clearly shows that the solvation dynamics of DMSO, including hydrogen bonding, are crucial to understanding the reaction dynamics of AAQ with the ultrafast structural changes accompanying the TICT.
Collapse
|
16
|
Waters MDJ, Du W, Carrascosa AM, Stankus B, Cacciarini M, Weber PM, Sølling TI. Transient Symmetry Controls Photo Dynamics near Conical Intersections. J Phys Chem Lett 2021; 12:9220-9225. [PMID: 34529447 DOI: 10.1021/acs.jpclett.1c02334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Excited-state chemistry lacks generalized symmetry rules. With many femtochemistry studies focused on individual cases, it is hard to build up the same level of chemical intuition for excited states as that for ground states. Here, we unravel the degrees of freedom involved in ultrafast internal conversion (IC) by mapping the vibrational coherence of the initial wavepacket and the dependence on molecular symmetry in various cyclic tertiary amines. Molecular symmetry plays an important role in the preservation of vibrational coherence in the transit from one electronic state to another. We show here that it is sufficient for the molecule to simply have the possibility of a more symmetric structure to achieve the preservation of vibrational coherence. It can be transient and still lead to preservation. This finding provides an additional angle on how symmetry influences electronic transitions and an additional piece to the puzzle of establishing symmetry-based selection rules for excited-state processes.
Collapse
Affiliation(s)
- Max D J Waters
- Laboratorium Für Physikalische Chemie, ETH Zürich, Vladimir-Prelogs-Weg 2, 8093 Zürich, Switzerland
| | - Wenpeng Du
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States of America
| | - Andres Moreno Carrascosa
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States of America
| | - Brian Stankus
- Department of Chemistry and Biochemistry, Western Connecticut State University, Danbury, Connecticut 06810, United States of America
| | - Martina Cacciarini
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, Florence 50019, Italy
| | - Peter M Weber
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States of America
| | - Theis I Sølling
- College of Petroleum & Geosciences, King Fahd University of Petroleum & Minerals, Dharan 31261, Saudi Arabia
| |
Collapse
|
17
|
Yoneda Y, Kudisch B, Rather SR, Maiuri M, Nagasawa Y, Scholes GD, Miyasaka H. Vibrational Dephasing along the Reaction Coordinate of an Electron Transfer Reaction. J Am Chem Soc 2021; 143:14511-14522. [PMID: 34474559 DOI: 10.1021/jacs.1c01863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of molecular vibration in photoinduced electron transfer (ET) reactions has been extensively debated in recent years. In this study, we investigated vibrational wavepacket dynamics in a model ET system consisting of an organic dye molecule as an electron acceptor dissolved in various electron donating solvents. By using broad band pump-probe (BBPP) spectroscopy with visible laser pulses of sub-10 fs duration, coherent vibrational wavepackets of naphthacene dye with frequencies spanning 170-1600 cm-1 were observed in the time domain. The coherence properties of 11 vibrational modes were analyzed by an inverse Fourier filtering procedure, and we discovered that the dephasing times of some vibrational coherences are reduced with increasing ET rates. Density functional theory calculations indicated that the corresponding vibrational modes have a large Huang-Rhys factor between the reactant and the product states, supporting the hypothesis that the loss of phase coherence along certain vibrational modes elucidates that those vibrations are coupled to the reaction coordinate of an ET reaction.
Collapse
Affiliation(s)
- Yusuke Yoneda
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Bryan Kudisch
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Shahnawaz R. Rather
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Margherita Maiuri
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Yutaka Nagasawa
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Japan
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Hiroshi Miyasaka
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
18
|
Coppola F, Cimino P, Raucci U, Chiariello MG, Petrone A, Rega N. Exploring the Franck-Condon region of a photoexcited charge transfer complex in solution to interpret femtosecond stimulated Raman spectroscopy: excited state electronic structure methods to unveil non-radiative pathways. Chem Sci 2021; 12:8058-8072. [PMID: 34194695 PMCID: PMC8208128 DOI: 10.1039/d1sc01238j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/27/2021] [Indexed: 01/12/2023] Open
Abstract
We present electronic structure methods to unveil the non-radiative pathways of photoinduced charge transfer (CT) reactions that play a main role in photophysics and light harvesting technologies. A prototypical π-stacked molecular complex consisting of an electron donor (1-chloronaphthalene, 1ClN) and an electron acceptor (tetracyanoethylene, TCNE) was investigated in dichloromethane solution for this purpose. The characterization of TCNE:π:1ClN in both its equilibrium ground and photoinduced low-lying CT electronic states was performed by using a reliable and accurate theoretical-computational methodology exploiting ab initio molecular dynamics simulations. The structural and vibrational time evolution of key vibrational modes is found to be in excellent agreement with femtosecond stimulated Raman spectroscopy experiments [R. A. Mathies et al., J. Phys. Chem. A, 2018, 122, 14, 3594], unveiling a correlation between vibrational fingerprints and electronic properties. The evaluation of nonadiabatic coupling matrix elements along generalized normal modes has made possible the interpretation on the molecular scale of the activation of nonradiative relaxation pathways towards the ground electronic state. In particular, two low frequency vibrational modes such as the out of plane bending and dimer breathing and the TCNE central C[double bond, length as m-dash]C stretching play a prominent role in relaxation phenomena from the electronic CT state to the ground state one.
Collapse
Affiliation(s)
- Federico Coppola
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo via Cintia Napoli 80126 Italy
| | - Paola Cimino
- Department of Pharmaceutical Sciences, University of Salerno Salerno 84084 Italy
| | - Umberto Raucci
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo via Cintia Napoli 80126 Italy
| | - Maria Gabriella Chiariello
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo via Cintia Napoli 80126 Italy
| | - Alessio Petrone
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo via Cintia Napoli 80126 Italy
| | - Nadia Rega
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo via Cintia Napoli 80126 Italy
- Centro Interdipartimentale di Ricerca sui Biomateriali (CRIB) Piazzale Tecchio Napoli I-80125 Italy
| |
Collapse
|
19
|
Zhang W, Xu W, Zhang G, Kong J, Niu X, Chan JMW, Liu W, Xia A. Direct Tracking Excited-State Intramolecular Charge Redistribution of Acceptor-Donor-Acceptor Molecule by Means of Femtosecond Stimulated Raman Spectroscopy. J Phys Chem B 2021; 125:4456-4464. [PMID: 33902280 DOI: 10.1021/acs.jpcb.1c01742] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Symmetric quadrupolar molecules generally exhibit apolar ground states and dipolar excited states in a polar environment, which is explained by the excited state evolution from initial charge delocalization over all molecules to localization on one branch of the molecules after a femtosecond pulse excitation. However, direct observation of excited-state charge redistribution (delocalization/localization) is hardly accessible. Here, the intramolecular charge delocalization/localization character of a newly synthesized acceptor-donor-acceptor molecule (ADA) has been intensively investigated by femtosecond stimulated Raman scattering (FSRS) together with femtosecond transient absorption (fs-TA) spectroscopy. By tracking the excited state Raman spectra of the specific alkynyl (-C≡C-) bonds at each branch of ADA, we found that the nature of the relaxed S1 state is strongly governed by solvent polarity: symmetric delocalized intramolecular charge transfer (ICT) characters occurred in apolar solvent, whereas the asymmetric localized ICT characters appeared in polar solvent because of solvation. The solvation dynamics of ADA extracted from fs-TA is consistent with the time constants obtained by FSRS, but the FSRS clearly tracks the excited state intramolecular charge transfer delocalization/localization.
Collapse
Affiliation(s)
- Wei Zhang
- School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China.,Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R China.,University of Chinese Academy of Sciences, Beijing 100049, P. R China
| | - Wenqi Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China.,STU & SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, P. R. China
| | - Guoxian Zhang
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario K1N 6N5, Canada
| | - Jie Kong
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R China.,University of Chinese Academy of Sciences, Beijing 100049, P. R China
| | - Xinmiao Niu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R China.,University of Chinese Academy of Sciences, Beijing 100049, P. R China
| | - Julian M W Chan
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario K1N 6N5, Canada
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China.,STU & SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, P. R. China
| | - Andong Xia
- School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China.,Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R China
| |
Collapse
|
20
|
Kang DG, Woo KC, Kang DH, Park C, Kim SK. Improved spectral resolution of the femtosecond stimulated Raman spectroscopy achieved by the use of the 2nd-order diffraction method. Sci Rep 2021; 11:3361. [PMID: 33564098 PMCID: PMC7873076 DOI: 10.1038/s41598-021-83090-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/29/2021] [Indexed: 11/09/2022] Open
Abstract
Prolongation of the picosecond Raman pump laser pulse in the femtosecond stimulated Raman spectroscopy (FSRS) setup is essential for achieving the high spectral resolution of the time-resolved vibrational Raman spectra. In this work, the 2nd-order diffraction has been firstly employed in the double-pass grating filter technique for realizing the FSRS setup with the sub-5 cm-1 spectral resolution. It has been experimentally demonstrated that our new FSRS setup gives rise to a highly-resolved Raman spectrum of the excited trans-stilbene, which is much improved from those reported in the literatures. The spectral resolution of the present FSRS system has been estimated to be the lowest value ever reported to date, giving Δν = 2.5 cm-1.
Collapse
Affiliation(s)
- Dong-Gu Kang
- Department of Chemistry, KAIST, Daejeon, 34141, Republic of Korea
| | - Kyung Chul Woo
- Department of Chemistry, KAIST, Daejeon, 34141, Republic of Korea.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Do Hyung Kang
- Department of Chemistry, KAIST, Daejeon, 34141, Republic of Korea
| | - Chanho Park
- Department of Chemistry, KAIST, Daejeon, 34141, Republic of Korea
| | - Sang Kyu Kim
- Department of Chemistry, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
21
|
Chiariello MG, Donati G, Rega N. Time-Resolved Vibrational Analysis of Excited State Ab Initio Molecular Dynamics to Understand Photorelaxation: The Case of the Pyranine Photoacid in Aqueous Solution. J Chem Theory Comput 2020; 16:6007-6013. [PMID: 32955870 PMCID: PMC8011922 DOI: 10.1021/acs.jctc.0c00810] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
![]()
We
present a novel time-resolved vibrational analysis for studying
photoinduced nuclear relaxation. Generalized modes velocities are
defined from ab initio molecular dynamics and wavelet transformed,
providing the time localization of vibrational signals in the electronic
excited state. The photoexcited pyranine in aqueous solution is presented
as a case study. The transient and sequential activation of the simulated
vibrational signals is in good agreement with vibrational dynamics
obtained from femtosecond stimulated Raman spectroscopy data.
Collapse
Affiliation(s)
- Maria Gabriella Chiariello
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M. S. Angelo, via Cintia, I-80126 Napoli, Italy
| | - Greta Donati
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M. S. Angelo, via Cintia, I-80126 Napoli, Italy
| | - Nadia Rega
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M. S. Angelo, via Cintia, I-80126 Napoli, Italy.,CRIB Center for Advanced Biomaterials for Healthcare, Largo Barsanti e Matteucci, I-80125 Napoli, Italy
| |
Collapse
|
22
|
Hart SM, Banal JL, Bathe M, Schlau-Cohen GS. Identification of Nonradiative Decay Pathways in Cy3. J Phys Chem Lett 2020; 11:5000-5007. [PMID: 32484350 DOI: 10.1021/acs.jpclett.0c01201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photoexcited fluorescent markers are extensively used in spectroscopy, imaging, and analysis of biological systems. The performance of fluorescent markers depends on high levels of emission, which are limited by competing nonradiative decay pathways. Small-molecule fluorescent dyes have been increasingly used as markers due to their high and stable emission. Despite their prevalence, the nonradiative decay pathways of these dyes have not been determined. Here, we investigate these pathways for a widely used indocarbocyanine dye, Cy3, using transient grating spectroscopy. We identify a nonradiative decay pathway via a previously unknown dark state formed within ∼1 ps of photoexcitation. Our experiments, in combination with electronic structure calculations, suggest that the generation of the dark state is mediated by picosecond vibrational mode coupling, likely via a conical intersection. We further identify the vibrational modes, and thus structural elements, responsible for the formation and dynamics of the dark state, providing insight into suppressing nonradiative decay pathways in fluorescent markers such as Cy3.
Collapse
Affiliation(s)
- Stephanie M Hart
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - James L Banal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gabriela S Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
23
|
Cho D, Rouxel JR, Mukamel S. Stimulated X-ray Resonant Raman Spectroscopy of Conical Intersections in Thiophenol. J Phys Chem Lett 2020; 11:4292-4297. [PMID: 32370507 DOI: 10.1021/acs.jpclett.0c00949] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The conical intersection dynamics of thiophenol is studied by computing the stimulated X-ray resonant Raman spectroscopy signals. The hybrid probing field is constructed of a hard X-ray narrowband femtosecond pulse combined with an attosecond broadband X-ray pulse to provide optimal spectral and temporal resolutions for electronic coherences in the level crossing region. The signal carries phase information about the valence-core electronic coupling in the vicinity of conical intersections. Two conical intersections occurring during the course of the S-H dissociation dynamics can be distinguished by their valence-core transition frequencies computed at the complete active space self-consistent field level. The X-ray pulse is tuned such that the Raman transition at the first conical intersection between 1πσ* and 11ππ* involves higher core levels, while the Raman transition at the second conical intersection between 1πσ* and S0 involves the lowest core level in the sulfur K-edge.
Collapse
Affiliation(s)
- Daeheum Cho
- Department of Chemistry and Department of Physics & Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Jérémy R Rouxel
- Department of Chemistry and Department of Physics & Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Shaul Mukamel
- Department of Chemistry and Department of Physics & Astronomy, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
24
|
Kim W, Kim T, Kang S, Hong Y, Würthner F, Kim D. Tracking Structural Evolution during Symmetry‐Breaking Charge Separation in Quadrupolar Perylene Bisimide with Time‐Resolved Impulsive Stimulated Raman Spectroscopy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Woojae Kim
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| | - Taeyeon Kim
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| | - Seongsoo Kang
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| | - Yongseok Hong
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| | - Frank Würthner
- Institut für Organische Chemie & Center for, Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Dongho Kim
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| |
Collapse
|
25
|
Kim W, Kim T, Kang S, Hong Y, Würthner F, Kim D. Tracking Structural Evolution during Symmetry‐Breaking Charge Separation in Quadrupolar Perylene Bisimide with Time‐Resolved Impulsive Stimulated Raman Spectroscopy. Angew Chem Int Ed Engl 2020; 59:8571-8578. [DOI: 10.1002/anie.202002733] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Woojae Kim
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| | - Taeyeon Kim
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| | - Seongsoo Kang
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| | - Yongseok Hong
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| | - Frank Würthner
- Institut für Organische Chemie & Center for, Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Dongho Kim
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| |
Collapse
|
26
|
Fang C, Tang L. Mapping Structural Dynamics of Proteins with Femtosecond Stimulated Raman Spectroscopy. Annu Rev Phys Chem 2020; 71:239-265. [PMID: 32075503 DOI: 10.1146/annurev-physchem-071119-040154] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The structure-function relationships of biomolecules have captured the interest and imagination of the scientific community and general public since the field of structural biology emerged to enable the molecular understanding of life processes. Proteins that play numerous functional roles in cellular processes have remained in the forefront of research, inspiring new characterization techniques. In this review, we present key theoretical concepts and recent experimental strategies using femtosecond stimulated Raman spectroscopy (FSRS) to map the structural dynamics of proteins, highlighting the flexible chromophores on ultrafast timescales. In particular, wavelength-tunable FSRS exploits dynamic resonance conditions to track transient-species-dependent vibrational motions, enabling rational design to alter functions. Various ways of capturing excited-state chromophore structural snapshots in the time and/or frequency domains are discussed. Continuous development of experimental methodologies, synergistic correlation with theoretical modeling, and the expansion to other nonequilibrium, photoswitchable, and controllable protein systems will greatly advance the chemical, physical, and biological sciences.
Collapse
Affiliation(s)
- Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA;
| | - Longteng Tang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA;
| |
Collapse
|
27
|
Abstract
The conical intersection dynamics of thiophenol is studied theoretically using the stimulated X-ray Raman imaging (SXRI) technique. SXRI employs a hard X-ray narrowband/broadband hybrid probe field and provides a real-time and real-space image of the passage through conical intersections. The signal, calculated using the minimal-coupling radiation/matter Hamiltonian, carries the phase information, and the real-space image of the transition charge density can be reconstructed by its Fourier transform. The two conical intersections (S2/S1 (11ππ*/1πσ*) and S1/S0 (1πσ*/S0)) can be distinguished and identified by the diffraction patterns in the level crossing regimes.
Collapse
Affiliation(s)
- Daeheum Cho
- Department of Chemistry , University of California , Irvine , California 92697-2025 , United States
| | - Shaul Mukamel
- Department of Chemistry , University of California , Irvine , California 92697-2025 , United States
| |
Collapse
|
28
|
Fang C, Tang L, Chen C. Unveiling coupled electronic and vibrational motions of chromophores in condensed phases. J Chem Phys 2019; 151:200901. [PMID: 31779327 DOI: 10.1063/1.5128388] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The quest for capturing molecular movies of functional systems has motivated scientists and engineers for decades. A fundamental understanding of electronic and nuclear motions, two principal components of the molecular Schrödinger equation, has the potential to enable the de novo rational design for targeted functionalities of molecular machines. We discuss the development and application of a relatively new structural dynamics technique, femtosecond stimulated Raman spectroscopy with broadly tunable laser pulses from the UV to near-IR region, in tracking the coupled electronic and vibrational motions of organic chromophores in solution and protein environments. Such light-sensitive moieties hold broad interest and significance in gaining fundamental knowledge about the intramolecular and intermolecular Hamiltonian and developing effective strategies to control macroscopic properties. Inspired by recent experimental and theoretical advances, we focus on the in situ characterization and spectroscopy-guided tuning of photoacidity, excited state proton transfer pathways, emission color, and internal conversion via a conical intersection.
Collapse
Affiliation(s)
- Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Longteng Tang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Cheng Chen
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
29
|
Kuramochi H, Takeuchi S, Kamikubo H, Kataoka M, Tahara T. Fifth-order time-domain Raman spectroscopy of photoactive yellow protein for visualizing vibrational coupling in its excited state. SCIENCE ADVANCES 2019; 5:eaau4490. [PMID: 31187055 PMCID: PMC6555629 DOI: 10.1126/sciadv.aau4490] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 04/26/2019] [Indexed: 05/15/2023]
Abstract
We report fifth-order time-domain Raman spectroscopy of photoactive yellow protein (PYP), with the aim to visualize vibrational coupling in its excited state. After the ultrashort actinic pump pulse prepared the vibrational coherence and population in the excited state, the evolving vibrational structure was tracked by time-resolved impulsive stimulated Raman spectroscopy using sub-7-fs pulses. The obtained fifth-order time-domain Raman data were translated to a two-dimensional (2D) frequency-frequency correlation map, which visualizes the correlation between low- and high-frequency vibrational modes of the excited state. The 2D map of PYP reveals a cross peak, indicating the coupling between the phenolic C─O stretch mode of the chromophore and the low-frequency modes (~160 cm-1), assignable to the intermolecular motions involving the surrounding hydrogen-bonded amino acids. The unveiled coupling suggests the importance of the low-frequency vibrational motion in the primary photoreaction of PYP, highlighting the unique capability of this spectroscopic approach for studying ultrafast reaction dynamics.
Collapse
Affiliation(s)
- Hikaru Kuramochi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
- Corresponding author. (S.T.); (T.T.)
| | - Hironari Kamikubo
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Mikio Kataoka
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
- Corresponding author. (S.T.); (T.T.)
| |
Collapse
|
30
|
Taylor MA, Zhu L, Rozanov ND, Stout KT, Chen C, Fang C. Delayed vibrational modulation of the solvated GFP chromophore into a conical intersection. Phys Chem Chem Phys 2019; 21:9728-9739. [PMID: 31032505 DOI: 10.1039/c9cp01077g] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Green fluorescent protein (GFP) has revolutionized bioimaging and life sciences. Its successes have inspired modification of the chromophore structure and environment to tune emission properties, but outside the protein cage, the chromophore is essentially non-fluorescent. In this study, we employ the tunable femtosecond stimulated Raman spectroscopy (FSRS) and transient absorption (TA) to map the energy dissipation pathways of GFP model chromophore (HBDI) in basic aqueous solution. Strategic tuning of the Raman pump to 550 nm exploits the stimulated emission band to enhance excited state vibrational motions as HBDI navigates the non-equilibrium potential energy landscape to pass through a conical intersection. The time-resolved FSRS uncovers prominent anharmonic couplings between a global out-of-plane bending mode of ∼227 cm-1 and two modes at ∼866 and 1572 cm-1 before HBDI reaches the twisted intramolecular charge transfer (TICT) state on the ∼3 ps time scale. Remarkably, the wavelet transform analysis reveals a ∼500 fs delayed onset of the coupling peaks, in correlation with the emergence of an intermediate charge-separated state en route to the TICT state. This mechanism is corroborated by the altered coupling matrix for the HBDI Raman modes in the 50% (v/v) water-glycerol mixture, and a notable lengthening of the picosecond time constant. The real-time molecular "movie" of the general rotor-like HBDI isomerization reaction following photoexcitation represents a significant advance in comprehending the photochemical reaction pathways of the solvated GFP chromophore, therefore providing a crucial foundation to enable rational design of diverse nanomachines from efficient molecular rotors to bright fluorescent probes.
Collapse
Affiliation(s)
- Miles A Taylor
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Chen C, Zhu L, Baranov MS, Tang L, Baleeva NS, Smirnov AY, Yampolsky IV, Solntsev KM, Fang C. Photoinduced Proton Transfer of GFP-Inspired Fluorescent Superphotoacids: Principles and Design. J Phys Chem B 2019; 123:3804-3821. [DOI: 10.1021/acs.jpcb.9b03201] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Mikhail S. Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Nadezhda S. Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Alexander Yu. Smirnov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Ilia V. Yampolsky
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Kyril M. Solntsev
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| |
Collapse
|
32
|
Chiariello MG, Raucci U, Coppola F, Rega N. Unveiling anharmonic coupling by means of excited state ab initio dynamics: application to diarylethene photoreactivity. Phys Chem Chem Phys 2019; 21:3606-3614. [PMID: 30306981 DOI: 10.1039/c8cp04707c] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this work, excited state ab initio molecular dynamics together with a time resolved vibrational analysis is employed to shed light on the vibrational photoinduced dynamics of a well-known diarylethene molecule experiencing a ring opening reaction upon electronic excitation. The photoreactivity of diarylethenes is recognized to be controlled by a non-adiabatic intersection point between the ground and the first excited state surfaces. The computation of an energy scan, along a suitable reaction coordinate, allows us to identify the region of potential energy surfaces in which the ground (S0) and the first excited (S1) state are well separated. The adiabatic sampling of that region in S1 shows that in the first 3 picoseconds, the central CC bond, which is subject to break, oscillates in an antiphase with respect to the energy gap ΔE(S1 - S0). A multiresolution analysis based on the wavelet transform was then applied to the structural parameters extracted from the excited state dynamics. The wavelet maps show characteristic oscillations of the frequencies, mainly CC stretching and CCC bending localized on the central 4-ring moiety. Moreover, we have identified the main frequency (methyl wagging motion) involved in the modulation of these oscillations. The anharmonic coupling within a group of vibrational modes was therefore highlighted, in good agreement with experimental evidence. For the first time, a quantitative analysis of time resolved signals from a wavelet transform/ab initio molecular dynamics approach was performed.
Collapse
|
33
|
|
34
|
Rather SR, Scholes GD. From Fundamental Theories to Quantum Coherences in Electron Transfer. J Am Chem Soc 2019; 141:708-722. [PMID: 30412671 DOI: 10.1021/jacs.8b09059] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Photoinduced electron transfer (ET) is a cornerstone of energy transduction from light to chemistry. The past decade has seen tremendous advances in the possible role of quantum coherent effects in the light-initiated energy and ET processes in chemical, biological, and materials systems. The prevalence of such coherence effects holds a promise to increase the efficiency and robustness of transport even in the face of energetic or structural disorder. A primary motive of this Perspective is to work out how to think about "coherence" in ET reactions. We will discuss how the interplay of basic parameters governing ET reactions-like electronic coupling, interactions with the environment, and intramolecular high-frequency quantum vibrations-impact coherences. This includes revisiting the insights from the seminal work on the theory of ET and time-resolved measurements on coherent dynamics to explore the role of coherences in ET reactions. We conclude by suggesting that in addition to optical spectroscopies, validating the functional role of coherences would require simultaneous mapping of correlated electron motion and atomically resolved nuclear structure.
Collapse
Affiliation(s)
- Shahnawaz R. Rather
- Frick Chemistry Laboratory , Princeton University , Princeton , New Jersey 08544 , United States
| | - Gregory D Scholes
- Frick Chemistry Laboratory , Princeton University , Princeton , New Jersey 08544 , United States
| |
Collapse
|
35
|
Wu EC, Ge Q, Arsenault EA, Lewis NHC, Gruenke NL, Head-Gordon MJ, Fleming GR. Two-dimensional electronic-vibrational spectroscopic study of conical intersection dynamics: an experimental and electronic structure study. Phys Chem Chem Phys 2019; 21:14153-14163. [DOI: 10.1039/c8cp05264f] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The relaxation from the lowest singlet excited state of the triphenylmethane dyes, crystal violet and malachite green, is studied via two-dimensional electronic-vibrational (2DEV) spectroscopy.
Collapse
Affiliation(s)
- Eric C. Wu
- Department of Chemistry
- University of California
- Berkeley
- USA
- Molecular Biophysics and Integrated Bioimaging Division
| | - Qinghui Ge
- Department of Chemistry
- University of California
- Berkeley
- USA
| | - Eric A. Arsenault
- Department of Chemistry
- University of California
- Berkeley
- USA
- Molecular Biophysics and Integrated Bioimaging Division
| | | | - Natalie L. Gruenke
- Department of Chemistry
- University of California
- Berkeley
- USA
- Molecular Biophysics and Integrated Bioimaging Division
| | | | - Graham R. Fleming
- Department of Chemistry
- University of California
- Berkeley
- USA
- Molecular Biophysics and Integrated Bioimaging Division
| |
Collapse
|
36
|
Duan HG, Qi DL, Sun ZR, Miller RD, Thorwart M. Signature of the geometric phase in the wave packet dynamics on hypersurfaces. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Brown AM, McCusker CE, Carey MC, Blanco-Rodríguez AM, Towrie M, Clark IP, Vlček A, McCusker JK. Vibrational Relaxation and Redistribution Dynamics in Ruthenium(II) Polypyridyl-Based Charge-Transfer Excited States: A Combined Ultrafast Electronic and Infrared Absorption Study. J Phys Chem A 2018; 122:7941-7953. [DOI: 10.1021/acs.jpca.8b06197] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Allison M. Brown
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Catherine E. McCusker
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Monica C. Carey
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Ana Maria Blanco-Rodríguez
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Ian P. Clark
- Central Laser Facility, Research Complex at Harwell, STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Antonín Vlček
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
- J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejskova 3, CZ-182 23 Prague, Czech Republic
| | - James K. McCusker
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
38
|
Fang C, Tang L, Oscar BG, Chen C. Capturing Structural Snapshots during Photochemical Reactions with Ultrafast Raman Spectroscopy: From Materials Transformation to Biosensor Responses. J Phys Chem Lett 2018; 9:3253-3263. [PMID: 29799757 DOI: 10.1021/acs.jpclett.8b00373] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chemistry studies the composition, structure, properties, and transformation of matter. A mechanistic understanding of the pertinent processes is required to translate fundamental knowledge into practical applications. The current development of ultrafast Raman as a powerful time-resolved vibrational technique, particularly femtosecond stimulated Raman spectroscopy (FSRS), has shed light on the structure-energy-function relationships of various photosensitive systems. This Perspective reviews recent work incorporating optical innovations, including the broad-band up-converted multicolor array (BUMA) into a tunable FSRS setup, and demonstrates its resolving power to watch metal speciation and photolysis, leading to high-quality thin films, and fluorescence modulation of chimeric protein biosensors for calcium ion imaging. We discuss advantages of performing FSRS in the mixed time-frequency domain and present strategies to delineate mechanisms by tracking low-frequency modes and systematically modifying chemical structures with specific functional groups. These unique insights at the chemical-bond level have started to enable the rational design and precise control of functional molecular machines in optical, materials, energy, and life sciences.
Collapse
Affiliation(s)
- Chong Fang
- Department of Chemistry , Oregon State University , 153 Gilbert Hall , Corvallis , Oregon 97331 , United States
| | - Longteng Tang
- Department of Chemistry , Oregon State University , 153 Gilbert Hall , Corvallis , Oregon 97331 , United States
| | - Breland G Oscar
- Department of Chemistry , Oregon State University , 153 Gilbert Hall , Corvallis , Oregon 97331 , United States
| | - Cheng Chen
- Department of Chemistry , Oregon State University , 153 Gilbert Hall , Corvallis , Oregon 97331 , United States
| |
Collapse
|
39
|
Ellis SR, Hoffman DP, Park M, Mathies RA. Difference Bands in Time-Resolved Femtosecond Stimulated Raman Spectra of Photoexcited Intermolecular Electron Transfer from Chloronaphthalene to Tetracyanoethylene. J Phys Chem A 2018; 122:3594-3605. [PMID: 29558802 DOI: 10.1021/acs.jpca.8b00318] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The time-resolved femtosecond stimulated Raman spectra (FSRS) of a charge transfer (CT) excited noncovalent complex tetracyanoethylene:1-chloronaphthalene (TCNE:ClN) in dichloromethane (DCM) is reported with 40 fs time resolution. In the frequency domain, five FSRS peaks are observed with frequencies of 534, 858, 1069, 1392, and 1926 cm-1. The most intense peaks at 534 and 1392 cm-1 correspond to fundamentals while the features at 858, 1069, and 1926 cm-1 are attributed to a difference frequency, an overtone and a combination frequency of the fundamentals, respectively. The frequency of the 1392 cm-1 fundamental corresponding to the central C═C stretch of TCNE•- is red-shifted from the frequency of the steady state radical due to the close proximity and electron affinity of the countercation. The observation of a FSRS band at a difference frequency is analyzed. This analysis lends evidence for alternative nonlinear pathways of inverse Raman gain scattering (IRGS) or vertical-FSRS (VFSRS) which may contribute to the time-evolving FSRS spectrum on-resonance. Impulsive stimulated Raman measurements of the complex show coherent oscillations of the stimulated emission with frequencies of 153, 278, and 534 cm-1. The 278 cm-1 mode corresponds to Cl bending of the dichloromethane solvent. The center frequency of the 278 cm-1 mode is modulated by a frequency of ∼30 cm-1 which is attributed to the effect of librational motion of the dichloromethane solvent as it reorganizes around the nascent contact ion pair. The 153 ± 15 cm-1 mode corresponds to an out-of-plane bending motion of TCNE. This motion modulates the intermolecular separation of the contact ion pair and thereby the overlap of the frontier orbitals which is crucial for rapid charge recombination in 5.9 ± 0.2 ps. High time-frequency resolution vibrational spectra provide unique molecular details regarding charge localization and recombination.
Collapse
Affiliation(s)
- Scott R Ellis
- Department of Chemistry , University of California Berkeley , Berkeley , California 94720 , United States
| | - David P Hoffman
- Department of Chemistry , University of California Berkeley , Berkeley , California 94720 , United States
| | - Myeongkee Park
- Department of Chemistry , University of California Berkeley , Berkeley , California 94720 , United States
| | - Richard A Mathies
- Department of Chemistry , University of California Berkeley , Berkeley , California 94720 , United States
| |
Collapse
|
40
|
Chiariello MG, Rega N. Exploring Nuclear Photorelaxation of Pyranine in Aqueous Solution: an Integrated Ab-Initio Molecular Dynamics and Time Resolved Vibrational Analysis Approach. J Phys Chem A 2018; 122:2884-2893. [DOI: 10.1021/acs.jpca.7b12371] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maria Gabriella Chiariello
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S.Angelo, via Cintia, I-80126 Napoli, Italy
| | - Nadia Rega
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S.Angelo, via Cintia, I-80126 Napoli, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB) Università di Napoli Federico II, Piazzale Tecchio 80, I-80125, Napoli, Italy
| |
Collapse
|
41
|
Kowalewski M, Fingerhut BP, Dorfman KE, Bennett K, Mukamel S. Simulating Coherent Multidimensional Spectroscopy of Nonadiabatic Molecular Processes: From the Infrared to the X-ray Regime. Chem Rev 2017; 117:12165-12226. [DOI: 10.1021/acs.chemrev.7b00081] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Markus Kowalewski
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Benjamin P. Fingerhut
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany
| | - Konstantin E. Dorfman
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Kochise Bennett
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Shaul Mukamel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
42
|
Qi DL, Duan HG, Sun ZR, Miller RJD, Thorwart M. Tracking an electronic wave packet in the vicinity of a conical intersection. J Chem Phys 2017; 147:074101. [DOI: 10.1063/1.4989462] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Da-Long Qi
- State Key Laboratory of Precision Spectroscopy, School of Physics and Material Science, East China Normal University, 3663 North Zhongshan Road, 200062 Shanghai, China
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Hong-Guang Duan
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstraße 9, 20355 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Zhen-Rong Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Material Science, East China Normal University, 3663 North Zhongshan Road, 200062 Shanghai, China
| | - R. J. Dwayne Miller
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Michael Thorwart
- I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstraße 9, 20355 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
43
|
Abstract
Stimulated Raman scattering (SRS) describes a family of techniques first discovered and developed in the 1960s. Whereas the nascent history of the technique is parallel to that of laser light sources, recent advances have spurred a resurgence in its use and development that has spanned across scientific fields and spatial scales. SRS is a nonlinear technique that probes the same vibrational modes of molecules that are seen in spontaneous Raman scattering. While spontaneous Raman scattering is an incoherent technique, SRS is a coherent process, and this fact provides several advantages over conventional Raman techniques, among which are much stronger signals and the ability to time-resolve the vibrational motions. Technological improvements in pulse generation and detection strategies have allowed SRS to probe increasingly smaller volumes and shorter time scales. This has enabled SRS research to move from its original domain, of probing bulk media, to imaging biological tissues and single cells at the micro scale, and, ultimately, to characterizing samples with subdiffraction resolution at the nanoscale. In this Review, we give an overview of the history of the technique, outline its basic properties, and present historical and current uses at multiple length scales to underline the utility of SRS to the molecular sciences.
Collapse
Affiliation(s)
- Richard C Prince
- Department of Biomedical Engineering, University of California, Irvine , 1436 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Renee R Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis , B-18, 139 Smith Hall, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Eric O Potma
- Department of Chemistry, University of California, Irvine , 1107 Natural Sciences II, Irvine, California 92697-2025, United States
| |
Collapse
|
44
|
Chiu CC, Hung CC, Cheng PY. Ultrafast Charge Recombination Dynamics in Ternary Electron Donor–Acceptor Complexes: (Benzene)2-Tetracyanoethylene Complexes. J Phys Chem B 2016; 120:12390-12403. [DOI: 10.1021/acs.jpcb.6b10593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chih-Chung Chiu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, R. O. C
| | - Chih-Chang Hung
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, R. O. C
| | - Po-Yuan Cheng
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, R. O. C
| |
Collapse
|
45
|
Rather SR, Scholes GD. Slow Intramolecular Vibrational Relaxation Leads to Long-Lived Excited-State Wavepackets. J Phys Chem A 2016; 120:6792-9. [PMID: 27510098 DOI: 10.1021/acs.jpca.6b07796] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Broadband optical pump and compressed white light continuum probe were used to measure the transient excited-state absorption, ground-state bleach, and stimulated emission signals of cresyl violet solution in methanol. Amplitude oscillations caused by wavepacket motion in the ground and excited electronic states were analyzed. It was found that vibrational coherences in the excited state persist for more than the experimental waiting time window of 6 ps, and the strongest mode had a dephasing time constant of 2.4 ps. We hypothesize the dephasing of the wavepacket in the excited state is predominantly caused by intramolecular vibrational relaxation (IVR). Slow IVR indicates weak mode-mode coupling and therefore weak anharmonicity of the potential of this vibration. Thus, the initially prepared vibrational wavepacket in the excited state is not significantly perturbed by nonadiabatic coupling to other electronic states, and hence the diabatic and adiabatic representations of the system are essentially identical within the Born-Oppenheimer approximation. The wavepacket therefore evolves with time in an almost harmonic potential, slowly dephased by IVR and the pure vibrational decoherence. The consistency in the position of node (phase change in the wavepacket) in the excited-state absorption and stimulated emission signals without undergoing any frequency shift until the wavepacket is completely dephased conforms to the absence of any reactive internal conversion.
Collapse
Affiliation(s)
- Shahnawaz R. Rather
- Frick Chemistry Laboratory, Princeton University , Princeton, New Jersey 08544, United States
| | - Gregory D Scholes
- Frick Chemistry Laboratory, Princeton University , Princeton, New Jersey 08544, United States
| |
Collapse
|
46
|
Farag MH, Jansen TLC, Knoester J. Probing the Interstate Coupling near a Conical Intersection by Optical Spectroscopy. J Phys Chem Lett 2016; 7:3328-3334. [PMID: 27509384 DOI: 10.1021/acs.jpclett.6b01463] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Conical intersections are points where adiabatic potential energy surfaces cross. The interstate coupling between the potential energy surfaces plays a crucial role in many processes associated with conical intersections. Still no method exists to measure this coupling driving the chemical reactions between the potential energy surfaces involved. In this Letter, using a generic model for photoisomerization, we propose a novel experimental approach to estimate the coupling that mixes the electronic states near a conical intersection. The approach is based on analyzing the vibrational wavepacket of the reactant in the adiabatic ground and excited electronic states. The nuclear wavepacket dynamics are extracted from linear absorption and two-dimensional electronic spectroscopy. Comparing the frequencies of the coupling mode in the adiabatic ground and excited states from models with and without coupling between the potential energy surfaces suggests an experimental tool to determine the interstate coupling.
Collapse
Affiliation(s)
- Marwa H Farag
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Thomas L C Jansen
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jasper Knoester
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
47
|
Duan HG, Miller RJD, Thorwart M. Impact of Vibrational Coherence on the Quantum Yield at a Conical Intersection. J Phys Chem Lett 2016; 7:3491-3496. [PMID: 27547995 DOI: 10.1021/acs.jpclett.6b01551] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We study the vibrationally coherent quantum dynamics of an electronic wave packet in the vicinity of a conical intersection within a three-state two-mode model. By transforming the coherent tuning and coupling modes into the bath, the underdamped dynamics of the resulting effective three-state model is solved efficiently by the numerically exact hierarchy equation of motion approach. The transient excited-state absorption and two-dimensional spectra reveal the impact of vibrational coherence on the relaxation pathways of the wave packet. We find that both the quantum yield and the isomerization rate are crucially influenced by the vibrational coherence of the wave packet. A less coherent wave packet can traverse the conical intersection more rapidly, while the resulting quantum yield is smaller. Finally, we show that repeated passages of the wave packet through the conical intersection can lead to measurable interference effects in the form of Stueckelberg oscillations.
Collapse
Affiliation(s)
- Hong-Guang Duan
- I. Institut für Theoretische Physik, Universität Hamburg , Jungiusstraße 9, 20355 Hamburg, Germany
- Max Planck-Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging , Luruper Chaussee 149, 22761 Hamburg, Germany
| | - R J Dwayne Miller
- Max Planck-Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging , Luruper Chaussee 149, 22761 Hamburg, Germany
- The Departments of Chemistry and Physics, University of Toronto , 80 St. George Street, Toronto, M5S 3H6 Canada
| | - Michael Thorwart
- I. Institut für Theoretische Physik, Universität Hamburg , Jungiusstraße 9, 20355 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging , Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
48
|
Hoffman DP, Mathies RA. Femtosecond Stimulated Raman Exposes the Role of Vibrational Coherence in Condensed-Phase Photoreactivity. Acc Chem Res 2016; 49:616-25. [PMID: 27003235 DOI: 10.1021/acs.accounts.5b00508] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Femtosecond spectroscopy has revealed coherent wave packet motion time and time again, but the question as to whether these coherences are necessary for reactivity or merely a consequence of the experiment has remained open. For diatomic systems in the gas phase, such as sodium iodide, the dimensionality of the system requires coordinated atomic motion along the reaction coordinate. Coherent dynamics are also readily observed in condensed-phase multidimensional systems such as chromophores in proteins and solvated charge transfer dimers. Is precisely choreographed nuclear motion (i.e., coherence) required for reactivity in these systems? Can this coherence reveal anything about the reaction coordinate? In this Account, we describe our efforts to tackle these questions using femtosecond stimulated Raman spectroscopy (FSRS). Results of four exemplary systems are summarized to illustrate the role coherence can play in condensed-phase reactivity, the exploitation of vibrational coherence to measure vibrational anharmonicities, and the development of two-dimensional FSRS (2D-FSRS). We begin with rhodopsin, the protein responsible for vertebrate vision. The rhodopsin photoreaction is preternaturally fast: ground-state photoproduct is formed in less than 200 fs. However, the reactively important hydrogen out-of-plane motions as well as various torsions and stretches remain vibrationally coherent long after the reaction is complete, indicating that vibrational coherence can and does survive reactive internal conversion. Both the ultrashort time scale of the reaction and the observed vibrational coherence indicate that the reaction in rhodopsin is a vibrationally coherent process. Next we examine the functional excited-state proton transfer (ESPT) reaction of green fluorescent protein. Oscillations in the phenoxy C-O and imidazolinone C═N stretches in the FSRS spectrum indicated strong anharmonic coupling to a low-frequency phenyl wagging mode that gates the ESPT reaction. In this case, the coherence revealed not only itself but also the mode coupling that is necessary for reactivity. Curious as to whether vibrational coherence is a common phenomenon, we examined two simpler photochemical systems. FSRS studies of the charge transfer dimer tetramethylbenzene:tetracyanoquinodimethane revealed many vibrational oscillations with high signal-to-noise ratio that allowed us to develop a 2D-FSRS technique to quantitatively measure anharmonic vibrational coupling for many modes within a reacting excited state. Armed with this technique, we turned our attention to a bond-breaking reaction, the cycloreversion of a cyclohexadiene derivative. By means of 2D-FSRS, the vibrational composition of the excited-state transition state and therefore the reaction coordinate was revealed. In aggregate, these FSRS measurements demonstrate that vibrational coherences persist for many picoseconds in condensed phases at room temperature and can survive reactive internal conversion. Moreover, these coherences can be leveraged to reveal quantitative anharmonic couplings between a molecule's normal modes in the excited state. These anharmonic couplings are the key to determining how normal modes combine to form a reaction coordinate. It is becoming clear that condensed-phase photochemical reactions that occur in 10 ps or less require coordinated, coherent nuclear motion for efficient reactive internal conversion.
Collapse
Affiliation(s)
- David P. Hoffman
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Richard A. Mathies
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
49
|
Fujisawa T, Kuramochi H, Hosoi H, Takeuchi S, Tahara T. Role of Coherent Low-Frequency Motion in Excited-State Proton Transfer of Green Fluorescent Protein Studied by Time-Resolved Impulsive Stimulated Raman Spectroscopy. J Am Chem Soc 2016; 138:3942-5. [PMID: 26943852 DOI: 10.1021/jacs.5b11038] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Green fluorescent protein (GFP) from jellyfish Aequorea victoria, an essential bioimaging tool, luminesces via excited-state proton transfer (ESPT) in which the phenolic proton of the p-hydroxybenzylideneimidazolinone chromophore is transferred to Glu222 through a hydrogen-bond network. In this process, the ESPT mediated by the low-frequency motion of the chromophore has been proposed. We address this issue using femtosecond time-resolved impulsive stimulated Raman spectroscopy. After coherently exciting low-frequency modes (<300 cm(-1)) in the excited state of GFP, we examined the excited-state structural evolution and the ESPT dynamics within the dephasing time of the low-frequency vibration. A clear anharmonic vibrational coupling is found between one high-frequency mode of the chromophore (phenolic CH bend) and a low-frequency mode at ∼104 cm(-1). However, the data show that this low-frequency motion does not substantially affect the ESPT dynamics.
Collapse
Affiliation(s)
| | | | - Haruko Hosoi
- Department of Biomolecular Science, Faculty of Sciences, Toho University , 2-2-1 Miyama, Funabashi 274-8510, Japan
| | | | | |
Collapse
|
50
|
Dietze DR, Mathies RA. Femtosecond Stimulated Raman Spectroscopy. Chemphyschem 2016; 17:1224-51. [DOI: 10.1002/cphc.201600104] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Daniel R. Dietze
- Department of Chemistry; University of California in Berkeley; CA Berkeley 94720 USA
| | - Richard A. Mathies
- Department of Chemistry; University of California in Berkeley; CA Berkeley 94720 USA
| |
Collapse
|