1
|
Antalicz B, Bakker HJ. Temperature Effects and Activation Barriers in Aqueous Proton-Uptake Reactions. JACS AU 2024; 4:2995-3006. [PMID: 39211613 PMCID: PMC11350741 DOI: 10.1021/jacsau.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 09/04/2024]
Abstract
Aqueous proton transfer reactions are fundamental in biology and chemistry, yet kinetics and mechanisms of strong base-weak acid reactions are not well understood. In this work, we present a temperature-dependent reaction kinetic study of the water-soluble photobase actinoquinol, in the presence and absence of succinimide, a weak acid reaction partner. We study the temperature dependence of the reaction and connect the observed dynamics to the reaction's thermodynamics. We find that actinoquinol reacts in associated complexes with water/succinimide, creating an intermediate complex that can undergo either dissociation to create products, or reverse proton transfer within the complex to recreate the initial reactants. We find that the intermediates' formation is energetically unfavorable with both reaction partners, which impacts the net reaction rates. We also find that the net reaction rate is additionally strongly influenced by the competition between the dissociation of the intermediates and their reverse reaction.
Collapse
Affiliation(s)
- Balázs Antalicz
- AMOLF, Ultrafast Spectroscopy, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Huib J. Bakker
- AMOLF, Ultrafast Spectroscopy, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
2
|
Kelsheimer CJ, Garrett-Roe S. Intramolecular Vibrational Energy Relaxation of CO 2 in Cross-Linked Poly(ethylene glycol) Diacrylate-Based Ion Gels. J Phys Chem B 2021; 125:1402-1415. [PMID: 32955891 DOI: 10.1021/acs.jpcb.0c06685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ultrafast two-dimensional infrared spectroscopy (2D-IR) and Fourier transform infrared spectroscopy (FTIR) were used to measure carbon dioxide (CO2) in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]), cross-linked low-molecular-weight poly(ethylene glycol) diacrylate (PEGDA), and an ion gel composed of a 50 vol % blend of the two. The center frequency of the antisymmetric stretch, ν3, of CO2 shifts monotonically to lower wavenumbers with increasing polymer content, with the largest line width in the ion gel (6 cm-1). Increasing polymer content slows both spectral diffusion and vibrational energy relaxation (VER) rates. An unexpected excited-state absorbance peak appears in the 2D-IR of cross-linked PEGDA due to VER from the antisymmetric stretch into the bending mode, ν2. Thirty-two response functions are necessary to describe the observed features in the 2D-IR spectra. Nonlinear least-squares fitting extracts both spectral diffusion and VER rates. In the ion gel, CO2 exhibits spectral diffusion dynamics that lie between that of the pure compounds. The kinetics of VER reflect both fast excitation and de-excitation of the bending mode, similar to the ionic liquid (IL), and slow overall vibrational population relaxation, similar to the cross-linked polymer. The IL-like and polymer-like dynamics suggest that the CO2 resides at the interface of the two components in the ion gel.
Collapse
Affiliation(s)
- C J Kelsheimer
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Sean Garrett-Roe
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
3
|
Sofronov OO, Bakker HJ. Energy Relaxation and Structural Dynamics of Protons in Water/DMSO Mixtures. J Phys Chem B 2018; 122:10005-10013. [PMID: 30351147 PMCID: PMC6216113 DOI: 10.1021/acs.jpcb.8b06938] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
![]()
We
investigate the structure and dynamics of proton solvation structures
in mixed water/dimethyl sulfoxide (DMSO) solvents using two-color
mid-infrared femtosecond pump–probe spectroscopy. At a water
fraction below 20%, protons are mainly solvated as (DMSO-H)+ and (DMSO-H)+-H2O structures. We find that
excitation of the OH-stretch vibration of the proton in (DMSO-H)+-H2O structures leads to an ultrafast contraction
of the hydrogen bond between (DMSO-H)+ and H2O. This excited state relaxes rapidly with T1 = 95 ± 10 fs and leads in part to a strong local heating
effect and in part to predissociation of the protonated cluster into
(DMSO-H)+ and water monomers.
Collapse
Affiliation(s)
| | - Huib J Bakker
- AMOLF , Science Park 104 , 1098 XG Amsterdam , The Netherlands
| |
Collapse
|
4
|
Dunkelberger AD, Fears KP, Davidson II RB, Dressick WJ, Simpkins BS, Owrutsky JC. Vibrational relaxation of small anions in a polymer film. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Sanders SE, Vanselous H, Petersen PB. Water at surfaces with tunable surface chemistries. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:113001. [PMID: 29393860 DOI: 10.1088/1361-648x/aaacb5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Aqueous interfaces are ubiquitous in natural environments, spanning atmospheric, geological, oceanographic, and biological systems, as well as in technical applications, such as fuel cells and membrane filtration. Where liquid water terminates at a surface, an interfacial region is formed, which exhibits distinct properties from the bulk aqueous phase. The unique properties of water are governed by the hydrogen-bonded network. The chemical and physical properties of the surface dictate the boundary conditions of the bulk hydrogen-bonded network and thus the interfacial properties of the water and any molecules in that region. Understanding the properties of interfacial water requires systematically characterizing the structure and dynamics of interfacial water as a function of the surface chemistry. In this review, we focus on the use of experimental surface-specific spectroscopic methods to understand the properties of interfacial water as a function of surface chemistry. Investigations of the air-water interface, as well as efforts in tuning the properties of the air-water interface by adding solutes or surfactants, are briefly discussed. Buried aqueous interfaces can be accessed with careful selection of spectroscopic technique and sample configuration, further expanding the range of chemical environments that can be probed, including solid inorganic materials, polymers, and water immiscible liquids. Solid substrates can be finely tuned by functionalization with self-assembled monolayers, polymers, or biomolecules. These variables provide a platform for systematically tuning the chemical nature of the interface and examining the resulting water structure. Finally, time-resolved methods to probe the dynamics of interfacial water are briefly summarized before discussing the current status and future directions in studying the structure and dynamics of interfacial water.
Collapse
Affiliation(s)
- Stephanie E Sanders
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States of America
| | | | | |
Collapse
|
6
|
Carpenter WB, Fournier JA, Lewis NHC, Tokmakoff A. Picosecond Proton Transfer Kinetics in Water Revealed with Ultrafast IR Spectroscopy. J Phys Chem B 2018; 122:2792-2802. [PMID: 29452488 DOI: 10.1021/acs.jpcb.8b00118] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aqueous proton transport involves the ultrafast interconversion of hydrated proton species that are closely linked to the hydrogen bond dynamics of water, which has been a long-standing challenge to experiments. In this study, we use ultrafast IR spectroscopy to investigate the distinct vibrational transition centered at 1750 cm-1 in strong acid solutions, which arises from bending vibrations of the hydrated proton complex. Broadband ultrafast two-dimensional IR spectroscopy and transient absorption are used to measure vibrational relaxation, spectral diffusion, and orientational relaxation dynamics. The hydrated proton bend displays fast vibrational relaxation and spectral diffusion timescales of 200-300 fs; however, the transient absorption anisotropy decays on a remarkably long 2.5 ps timescale, which matches the timescale for hydrogen bond reorganization in liquid water. These observations are indications that the bending vibration of the aqueous proton complex is relatively localized, with an orientation that is insensitive to fast hydrogen bonding fluctuations and dependent on collective structural relaxation of the liquid to reorient. We conclude that the orientational relaxation is a result of proton transfer between configurations that are well described by a Zundel-like proton shared between two flanking water molecules.
Collapse
Affiliation(s)
- William B Carpenter
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Joseph A Fournier
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Nicholas H C Lewis
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics , The University of Chicago , Chicago , Illinois 60637 , United States
| |
Collapse
|
7
|
Liu L, Lotze S, Bakker HJ. Vibrational and structural relaxation of hydrated protons in Nafion membranes. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2016.10.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Ottosson N, Liu L, Bakker HJ. Vibrational Relaxation of the Aqueous Proton in Acetonitrile: Ultrafast Cluster Cooling and Vibrational Predissociation. J Phys Chem B 2016; 120:7154-63. [PMID: 27333302 DOI: 10.1021/acs.jpcb.6b02799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We study the ultrafast O-H stretch vibrational relaxation dynamics of protonated water clusters embedded in a matrix of deuterated acetonitrile, using polarization-resolved mid-IR femtosecond spectroscopy. The clusters are produced by mixing triflic (trifluoromethanesulfonic) acid and H2O in molar ratios of 1:1, 1:2, and 1:3, thus varying the degree of hydration of the proton. At all hydration levels the excited O-H stretch vibration of the hydrated proton shows an ultrafast vibrational relaxation with a time constant T1 < 100 fs, leading to an ultrafast local heating of the protonated water cluster. This excess thermal energy, initially highly localized to the region of the excited proton, first re-distributes over the aqueous cluster and then dissipates into the surrounding acetonitrile matrix. For clusters with a triflic acid to H2O ratio of 1:3 these processes occur with time constants of 320 ± 20 fs and 1.4 ± 0.1 ps, respectively. The cooling of the clusters reveals a long-living, underlying transient absorption change with high anisotropy. We argue that this feature stems from the vibrational predissociation of a small fraction of the proton hydration structures, directly following the ultrafast infrared excitation.
Collapse
Affiliation(s)
- N Ottosson
- FOM Institute AMOLF , Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - L Liu
- FOM Institute AMOLF , Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - H J Bakker
- FOM Institute AMOLF , Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
9
|
Santana-Blank L, Rodríguez-Santana E, Santana-Rodríguez KE, Reyes H. "Quantum Leap" in Photobiomodulation Therapy Ushers in a New Generation of Light-Based Treatments for Cancer and Other Complex Diseases: Perspective and Mini-Review. Photomed Laser Surg 2016; 34:93-101. [PMID: 26890728 DOI: 10.1089/pho.2015.4015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Set within the context of the 2015 International Year of Light and Light-Based Technologies,and of a growing and aging world population with ever-rising healthcare needs, this perspective and mini-review focuses on photobiomodulation (PBM) therapy as an emerging, cost-effective, treatment option for cancer (i.e., solid tumors) and other complex diseases, particularly, of the eye (e.g., age-related macular degeneration, diabetic retinopathy, glaucoma, retinitis pigmentosa) and the central nervous system (e.g., Alzheimer's and Parkinson's disease). BACKGROUND DATA Over the last decades, primary and secondary mechanisms of PBM have been revealed. These include oxygen-dependent and oxygen-independent structural and functional action pathways. Signal and target characteristics determine biological outcome, which is optimal (or even positive) only within a given set of parameters. METHODS This study was a perspective and nonsystematic literature mini-review. RESULTS Studies support what we describe as a paradigm shift or "quantum leap" in the understanding and use of light and its interaction with water and other relevant photo-cceptors to restore physiologic function. CONCLUSIONS Based on existing evidence, it is argued that PBM therapy can raise the standard of care and improve the quality of life of patients for a fraction of the cost of many current approaches. PBM therapy can, therefore,benefit large, vulnerable population groups, including the elderly and the poor, whilehaving a major impact on medical practice and public finances.
Collapse
Affiliation(s)
- Luis Santana-Blank
- Fundalas, Foundation for Interdisciplinary Research and Development, Caracas, Venezuela
| | | | | | - Heberto Reyes
- Fundalas, Foundation for Interdisciplinary Research and Development, Caracas, Venezuela
| |
Collapse
|
10
|
Glowacki DR, Orr-Ewing AJ, Harvey JN. Non-equilibrium reaction and relaxation dynamics in a strongly interacting explicit solvent: F + CD3CN treated with a parallel multi-state EVB model. J Chem Phys 2015; 143:044120. [DOI: 10.1063/1.4926996] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- David R. Glowacki
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, United Kingdom
- PULSE Institute and Department of Chemistry, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | - Jeremy N. Harvey
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| |
Collapse
|