1
|
Ju CW, Shen Y, French EJ, Yi J, Bi H, Tian A, Lin Z. Accurate Electronic and Optical Properties of Organic Doublet Radicals Using Machine Learned Range-Separated Functionals. J Phys Chem A 2024. [PMID: 38382058 DOI: 10.1021/acs.jpca.3c07437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Luminescent organic semiconducting doublet-spin radicals are unique and emergent optical materials because their fluorescent quantum yields (Φfl) are not compromised by the spin-flipping intersystem crossing (ISC) into a dark high-spin state. The multiconfigurational nature of these radicals challenges their electronic structure calculations in the framework of single-reference density functional theory (DFT) and introduces room for method improvement. In the present study, we extended our earlier development of ML-ωPBE [J. Phys. Chem. Lett., 2021, 12, 9516-9524], a range-separated hybrid (RSH) exchange-correlation (XC) functional constructed using the stacked ensemble machine learning (SEML) algorithm, from closed-shell organic semiconducting molecules to doublet-spin organic semiconducting radicals. We assessed its performance for a new test set of 64 doublet-spin radicals from five categories while placing all previously compiled 3926 closed-shell molecules in the new training set. Interestingly, ML-ωPBE agrees with the nonempirical OT-ωPBE functional regarding the prediction of the molecule-dependent range-separation parameter (ω), with a small mean absolute error (MAE) of 0.0197 a0-1, but saves the computational cost by 2.46 orders of magnitude. This result demonstrates an outstanding domain adaptation capacity of ML-ωPBE for diverse organic semiconducting species. To further assess the predictive power of ML-ωPBE in experimental observables, we also applied it to evaluate absorption and fluorescence energies (Eabs and Efl) using linear-response time-dependent DFT (TDDFT), and we compared its behavior with nine popular XC functionals. For most radicals, ML-ωPBE reproduces experimental measurements of Eabs and Efl with small MAEs of 0.299 and 0.254 eV, only marginally different from those of OT-ωPBE. Our work illustrates a successful extension of the SEML framework from closed-shell molecules to doublet-spin radicals and will open the venue for calculating optical properties for organic semiconductors using single-reference TDDFT.
Collapse
Affiliation(s)
- Cheng-Wei Ju
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Yili Shen
- Manning College of Information and Computer Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ethan J French
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Jun Yi
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Hongshan Bi
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Aaron Tian
- Manning College of Information and Computer Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Zhou Lin
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
2
|
Matthaei CT, Mukhopadhyay DP, Röder A, Poisson L, Fischer I. Photodissociation of the trichloromethyl radical: photofragment imaging and femtosecond photoelectron spectroscopy. Phys Chem Chem Phys 2022; 24:928-940. [PMID: 34913455 DOI: 10.1039/d1cp04084g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Halogen-containing radicals play a key role in catalytic reactions leading to stratospheric ozone destruction, thus their photochemistry is of considerable interest. Here we investigate the photodissociation dynamics of the trichloromethyl radical, CCl3 after excitation in the ultraviolet. While the primary processes directly after light absorption are followed by femtosecond-time resolved photoionisation and photoelectron spectroscopy, the reaction products are monitored by photofragment imaging using nanosecond-lasers. The dominant reaction is loss of a Cl atom, associated with a CCl2 fragment. However, the detection of Cl atoms is of limited value, because in the pyrolysis CCl2 is formed as a side product, which in turn dissociates to CCl + Cl. We therefore additionally monitored the molecular fragments CCl2 and CCl by photoionisation at 118.2 nm and disentangled the contributions from various processes. A comparison of the CCl images with control experiments on CCl2 suggest that the dissociation to CCl + Cl2 contributes to the photochemistry of CCl3.
Collapse
Affiliation(s)
- Christian T Matthaei
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | - Deb Pratim Mukhopadhyay
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | - Anja Röder
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany. .,LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France.
| | - Lionel Poisson
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France. .,Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d*Orsay, 91405, Orsay, France
| | - Ingo Fischer
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| |
Collapse
|
3
|
Fang C, Durbeej B. Calculation of Free-Energy Barriers with TD-DFT: A Case Study on Excited-State Proton Transfer in Indigo. J Phys Chem A 2019; 123:8485-8495. [DOI: 10.1021/acs.jpca.9b05163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Changfeng Fang
- Center for Optics Research and Engineering (CORE), Shandong University, Qingdao 266237, China
| | - Bo Durbeej
- Division of Theoretical Chemistry, IFM, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
4
|
Bodo E, Bovolenta G, Simha C, Spezia R. On the formation of propylene oxide from propylene in space: gas-phase reactions. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2485-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
5
|
Affiliation(s)
- Pierre‐François Loos
- Laboratoire de Chimie et Physique QuantiquesUniversité de Toulouse, CNRS, UPS France
| | - Denis Jacquemin
- Laboratoire CEISAM – UMR CNRS 6230Université de Nantes 2 Rue de la Houssinière BP 92208, 44322 Nantes Cedex 3 France
| |
Collapse
|
6
|
Li Y, Gan Y, Cao Z. Computational insight into excited states of the ring-opening radicals from the pyrolysis of furan biofuels. J Comput Chem 2019; 40:1057-1065. [PMID: 30299565 DOI: 10.1002/jcc.25594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/30/2018] [Accepted: 08/17/2018] [Indexed: 12/25/2022]
Abstract
The low-lying valence excited states and Rydberg states of the radical species from the ring-opening reactions in pyrolysis of furan biofuels have been determined by extensive density functional theory and sophisticated wave function theory calculations. The radicals 1-C4 H5 O-2, 2-furylCH2 , and 4-C6 H7 O with the delocalized π-type single electron are predicted to be most stable among the reactive species here for furan, 2-methyfuran, and 2,5-dimethylfuran, respectively. Predicted vertical transition energies by TD-CAM-B3LYP show good agreement with those by CASPT2. Some among the electronic excitations to low-lying states can take place in the visible light region, and they may be involved in the combustion process. Further surface hopping dynamics simulations on the excited states of the most stable ring-opening radical 1-C4 H5 O-2 of furan as an example reveal that 89.9% sampling trajectories at the initial excited state of 22 A"(π1 π*2 ) decay to the 12 A'(n1 π*2 ) state within an average of 384 fs, and then 81.2% trajectories at the 12 A' state go to the ground state within an average of 114 fs. At the end of the simulation for 1000 fs, 18.8% trajectories still stay on the excited states of 22 A" and 12 A', suggesting that the reactive radicals in the ground state are mainly responsible for the combustion chemistry of furan biofuels. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yanzhen Gan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
7
|
Alipour M, Damiri S. Development of a Novel Index for Analysis of Electronically Excited States. Chemphyschem 2017; 18:480-487. [PMID: 27957791 DOI: 10.1002/cphc.201600907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/19/2016] [Indexed: 11/11/2022]
Abstract
Concerning the major factors in the context of excited states analyses, namely charge centroids of the orbitals involved in the excitations, the distance between orbital centroids, and overlap integrals, a new metric-the Ω index-is proposed to assign the character and optical properties of electronically excited states. Using several molecules from different classes and also a well-studied standard database for time-dependent density functional theory (TD-DFT) studies as benchmark criteria, accountability of the developed index is numerically assessed for local, charge transfer, and Rydberg excitations. It is shown that the nature of excited states can be discriminated using the Ω index, where its superior performance for those situations in which the previous descriptors were not helpful is also unveiled. Relationships are also examined between the Ω index and optical properties of some molecules under study in the framework of the sum-over-state approach. It is observed that there are correlations between the proposed index and computed hyperpolarizabilities based on the sum-over-state scheme. These findings offer the possibility of estimating excited-state properties of large systems from simple descriptors without explicitly performing calculations of high-order response functions.
Collapse
Affiliation(s)
- Mojtaba Alipour
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Samaneh Damiri
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| |
Collapse
|
8
|
Oruganti B, Fang C, Durbeej B. Assessment of a composite CC2/DFT procedure for calculating 0–0 excitation energies of organic molecules. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1235736] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Baswanth Oruganti
- Division of Theoretical Chemistry, IFM, Linköping University, Linköping, Sweden
| | - Changfeng Fang
- Division of Theoretical Chemistry, IFM, Linköping University, Linköping, Sweden
| | - Bo Durbeej
- Division of Theoretical Chemistry, IFM, Linköping University, Linköping, Sweden
| |
Collapse
|
9
|
|
10
|
Santoro F, Jacquemin D. Going beyond the vertical approximation with time-dependent density functional theory. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2016. [DOI: 10.1002/wcms.1260] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fabrizio Santoro
- CNR-Consiglio Nazionale delle Ricerche; Istituto di Chimica dei Composti OrganoMetallici (ICCOM-CNR); Pisa Italy
| | - Denis Jacquemin
- CEISAM, UMR CNRS 6230; Université de Nantes; Nantes France
- Institut Universitaire de France; Paris France
| |
Collapse
|
11
|
On the performance of time-dependent double-hybrid density functionals for description of absorption and emission spectra of heteroaromatic compounds. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1838-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Barnes L, Schindler B, Allouche AR, Simon D, Chambert S, Oomens J, Compagnon I. Anharmonic simulations of the vibrational spectrum of sulfated compounds: application to the glycosaminoglycan fragment glucosamine 6-sulfate. Phys Chem Chem Phys 2015; 17:25705-13. [DOI: 10.1039/c5cp02079d] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anharmonic behavior of sulfated glucosamine resolved by hybrid GVPT2 approach.
Collapse
Affiliation(s)
- Loïc Barnes
- Université de Lyon
- Lyon
- France
- Université Lyon 1
- Villeurbanne
| | | | | | - Daniel Simon
- Université de Lyon
- Lyon
- France
- Université Lyon 1
- Villeurbanne
| | | | - Jos Oomens
- Radboud University
- Institute for Molecules and Materials
- FELIX Laboratory
- 6525ED Nijmegen
- The Netherlands
| | | |
Collapse
|
13
|
Jacquemin D, Adamo C. Computational Molecular Electronic Spectroscopy with TD-DFT. DENSITY-FUNCTIONAL METHODS FOR EXCITED STATES 2015; 368:347-75. [DOI: 10.1007/128_2015_638] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|