1
|
Zhao Z, Evangelista FA. Toward Accurate Spin-Orbit Splittings from Relativistic Multireference Electronic Structure Theory. J Phys Chem Lett 2024; 15:7103-7110. [PMID: 38954768 PMCID: PMC11261625 DOI: 10.1021/acs.jpclett.4c01372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Most nonrelativistic electron correlation methods can be adapted to account for relativistic effects, as long as the relativistic molecular spinor integrals are available, from either a four-, two-, or one-component mean-field calculation. However, relativistic multireference correlation methods remain a relatively unexplored area, with mixed evidence regarding the improvements brought by perturbative treatments. We report, for the first time, the implementation of state-averaged four-component relativistic multireference perturbation theories to second and third order based on the driven similarity renormalization group (DSRG). With our methods, named 4c-SA-DSRG-MRPT2 and 3, we find that the dynamical correlation included on top of 4c-CASSCF references can significantly improve the spin-orbit splittings in p-block elements and potential energy surfaces when compared to 4c-CASSCF and 4c-CASPT2 results. We further show that 4c-DSRG-MRPT2 and 3 are applicable to these systems over a wide range of the flow parameter, with systematic improvement from second to third order in terms of both improved error statistics and reduced sensitivity with respect to the flow parameter.
Collapse
Affiliation(s)
- Zijun Zhao
- Department of Chemistry and
Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Francesco A. Evangelista
- Department of Chemistry and
Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
2
|
Czakó G, Győri T, Olasz B, Papp D, Szabó I, Tajti V, Tasi DA. Benchmark ab initio and dynamical characterization of the stationary points of reactive atom + alkane and SN2 potential energy surfaces. Phys Chem Chem Phys 2020; 22:4298-4312. [DOI: 10.1039/c9cp04944d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We review composite ab initio and dynamical methods and their applications to characterize stationary points of atom/ion + molecule reactions.
Collapse
Affiliation(s)
- Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science
- Institute of Chemistry
- University of Szeged
- Szeged H-6720
| | - Tibor Győri
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science
- Institute of Chemistry
- University of Szeged
- Szeged H-6720
| | - Balázs Olasz
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science
- Institute of Chemistry
- University of Szeged
- Szeged H-6720
| | - Dóra Papp
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science
- Institute of Chemistry
- University of Szeged
- Szeged H-6720
| | - István Szabó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science
- Institute of Chemistry
- University of Szeged
- Szeged H-6720
| | - Viktor Tajti
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science
- Institute of Chemistry
- University of Szeged
- Szeged H-6720
| | - Domonkos A. Tasi
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science
- Institute of Chemistry
- University of Szeged
- Szeged H-6720
| |
Collapse
|
3
|
Christensen EG, Steele RP. Probing the Partial Activation of Water by Open-Shell Interactions, Cl(H 2O) 1-4. J Phys Chem A 2019; 123:8657-8673. [PMID: 31513400 DOI: 10.1021/acs.jpca.9b07235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The partial chemical activation of water by reactive radicals was examined computationally for small clusters of chlorine and water, Cl•(H2O)n=1-4. Using an automated isomer-search procedure, dozens of unique, stable structures were computed. Among the resulting structural classes were intact, hydrated-chlorine isomers, as well as hydrogen-abstracted (HCl)(OH)(H2O)n-1 configurations. The latter showed increased stability as the degree of hydration increased, until n = 4, where a new class of structures was discovered with a chloride ion bound to an oxidized water network. The electronic structure of these three structural classes was investigated, and spectral signatures of this hydration-based evolution were connected to these electronic properties. An ancillary outcome of this detailed computational analysis, including coupled-cluster benchmarks, was the calibration of cost-effective quantum chemistry methods for future studies of these radical-water complexes.
Collapse
Affiliation(s)
- Elizabeth G Christensen
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - Ryan P Steele
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
4
|
Zhang B, Vandezande JE, Reynolds RD, Schaefer HF. Spin–Orbit Coupling via Four-Component Multireference Methods: Benchmarking on p-Block Elements and Tentative Recommendations. J Chem Theory Comput 2018; 14:1235-1246. [DOI: 10.1021/acs.jctc.7b00989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Boyi Zhang
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Jonathon E. Vandezande
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Ryan D. Reynolds
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Henry F. Schaefer
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
5
|
Wang H, Qiu Y, Czakó G, Schaefer HF. Pathways for the OH + Cl2 → HOCl + Cl and HOCl + Cl → HCl + ClO Reactions. J Phys Chem A 2015; 119:7802-9. [PMID: 25965106 DOI: 10.1021/acs.jpca.5b01273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High level coupled-cluster theory, with spin-orbit coupling evaluated via the Breit-Pauli operator in the interacting-states approach, is used to investigate the OH radical reaction with Cl2 and the subsequent reaction HOCl + Cl. The entrance complex, transition state, and exit complex for both reactions have been determined using the CCSD(T) method with correlation consistent basis sets up to cc-pV6Z. Also reported are CCSDT computations. The OH + Cl2 reaction is predicted to be endothermic by 2.2 kcal/mol, compared to the best experiments, 2.0 kcal/mol. The above theoretical results include zero-point vibrational energy corrections and spin-orbit contributions. The activation energy (Ea) of the OH + Cl2 reaction predicted here, 2.3 kcal/mol, could be as much as 1 kcal/mol too high, but it falls among the four experimental Ea values, which span the range 1.1-2.5 kcal/mol. The exothermicity of the second reaction HOCl + Cl → HCl + ClO is 8.4 kcal/mol, compared to experiment 8.7 kcal/mol. The activation energy for latter reaction is unknown experimentally, but predicted here to be large, 11.5 kcal/mol. There are currently no experiments relevant to the theoretical entrance and exit complexes predicted here.
Collapse
Affiliation(s)
- Hongyan Wang
- †School of Physical Science and Technology, Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Chengdu 610031, China.,‡Department of Chemistry and Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Yudong Qiu
- ‡Department of Chemistry and Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Gábor Czakó
- §Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, Eötvös University, P.O. Box 32, H-1518 Budapest 112, Hungary
| | - Henry F Schaefer
- ‡Department of Chemistry and Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
6
|
Li J, Jiang B, Song H, Ma J, Zhao B, Dawes R, Guo H. From ab Initio Potential Energy Surfaces to State-Resolved Reactivities: X + H2O ↔ HX + OH [X = F, Cl, and O(3P)] Reactions. J Phys Chem A 2015; 119:4667-87. [DOI: 10.1021/acs.jpca.5b02510] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jun Li
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
- School of Chemistry
and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Bin Jiang
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Hongwei Song
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Jianyi Ma
- Institute of Atomic
and Molecular Physics, Sichuan University, Chengdu, Sichuan 610065, China
| | - Bin Zhao
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Richard Dawes
- Department
of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Hua Guo
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
7
|
de Oliveira-Filho AGS, Ornellas FR, Bowman JM. Energy disposal and thermal rate constants for the OH + HBr and OH + DBr reactions: quasiclassical trajectory calculations on an accurate potential energy surface. J Phys Chem A 2014; 118:12080-8. [PMID: 25365787 DOI: 10.1021/jp509430p] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report reaction cross sections, energy disposal, and rate constants for the OH + HBr → Br + H2O and OH + DBr → Br + HDO reactions from quasiclassical trajectory calculations using an ab initio potential energy surface [ de Oliveira-Filho , A. G. S. ; Ornellas , F. R. ; Bowman , J. M. J. Phys. Chem. Lett. 2014 , 5 , 706 - 712 ]. Comparison with available experiments are made and generally show good agreement.
Collapse
Affiliation(s)
- Antonio G S de Oliveira-Filho
- Departamento de Quı́mica Fundamental, Instituto de Quı́mica, Universidade de São Paulo , São Paulo 05508-000, Brazil
| | | | | |
Collapse
|