1
|
Shrestha P, Kand D, Weinstain R, Winter AH. meso-Methyl BODIPY Photocages: Mechanisms, Photochemical Properties, and Applications. J Am Chem Soc 2023; 145:17497-17514. [PMID: 37535757 DOI: 10.1021/jacs.3c01682] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
meso-methyl BODIPY photocages have recently emerged as an exciting new class of photoremovable protecting groups (PPGs) that release leaving groups upon absorption of visible to near-infrared light. In this Perspective, we summarize the development of these PPGs and highlight their critical photochemical properties and applications. We discuss the absorption properties of the BODIPY PPGs, structure-photoreactivity studies, insights into the photoreaction mechanism, the scope of functional groups that can be caged, the chemical synthesis of these structures, and how substituents can alter the water solubility of the PPG and direct the PPG into specific subcellular compartments. Applications that exploit the unique optical and photochemical properties of BODIPY PPGs are also discussed, from wavelength-selective photoactivation to biological studies to photoresponsive organic materials and photomedicine.
Collapse
Affiliation(s)
- Pradeep Shrestha
- Department of Chemistry, Iowa State University, Ames, Iowa 50010, United States
| | - Dnyaneshwar Kand
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Roy Weinstain
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Arthur H Winter
- Department of Chemistry, Iowa State University, Ames, Iowa 50010, United States
| |
Collapse
|
2
|
Soldatenko AS, Lazareva NF. 2,2′-Bis[(chloromethyl)diorganylsilyloxy]azobenzenes. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363221120094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Mitra K, Hartman MCT. Silicon phthalocyanines: synthesis and resurgent applications. Org Biomol Chem 2021; 19:1168-1190. [DOI: 10.1039/d0ob02299c] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Their unique axial bonds and NIR optical properties have made silicon phthalocyanines (SiPcs) valuable compounds. Herein, we present key synthetic strategies and emerging applications of SiPcs over the past decade.
Collapse
Affiliation(s)
- Koushambi Mitra
- Department of Chemistry
- Virginia Commonwealth University
- Richmond
- USA
- Massey Cancer Center
| | - Matthew C. T. Hartman
- Department of Chemistry
- Virginia Commonwealth University
- Richmond
- USA
- Massey Cancer Center
| |
Collapse
|
4
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
5
|
Qu R, Li X, Liu Y, Zhai H, Zhao S, Feng L, Wei Y. Superwetting Patterned Membranes with an Anisotropy/Isotropy Transition: Towards Signal Expression and Liquid Permeation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ruixiang Qu
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Xiangyu Li
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Yanan Liu
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Huajun Zhai
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Shuaiheng Zhao
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Lin Feng
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Yen Wei
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
6
|
Qu R, Li X, Liu Y, Zhai H, Zhao S, Feng L, Wei Y. Superwetting Patterned Membranes with an Anisotropy/Isotropy Transition: Towards Signal Expression and Liquid Permeation. Angew Chem Int Ed Engl 2020; 59:13437-13443. [PMID: 32368822 DOI: 10.1002/anie.202005030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Indexed: 01/02/2023]
Abstract
Superwetting membranes with responsive properties have attracted heightened attention because of their fine-tunable surface wettability. However, their functional diversity is severely limited by the "black-or-white" wettability transition. Herein, we describe a coating strategy to fabricate multifunctional responsive superwetting membranes with SiO2 /octadecylamine patterns. The adjustable patterns in the responsive region are the key factor for functional diversity. Specifically, the coated part of the membrane displayed a superhydrophobicity/superhydrophilicity transition at different pH values, whereas the uncoated part exhibited invariant superhydrophilicity. On the basis of this anisotropy/isotropy transition, the membranes can serve as either responsive permeable membranes or signal-expression membranes, thus enabling the responsive separation and permeation of liquids with satisfactory separation efficiency (>99.90 %) and flux (ca. 60 L m-2 h), as well as real-time liquid signal expression with alterable signals.
Collapse
Affiliation(s)
- Ruixiang Qu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiangyu Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yanan Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Huajun Zhai
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuaiheng Zhao
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lin Feng
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yen Wei
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
7
|
Kobayashi M, Harada M, Takakura H, Ando K, Goto Y, Tsuneda T, Ogawa M, Taketsugu T. Theoretical and Experimental Studies on the Near‐Infrared Photoreaction Mechanism of a Silicon Phthalocyanine Photoimmunotherapy Dye: Photoinduced Hydrolysis by Radical Anion Generation. Chempluschem 2020; 85:1959-1963. [DOI: 10.1002/cplu.202000338] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/01/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Masato Kobayashi
- Faculty of Science Hokkaido University Sapporo 060-0810 Japan
- WPI-ICReDD Hokkaido University Sapporo 001-0021 Japan
| | - Mei Harada
- Faculty of Pharmaceutical Sciences Hokkaido University Sapporo 060-0812 Japan
| | - Hideo Takakura
- Faculty of Pharmaceutical Sciences Hokkaido University Sapporo 060-0812 Japan
| | - Kanta Ando
- Faculty of Pharmaceutical Sciences Hokkaido University Sapporo 060-0812 Japan
| | - Yuto Goto
- Faculty of Pharmaceutical Sciences Hokkaido University Sapporo 060-0812 Japan
| | - Takao Tsuneda
- Faculty of Science Hokkaido University Sapporo 060-0810 Japan
- Graduate School of Science Technology, and Innovation Kobe University Kobe 657-8501 Japan
| | - Mikako Ogawa
- Faculty of Pharmaceutical Sciences Hokkaido University Sapporo 060-0812 Japan
| | - Tetsuya Taketsugu
- Faculty of Science Hokkaido University Sapporo 060-0810 Japan
- WPI-ICReDD Hokkaido University Sapporo 001-0021 Japan
| |
Collapse
|
8
|
Anderson ED, Sova S, Ivanic J, Kelly L, Schnermann MJ. Defining the conditional basis of silicon phthalocyanine near-IR ligand exchange. Phys Chem Chem Phys 2018; 20:19030-19036. [PMID: 29971294 PMCID: PMC6344126 DOI: 10.1039/c8cp03842b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bond cleavage reactions initiated by long-wavelength light are needed to extend the scope of the caged-uncaged paradigm into complex physiological settings. Axially unsymmetrical silicon phthalocyanines (SiPcs) undergo efficient release of phenol ligands in a reaction contingent on three factors - near-IR light (690 nm), hypoxia, and a thiol reductant. These studies detail efforts to define the mechanistic basis for this unique conditionally-dependent bond cleavage reaction. Spectroscopic studies provide evidence for the formation of a key phthalocyanine radical anion intermediate formed from the triplet state in a reductant-dependent manner. Computational chemistry studies indicate that phenol ligand solvolysis proceeds through a heptacoordinate silicon transition state and that this solvolytic process is favored following SiPc radical anion formation. These results provide insight regarding the central role that radical anion intermediates formed through photoinduced electron transfer with biological reductants can play in long-wavelength uncaging reactions.
Collapse
Affiliation(s)
- Erin D Anderson
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, USA.
| | | | | | | | | |
Collapse
|
9
|
Rahoui N, Jiang B, Taloub N, Huang YD. Spatio-temporal control strategy of drug delivery systems based nano structures. J Control Release 2017; 255:176-201. [DOI: 10.1016/j.jconrel.2017.04.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 12/21/2022]
|
10
|
Near-infrared uncaging or photosensitizing dictated by oxygen tension. Nat Commun 2016; 7:13378. [PMID: 27853134 PMCID: PMC5476797 DOI: 10.1038/ncomms13378] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/19/2016] [Indexed: 12/26/2022] Open
Abstract
Existing strategies that use tissue-penetrant near-infrared light for the targeted treatment of cancer typically rely on the local generation of reactive oxygen species. This approach can be impeded by hypoxia, which frequently occurs in tumour microenvironments. Here we demonstrate that axially unsymmetrical silicon phthalocyanines uncage small molecules preferentially in a low-oxygen environment, while efficiently generating reactive oxygen species in normoxic conditions. Mechanistic studies of the uncaging reaction implicate a photoredox pathway involving photoinduced electron transfer to generate a key radical anion intermediate. Cellular studies demonstrate that the biological mechanism of action is O2-dependent, with reactive oxygen species-mediated phototoxicity in normoxic conditions and small molecule uncaging in hypoxia. These studies provide a near-infrared light-targeted treatment strategy with the potential to address the complex tumour landscape through two distinct mechanisms that vary in response to the local O2 environment.
Collapse
|
11
|
Maiti B, Manna AK, McCleese C, Doane TL, Chakrapani S, Burda C, Dunietz BD. Photoinduced Homolytic Bond Cleavage of the Central Si–C Bond in Porphyrin Macrocycles Is a Charge Polarization Driven Process. J Phys Chem A 2016; 120:7634-7640. [DOI: 10.1021/acs.jpca.6b05610] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Buddhadev Maiti
- Department of Chemistry
and Biochemistry and Department of Chemistry, Kent State University, Kent, Ohio 44242, United States
- Department of Chemistry and ∥Department of Physiology
and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Arun K. Manna
- Department of Chemistry
and Biochemistry and Department of Chemistry, Kent State University, Kent, Ohio 44242, United States
- Department of Chemistry and ∥Department of Physiology
and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Christopher McCleese
- Department of Chemistry
and Biochemistry and Department of Chemistry, Kent State University, Kent, Ohio 44242, United States
- Department of Chemistry and ∥Department of Physiology
and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Tennyson L. Doane
- Department of Chemistry
and Biochemistry and Department of Chemistry, Kent State University, Kent, Ohio 44242, United States
- Department of Chemistry and ∥Department of Physiology
and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Sudha Chakrapani
- Department of Chemistry
and Biochemistry and Department of Chemistry, Kent State University, Kent, Ohio 44242, United States
- Department of Chemistry and ∥Department of Physiology
and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Clemens Burda
- Department of Chemistry
and Biochemistry and Department of Chemistry, Kent State University, Kent, Ohio 44242, United States
- Department of Chemistry and ∥Department of Physiology
and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Barry D. Dunietz
- Department of Chemistry
and Biochemistry and Department of Chemistry, Kent State University, Kent, Ohio 44242, United States
- Department of Chemistry and ∥Department of Physiology
and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
12
|
Wittkamp F, Nagel C, Lauterjung P, Mallick B, Schatzschneider U, Apfel UP. Phosphine-ligated dinitrosyl iron complexes for redox-controlled NO release. Dalton Trans 2016; 45:10271-9. [DOI: 10.1039/c6dt01209d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Bao C, Zhu L, Lin Q, Tian H. Building biomedical materials using photochemical bond cleavage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:1647-62. [PMID: 25655424 DOI: 10.1002/adma.201403783] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/02/2014] [Indexed: 05/06/2023]
Abstract
Light can be used as an external trigger to precisely determine where and when a process is initiated as well as how much of the process is being consumed. Phototriggers are a type of photoresponsive functional group that undergo an irreversible photolysis reaction by selectively breaking a chemical bond, enabling three fundamental functions: the photoactivation of fluorescent and bioactive molecules; the photocleavable degradation of macromolecular materials; and the photorelease of drugs, active groups, or surface charges from carriers and interfaces. With the expanded applications of light-controlled technology, particularly in living systems, new challenges and improvements of phototriggers are required to fulfill the demands for better sensitivity, faster kinetics, and more-demanding biomedical applications. Here, improvements to several conventional phototriggers are highlighted, and their notable, representative biomedical applications and their challenges are discussed.
Collapse
Affiliation(s)
- Chunyan Bao
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, East China University of Science and Technology, 130# Meilong Road, Shanghai, 200237, China
| | | | | | | |
Collapse
|
14
|
Ghosh G, Minnis M, Ghogare AA, Abramova I, Cengel KA, Busch TM, Greer A. Photoactive fluoropolymer surfaces that release sensitizer drug molecules. J Phys Chem B 2015; 119:4155-64. [PMID: 25686407 DOI: 10.1021/acs.jpcb.5b00808] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We describe a physical-organic study of two fluoropolymers bearing a photoreleasable PEGylated photosensitizer that generates (1)O2((1)Δg) [chlorin e6 methoxy tri(ethylene glycol) triester]. The surfaces are Teflon/poly(vinyl alcohol) (PVA) nanocomposite and fluorinated silica. The relative efficiency of these surfaces to photorelease the PEGylated sensitizer [shown previously to be phototoxic to ovarian cancer cells (Kimani, S. et al. J. Org. Chem 2012, 77, 10638)] was slightly higher for the nanocomposite. In the presence of red light and O2, (1)O2 is formed, which cleaves an ethene linkage to liberate the sensitizer in 68-92% yield. The fluoropolymers were designed to deal with multiple problems. Namely, their success relied not only on high O2 solubility and drug repellency but also on the C-F bonds, which physically quench little (1)O2, for singlet oxygen's productive use away from the surface. The results obtained here indicate that Teflon-like surfaces have potential uses in delivering sensitizer and singlet oxygen for applications in tissue repair and photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Goutam Ghosh
- Department of Chemistry and Graduate Center, Brooklyn College, City University of New York , Brooklyn, New York 11210, United States
| | | | | | | | | | | | | |
Collapse
|