1
|
Keşan G, Özcan E, Chábera P, Polívka T, Fuciman M. Time-Resolved Spectroelectrochemical Dynamics of Carotenoid 8'-apo-β-Carotenal. Chempluschem 2023; 88:e202300404. [PMID: 37747302 DOI: 10.1002/cplu.202300404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/31/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
This work examines the influence of applied external voltage in bulk electrolysis on the excited-state properties of 8'-apo-β-carotenal in acetonitrile by steady-state and ultrafast time-resolved absorption spectroscopy. The data collected under bulk electrolysis were compared with those taken without applied voltage. The steady-state measurements showed that although intensity of the S0 -S2 absorption band varies with the applied voltage, the spectral position remain nearly constant. Comparison of transient absorption spectra shows that the magnitude of the ICT-like band decreases during the experiment under applied voltage condition, and is associated with a prolongation of the S1 /ICT-like lifetime from 8 ps to 13 ps. Furthermore, switching off the applied voltage resulted in returning to no-voltage data within about 30 min. Our results show that the amplitude of the signal associated with the ICT state can be tuned by applying an external voltage.
Collapse
Affiliation(s)
- Gürkan Keşan
- Department of Physics, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, 370 05 České, Budějovice, Czech Republic
| | - Emrah Özcan
- Department of Physics, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, 370 05 České, Budějovice, Czech Republic
- Department of Chemistry, Faculty of Science, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Pavel Chábera
- Pavel Chábera, Division of Chemical Physics, Department of Chemistry, Lund University, Box 142, 221 00, Lund, Sweden
| | - Tomáš Polívka
- Department of Physics, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, 370 05 České, Budějovice, Czech Republic
| | - Marcel Fuciman
- Department of Physics, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, 370 05 České, Budějovice, Czech Republic
| |
Collapse
|
2
|
Linear and Non-Linear Middle Infrared Spectra of Penicillin G in the CO Stretching Mode Region. Symmetry (Basel) 2021. [DOI: 10.3390/sym13010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022] Open
Abstract
In this work we report the linear and non-linear IR spectral response characterization of the CO bonds of PenicillinG sodium salt in D2O and in DMSO−d6 solutions. In order to better characterize the spectral IR features in the CO stretching region, broadband middle infrared pump-probe spectra are recorded. The role of hydrogen bonds in determining the inhomogeneous broadening and in tuning anharmonicity of the different types of oscillators is exploited. Narrow band pump experiments, at the three central frequencies of β−lactam, amide and carboxylate CO stretching modes, identify the couplings between the different types of CO oscillators opening the possibility to gather structural dynamic information. Our results show that the strongest coupling is between the β−lactam and the carboxylate CO vibrational modes.
Collapse
|
3
|
Avila Ferrer FJ, Angeli C, Cerezo J, Coriani S, Ferretti A, Santoro F. The Intriguing Case of the One‐Photon and Two‐Photon Absorption of a Prototypical Symmetric Squaraine: Comparison of TDDFT and Wave‐Function Methods. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Celestino Angeli
- Dipartimento di Scienze Chimiche e FarmaceuticheUniversità di Ferrara via Borsari 46 44121 Ferrara Italy
| | - Javier Cerezo
- Departamento de Química, Facultad de Ciencias, Módulo 13Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco 28049 Madrid Spain
| | - Sonia Coriani
- DTU ChemistryTechnical University of Denmark, Kemitorvet Building 207 DK-2800 Kongens Lyngby Denmark
| | - Alessandro Ferretti
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR) Area della Ricerca del CNR, Via Moruzzi 1 I-56124 Pisa
| | - Fabrizio Santoro
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR) Area della Ricerca del CNR, Via Moruzzi 1 I-56124 Pisa
| |
Collapse
|
4
|
Götze JP. Vibrational Relaxation in Carotenoids as an Explanation for Their Rapid Optical Properties. J Phys Chem B 2019; 123:2203-2209. [PMID: 30779570 DOI: 10.1021/acs.jpcb.8b09841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
We propose the ultrafast S2 (1Bu) to S1 (2Ag) "electronic internal conversion" observed in carotenoids to be a vibrational relaxation of the 1Bu state. This suggestion arises from comparing excited-state geometries computed with the CAM-B3LYP density functional to the ground states; it is found that each conjugated atom moves less than 5 pm in, for example, violaxanthin. However, the changes of excitation energies are large, ranging from 0.4 to 1.2 eV. This is connected to the size of the conjugated system: while each atom contributes only 0.02-0.06 eV, the sum amounts to the observed shift. Additional analysis of computational data is provided from new or already published calculations. As the mechanism may be valid for all linear polyenes, the model has implications that go beyond the presented case of carotenoids. Finally, four sets of experimental data on carotenoids published elsewhere are reinterpreted. The model predicts near-infrared (IR) absorptions and transient femtosecond IR spectra within 0.1 eV accuracy.
Collapse
Affiliation(s)
- Jan P Götze
- Institut für Chemie und Biochemie, Physikalische und Theoretische Chemie , Freie Universität Berlin , Takustr. 3 14195 Berlin , Germany
| |
Collapse
|
5
|
Kardaś TM, Stepanenko Y, Radzewicz C. Noncollinear and nonlinear pulse propagation. Sci Rep 2018; 8:14350. [PMID: 30254201 PMCID: PMC6156600 DOI: 10.1038/s41598-018-32676-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/19/2017] [Accepted: 09/13/2018] [Indexed: 01/18/2023] Open
Abstract
A novel method for numerical modelling of noncollinear and nonlinear interaction of femtosecond laser pulses is presented. The method relies on a separate treatment of each of the interacting pulses by it's own rotated unidirectional pulse propagation equation (UPPE). We show that our method enables accurate simulations of the interaction of pulses travelling at a mutual angle of up to 140°. The limit is imposed by the unidirectionality principal. Additionally, a novel tool facilitating the preparation of noncollinear propagation initial conditions - a 3D Fourier transform based rotation technique - is presented. The method is tested with several linear and nonlinear cases and, finally, four original results are presented: (i) interference of highly chirped pulses colliding at mutual angle of 120°, (ii) optical switching through cross-focusing of perpendicular beams (iii) a comparison between two fluorescence up-conversion processes in BBO with large angles between the input beams and (iv) a degenerate four-wave mixing experiment in a boxcar configuration.
Collapse
Affiliation(s)
- Tomasz M Kardaś
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Yuriy Stepanenko
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Czesław Radzewicz
- Department of Physics, Institute of Experimental Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| |
Collapse
|
6
|
Taffet EJ, Scholes GD. Peridinin Torsional Distortion and Bond-Length Alternation Introduce Intramolecular Charge-Transfer and Correlated Triplet Pair Intermediate Excited States. J Phys Chem B 2018; 122:5835-5844. [DOI: 10.1021/acs.jpcb.8b02504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023]
Affiliation(s)
- Elliot J. Taffet
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Gregory D. Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
7
|
Oliver TAA. Recent advances in multidimensional ultrafast spectroscopy. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171425. [PMID: 29410844 PMCID: PMC5792921 DOI: 10.1098/rsos.171425] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/19/2017] [Accepted: 12/20/2017] [Indexed: 05/14/2023]
Abstract
Multidimensional ultrafast spectroscopies are one of the premier tools to investigate condensed phase dynamics of biological, chemical and functional nanomaterial systems. As they reach maturity, the variety of frequency domains that can be explored has vastly increased, with experimental techniques capable of correlating excitation and emission frequencies from the terahertz through to the ultraviolet. Some of the most recent innovations also include extreme cross-peak spectroscopies that directly correlate the dynamics of electronic and vibrational states. This review article summarizes the key technological advances that have permitted these recent advances, and the insights gained from new multidimensional spectroscopic probes.
Collapse
Affiliation(s)
- Thomas A. A. Oliver
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
8
|
Scholz M, Flender O, Lenzer T, Oum K. Ultrafast Excited-State Dynamics of all-trans-Capsanthin in Organic Solvents. J Phys Chem A 2017; 121:8380-8388. [DOI: 10.1021/acs.jpca.7b08252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mirko Scholz
- Physikalische Chemie, Universität Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Oliver Flender
- Physikalische Chemie, Universität Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Thomas Lenzer
- Physikalische Chemie, Universität Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Kawon Oum
- Physikalische Chemie, Universität Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| |
Collapse
|
9
|
Kraack JP. Ultrafast structural molecular dynamics investigated with 2D infrared spectroscopy methods. Top Curr Chem (Cham) 2017; 375:86. [PMID: 29071445 DOI: 10.1007/s41061-017-0172-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2017] [Accepted: 10/02/2017] [Indexed: 12/23/2022]
Abstract
Ultrafast, multi-dimensional infrared (IR) spectroscopy has been advanced in recent years to a versatile analytical tool with a broad range of applications to elucidate molecular structure on ultrafast timescales, and it can be used for samples in a many different environments. Following a short and general introduction on the benefits of 2D IR spectroscopy, the first part of this chapter contains a brief discussion on basic descriptions and conceptual considerations of 2D IR spectroscopy. Outstanding classical applications of 2D IR are used afterwards to highlight the strengths and basic applicability of the method. This includes the identification of vibrational coupling in molecules, characterization of spectral diffusion dynamics, chemical exchange of chemical bond formation and breaking, as well as dynamics of intra- and intermolecular energy transfer for molecules in bulk solution and thin films. In the second part, several important, recently developed variants and new applications of 2D IR spectroscopy are introduced. These methods focus on (i) applications to molecules under two- and three-dimensional confinement, (ii) the combination of 2D IR with electrochemistry, (iii) ultrafast 2D IR in conjunction with diffraction-limited microscopy, (iv) several variants of non-equilibrium 2D IR spectroscopy such as transient 2D IR and 3D IR, and (v) extensions of the pump and probe spectral regions for multi-dimensional vibrational spectroscopy towards mixed vibrational-electronic spectroscopies. In light of these examples, the important open scientific and conceptual questions with regard to intra- and intermolecular dynamics are highlighted. Such questions can be tackled with the existing arsenal of experimental variants of 2D IR spectroscopy to promote the understanding of fundamentally new aspects in chemistry, biology and materials science. The final part of the chapter introduces several concepts of currently performed technical developments, which aim at exploiting 2D IR spectroscopy as an analytical tool. Such developments embrace the combination of 2D IR spectroscopy and plasmonic spectroscopy for ultrasensitive analytics, merging 2D IR spectroscopy with ultra-high-resolution microscopy (nanoscopy), future variants of transient 2D IR methods, or 2D IR in conjunction with microfluidics. It is expected that these techniques will allow for groundbreaking research in many new areas of natural sciences.
Collapse
Affiliation(s)
- Jan Philip Kraack
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
10
|
Cerezo J, Santoro F. Revisiting Vertical Models To Simulate the Line Shape of Electronic Spectra Adopting Cartesian and Internal Coordinates. J Chem Theory Comput 2016; 12:4970-4985. [PMID: 27586086 DOI: 10.1021/acs.jctc.6b00442] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/29/2023]
Abstract
Vertical models for the simulation of spectroscopic line shapes expand the potential energy surface (PES) of the final state around the equilibrium geometry of the initial state. These models provide, in principle, a better approximation of the region of the band maximum. At variance, adiabatic models expand each PES around its own minimum. In the harmonic approximation, when the minimum energy structures of the two electronic states are connected by large structural displacements, adiabatic models can breakdown and are outperformed by vertical models. However, the practical application of vertical models faces the issues related to the necessity to perform a frequency analysis at a nonstationary point. In this contribution we revisit vertical models in harmonic approximation adopting both Cartesian (x) and valence internal curvilinear coordinates (s). We show that when x coordinates are used, the vibrational analysis at nonstationary points leads to a deficient description of low-frequency modes, for which spurious imaginary frequencies may even appear. This issue is solved when s coordinates are adopted. It is however necessary to account for the second derivative of s with respect to x, which here we compute analytically. We compare the performance of the vertical model in the s-frame with respect to adiabatic models and previously proposed vertical models in x- or Q1-frame, where Q1 are the normal coordinates of the initial state computed as combination of Cartesian coordinates. We show that for rigid molecules the vertical approach in the s-frame provides a description of the final state very close to the adiabatic picture. For sizable displacements it is a solid alternative to adiabatic models, and it is not affected by the issues of vertical models in x- and Q1-frames, which mainly arise when temperature effects are included. In principle the G matrix depends on s, and this creates nonorthogonality problems of the Duschinsky matrix connecting the normal modes of initial and final states in adiabatic approaches. We highlight that such a dependence of G on s is also an issue in vertical models, due to the necessity to approximate the kinetic term in the Hamiltonian when setting up the so-called GF problem. When large structural differences exist between the initial and the final-state minima, the changes in the G matrix can become too large to be disregarded.
Collapse
Affiliation(s)
- Javier Cerezo
- Istituto di Chimica dei Composti OrganoMetallici, Consiglio Nazionale delle Richerche (ICCOM-CNR) , Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Fabrizio Santoro
- Istituto di Chimica dei Composti OrganoMetallici, Consiglio Nazionale delle Richerche (ICCOM-CNR) , Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| |
Collapse
|
11
|
Otsuka M, Mori Y, Takano K. Theoretical study on photophysical properties of 3′-hydroxyechinenone and the effects of interactions with orange carotenoid protein. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.01.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/22/2023]
|
12
|
Oliver TAA, Fleming GR. Following Coupled Electronic-Nuclear Motion through Conical Intersections in the Ultrafast Relaxation of β-Apo-8′-carotenal. J Phys Chem B 2015; 119:11428-41. [DOI: 10.1021/acs.jpcb.5b04893] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/24/2023]
Affiliation(s)
- Thomas A. A. Oliver
- Physical
Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Graham R. Fleming
- Physical
Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
13
|
Di Donato M, Ragnoni E, Lapini A, Foggi P, Hiller RG, Righini R. Femtosecond transient infrared and stimulated Raman spectroscopy shed light on the relaxation mechanisms of photo-excited peridinin. J Chem Phys 2015; 142:212409. [DOI: 10.1063/1.4915072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022] Open
|
14
|
Di Donato M, Ragnoni E, Lapini A, Kardaś TM, Ratajska-Gadomska B, Foggi P, Righini R. Identification of the Excited-State C═C and C═O Modes of trans-β-Apo-8'-carotenal with Transient 2D-IR-EXSY and Femtosecond Stimulated Raman Spectroscopy. J Phys Chem Lett 2015; 6:1592-1598. [PMID: 26263319 DOI: 10.1021/acs.jpclett.5b00528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/04/2023]
Abstract
Assigning the vibrational modes of molecules in the electronic excited state is often a difficult task. Here we show that combining two nonlinear spectroscopic techniques, transient 2D exchange infrared spectroscopy (T2D-IR-EXSY) and femtosecond stimulated Raman spectroscopy (FSRS), the contribution of the C═C and C═O modes in the excited-state vibrational spectra of trans-β-apo-8'-carotenal can be unambiguously identified. The experimental results reported in this work confirm a previously proposed assignment based on quantum-chemical calculations and further strengthen the role of an excited state with charge-transfer character in the relaxation pathway of carbonyl carotenoids. On a more general ground, our results highlight the potentiality of nonlinear spectroscopic methods based on the combined use of visible and infrared pulses to correlate structural and electronic changes in photoexcited molecules.
Collapse
Affiliation(s)
- Mariangela Di Donato
- †LENS (European Laboratory for Non Linear Spectroscopy), via N. Carrara 1, 50019 Sesto Fiorentino, Italy
- ‡INO (Istituto Nazionale di Ottica), Largo Fermi 6, 50125 Firenze, Italy
- §Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Elena Ragnoni
- †LENS (European Laboratory for Non Linear Spectroscopy), via N. Carrara 1, 50019 Sesto Fiorentino, Italy
- ‡INO (Istituto Nazionale di Ottica), Largo Fermi 6, 50125 Firenze, Italy
| | - Andrea Lapini
- †LENS (European Laboratory for Non Linear Spectroscopy), via N. Carrara 1, 50019 Sesto Fiorentino, Italy
- ‡INO (Istituto Nazionale di Ottica), Largo Fermi 6, 50125 Firenze, Italy
- §Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Tomasz M Kardaś
- ∥Department of Chemistry, University of Warsaw, Zwirki Wigury 101, 02-089 Warsaw, Poland
| | | | - Paolo Foggi
- †LENS (European Laboratory for Non Linear Spectroscopy), via N. Carrara 1, 50019 Sesto Fiorentino, Italy
- ‡INO (Istituto Nazionale di Ottica), Largo Fermi 6, 50125 Firenze, Italy
- ⊥Dipartimento di Chimica, Università di Perugia, via Elce di Sotto 8, 06100 Perugia, Italy
| | - Roberto Righini
- †LENS (European Laboratory for Non Linear Spectroscopy), via N. Carrara 1, 50019 Sesto Fiorentino, Italy
- ‡INO (Istituto Nazionale di Ottica), Largo Fermi 6, 50125 Firenze, Italy
- §Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
15
|
Ragnoni E, Di Donato M, Iagatti A, Lapini A, Righini R. Mechanism of the Intramolecular Charge Transfer State Formation in all-trans-β-Apo-8′-carotenal: Influence of Solvent Polarity and Polarizability. J Phys Chem B 2014; 119:420-32. [DOI: 10.1021/jp5093288] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elena Ragnoni
- LENS (European
Laboratory for Non-Linear Spectroscopy) via N. Carrara 1, 50019 Sesto Fiorentino (Florence) Italy
- INO (Istituto
Nazionale di Ottica), Largo Fermi 6, 50125 Firenze, Italy
| | - Mariangela Di Donato
- LENS (European
Laboratory for Non-Linear Spectroscopy) via N. Carrara 1, 50019 Sesto Fiorentino (Florence) Italy
- INO (Istituto
Nazionale di Ottica), Largo Fermi 6, 50125 Firenze, Italy
- Dipartimento
di Chimica “Ugo Schiff”, Università di Firenze, via della
Lastruccia 13, 50019 Sesto Fiorentino (Florence), Italy
| | - Alessandro Iagatti
- LENS (European
Laboratory for Non-Linear Spectroscopy) via N. Carrara 1, 50019 Sesto Fiorentino (Florence) Italy
- INO (Istituto
Nazionale di Ottica), Largo Fermi 6, 50125 Firenze, Italy
| | - Andrea Lapini
- LENS (European
Laboratory for Non-Linear Spectroscopy) via N. Carrara 1, 50019 Sesto Fiorentino (Florence) Italy
- INO (Istituto
Nazionale di Ottica), Largo Fermi 6, 50125 Firenze, Italy
- Dipartimento
di Chimica “Ugo Schiff”, Università di Firenze, via della
Lastruccia 13, 50019 Sesto Fiorentino (Florence), Italy
| | - Roberto Righini
- LENS (European
Laboratory for Non-Linear Spectroscopy) via N. Carrara 1, 50019 Sesto Fiorentino (Florence) Italy
- INO (Istituto
Nazionale di Ottica), Largo Fermi 6, 50125 Firenze, Italy
- Dipartimento
di Chimica “Ugo Schiff”, Università di Firenze, via della
Lastruccia 13, 50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|