1
|
Choudhary A, Kundu A, Singh C, Sharma A, Pant KK, Chandra A. Supercritical Water: Density-Independent Angular Jumps. J Phys Chem B 2025; 129:329-337. [PMID: 39782737 DOI: 10.1021/acs.jpcb.4c05676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Molecular dynamics simulations were employed to investigate the reorientation dynamics of water molecules under supercritical conditions. Our findings indicate that supercritical water consists of a fluctuating assembly of water clusters of varying sizes. The reorientational motions are characterized by large angular displacements and occur on fast time scales. We found that the decreasing density of supercritical water correlates with a decrease in the number of angular jumps as more water molecules were found in isolated or small clustered states at lower densities. Notably, the amplitude of rotational jumps in relative coordinates does not depend much on the density of supercritical water at a given temperature.
Collapse
Affiliation(s)
- Ashu Choudhary
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee 247667, India
| | - Arpan Kundu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Chaitanya Singh
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee 247667, India
| | - Abhiruchi Sharma
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Kamal Kishore Pant
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee 247667, India
- Department of Chemical Engineering, Indian Institute of Technology, Delhi 110016, India
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
2
|
Sil A, Sangeeta, Poonia V, Das S, Guchhait B. Molecular dynamics insights into the dynamical behavior of structurally modified water in aqueous deep eutectic solvents (ADES). J Chem Phys 2024; 161:164501. [PMID: 39435833 DOI: 10.1063/5.0223828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Recent studies have demonstrated that the presence of water in deep eutectic solvents (DESs) significantly affects their dynamics, structure, and physical properties. Although the structural changes due to the addition of water are well understood, the microscopic dynamics of these changes have been rarely studied. Here, we performed molecular dynamics simulation of 30% (v/v) (∼0.57 molar fraction) water mixture of DES containing CH3CONH2 and NaSCN/KSCN at various salt fractions to understand the microscopic structure and dynamics of water. The simulated results reveal a heterogeneous environment for water molecules in aqueous DES (ADES), which is influenced by the nature of the cation. The diffusion coefficients of water in ADESs are significantly lower than that in neat water and concentrated aqueous NaSCN/KSCN solution. When Na+ ions are replaced by K+ ions in the ADES system, the diffusion coefficient increases, which is consistent with the measured nuclear magnetic resonance data. Self-dynamic structure factor for water and other simulated dynamic quantities, such as reorientation, hydrogen-bond, and residence time correlation functions, show markedly slower dynamics inside ADES than in the neat water and aqueous salt solution. Moreover, these dynamics become faster when Na+ ions in ADES are replaced by K+ ions. The results suggest that the structural environment of water in Na+-rich ADES is rigid due to the presence of cation-bound water and geometrically constrained water. The medium becomes less rigid as the KSCN fraction increases due to the relatively weaker interaction of K+ ions with water than Na+ ions, which accelerates the dynamical processes.
Collapse
Affiliation(s)
- Arnab Sil
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Sangeeta
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Vishnu Poonia
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Suman Das
- Department of Chemistry, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh 530045, India
| | - Biswajit Guchhait
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| |
Collapse
|
3
|
Mondal J, Maji D, Mitra S, Biswas R. Temperature-Dependent Dielectric Relaxation Measurements of (Betaine + Urea + Water) Deep Eutectic Solvent in Hz-GHz Frequency Window: Microscopic Insights into Constituent Contributions and Relaxation Mechanisms. J Phys Chem B 2024; 128:6567-6580. [PMID: 38949428 DOI: 10.1021/acs.jpcb.4c02784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A combined experimental and simulation study of dielectric relaxation (DR) of a deep eutectic solvent (DES) composed of betaine, urea, and water with the composition [Betaine:Urea:Water = 11.7:12:1 (weight ratio) and 9:18:5 (molar ratio)] was performed to explore and understand the interaction and dynamics of this system. Temperature-dependent (303 ≤ T/K ≤ 343) measurements were performed over 9 decades of frequency, combining three different measurement setups. Measured DR, comprising four distinct steps with relaxation times spreading over a few picoseconds to several nanoseconds, was found to agree well with simulations. The simulated total DR spectra, upon dissection into three self (intraspecies) and three cross (interspecies) interaction contributions, revealed that the betaine-betaine self-term dominated (∼65%) the relaxation, while the urea-urea and water-water interactions contributed only ∼7% and ∼1%, respectively. The cross-terms (betaine-urea, betaine-water, and urea-water) together accounted for <30% of the total DR. The slowest DR component with a time constant of ∼1-10 ns derived dominant contribution from betaine-betaine interactions, where betaine-water and urea-water interactions also contributed. The subnanosecond (0.1-0.6 ns) time scale originated from all interactions except betaine-water interaction. An extensive interaction of water with betaine and urea severely reduced the average number of water-water H-bonds (∼0.7) and heavily decreased the static dielectric constant of water in this DES (εs ∼ 2). Furthermore, simulated first rank collective single particle reorientational relaxations (C1(t)) and the structural H-bond fluctuation dynamics (CHB (t)) exhibited multiexponential kinetics with time scales that corresponded well with those found both in the simulated and measured DR.
Collapse
Affiliation(s)
- Jayanta Mondal
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Dhrubajyoti Maji
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Sudipta Mitra
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Ranjit Biswas
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
4
|
Mondal J, Maji D, Biswas R. Temperature-dependent dielectric relaxation measurements of (acetamide + K/Na SCN) deep eutectic solvents: Decoding the impact of cation identity via computer simulations. J Chem Phys 2024; 160:084506. [PMID: 38421071 DOI: 10.1063/5.0193512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
The impact of successive replacement of K+ by Na+ on the megahertz-gigahertz polarization response of 0.25[fKSCN + (1 - f)NaSCN] + 0.75CH3CONH2 deep eutectic solvents (DESs) was explored via temperature-dependent (303 ≤ T/K ≤ 343) dielectric relaxation (DR) measurements and computer simulations. Both the DR measurements (0.2 ≤ ν/GHz ≤ 50) and the simulations revealed multi-Debye relaxations accompanied by a decrease in the solution static dielectric constant (ɛs) upon the replacement of K+ by Na+. Accurate measurements of the DR response of DESs below 100 MHz were limited by the well-known one-over-frequency divergence for conducting solutions. This problem was tackled in simulations by removing the zero frequency contributions arising from the ion current to the total simulated DR response. The temperature-dependent measurements revealed a much stronger viscosity decoupling of DR times for Na+-containing DES than for the corresponding K+ system. The differential scanning calorimetry measurements indicated a higher glass transition temperature for Na+-DES (∼220 K) than K+-DES (∼200 K), implying more fragility and cooperativity for the former (Na+-DES) than the latter. The computer simulations revealed a gradual decrease in the average number of H bonds (⟨nHB⟩) per acetamide molecule and increased frustrations in the average orientational order upon the replacement of K+ by Na+. Both the measured and simulated ɛs values were found to decrease linearly with ⟨nHB⟩. Decompositions of the simulated DR spectra revealed that the cation-dependent cross interaction (dipole-ion) term contributes negligibly to ɛs and appears in the terahertz regime. Finally, the simulated collective single-particle reorientational relaxations and the structural H-bond fluctuation dynamics revealed the microscopic origin of the cation identity dependence shown by the measured DR relaxation times.
Collapse
Affiliation(s)
- Jayanta Mondal
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Dhrubajyoti Maji
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Ranjit Biswas
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
5
|
Srinivasan H, Sharma VK, Sakai VG, Mukhopadhyay R, Mitra S. Noncanonical Relationship between Heterogeneity and the Stokes-Einstein Breakdown in Deep Eutectic Solvents. J Phys Chem Lett 2023; 14:9766-9773. [PMID: 37882461 DOI: 10.1021/acs.jpclett.3c02132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The relationship between Stokes-Einstein breakdown (SEB) and dynamical heterogeneity (DH) is of paramount importance in the physical chemistry of complex fluids. In this work, we employ neutron scattering to probe the DH and SEB in a series of deep eutectic solvents (DESs) composed of acetamide and lithium salts. Quasielastic neutron scattering experiments reveal SEB in the jump diffusion of acetamide, represented by a fractional Stokes-Einstein relationship. Among these DESs, lithium perchlorate exhibits the most pronounced SEB while lithium bromide displays the weakest. Concurrently, elastic incoherent neutron scans identify that bromide DES is the most heterogeneous and perchlorate is the least. For the first time, our study unveils a counterintuitive incommensurate relationship between DH and SEB. Further, it reveals the intricate contrasting nature of the SEB-DH relationship when investigated in proximity to the glass-transition temperature and further away from it.
Collapse
Affiliation(s)
- H Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - V García Sakai
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K
| | - R Mukhopadhyay
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - S Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
6
|
Maji D, Biswas R. Dielectric relaxation and dielectric decrement in ionic acetamide deep eutectic solvents: Spectral decomposition and comparison with experiments. J Chem Phys 2023; 158:2888209. [PMID: 37139998 DOI: 10.1063/5.0147378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023] Open
Abstract
Frequency-dependent dielectric relaxation in three deep eutectic solvents (DESs), (acetamide+LiClO4/NO3/Br), was investigated in the temperature range, 329 ≤ T/K ≤ 358, via molecular dynamics simulations. Subsequently, decomposition of the real and the imaginary components of the simulated dielectric spectra was carried out to separate the rotational (dipole-dipole), translational (ion-ion), and ro-translational (dipole-ion) contributions. The dipolar contribution, as expected, was found to dominate all the frequency-dependent dielectric spectra over the entire frequency regime, while the other two components together made tiny contributions only. The translational (ion-ion) and the cross ro-translational contributions appeared in the THz regime in contrast to the viscosity-dependent dipolar relaxations that dominated the MHz-GHz frequency window. Our simulations predicted, in agreement with experiments, anion-dependent decrement of the static dielectric constant (ɛs ∼ 20 to 30) for acetamide (ɛs ∼ 66) in these ionic DESs. Simulated dipole-correlations (Kirkwood g factor) indicated significant orientational frustrations. The frustrated orientational structure was found to be associated with the anion-dependent damage of the acetamide H-bond network. Single dipole reorientation time distributions suggested slowed down acetamide rotations but did not indicate presence of any "rotationally frozen" molecule. The dielectric decrement is, therefore, largely static in origin. This provides a new insight into the ion dependence of the dielectric behavior of these ionic DESs. A good agreement between the simulated and the experimental timescales was also noticed.
Collapse
Affiliation(s)
- Dhrubajyoti Maji
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector III, Salt Lake, Kolkata, West Bengal 700106, India
| | - Ranjit Biswas
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector III, Salt Lake, Kolkata, West Bengal 700106, India
| |
Collapse
|
7
|
Assessing the impact of increase in the number of hydroxyl groups on the microscopic behaviors of ammonium-based room temperature ionic liquids: A combined fluorescence up-conversion, fluorescence correlation and NMR spectroscopic study. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Impact and Structure of Water in Aqueous Octanol Mixtures: Hz-GHz Dielectric Relaxation Measurements and Computer Simulations. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
9
|
Banerjee S, Ghorai PK, Maji D, Biswas R. Difference in "Supercooling" Affinity between (Acetamide + Na/KSCN) Deep Eutectics: Reflections in the Simulated Anomalous Motions of the Constituents and Solution Microheterogeneity Features. J Phys Chem B 2022; 126:10146-10155. [PMID: 36414001 DOI: 10.1021/acs.jpcb.2c04994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Deep depression of freezing points of ionic amide deep eutectic solvents (DESs) is known to exhibit a significant dependence on the identity of ions present in those systems and the nature of the functional group attached to the host amide. This deep depression of the freezing point is sometimes termed as "supercooling". For (acetamide + electrolyte) DESs, experiments have revealed signatures of ion-dependent spatiotemporal heterogeneity features. The focus of this work is to provide microscopic explanations of these experimentally observed macroscopic system properties in terms of particle jumps and insights about the origin of the cation dependence. For this purpose, extensive molecular dynamics simulations have been performed employing (acetamide + Na/KSCN) deep eutectics as representative ionic systems at 303, 318, 333, and 348 K. The individual translational motions of acetamide and the ions are followed, and their connections to solution heterogeneity are explored. The center-of-mass motion for Na+ has been found to be more anomalous than that for K+. This difference corroborates well with experimental reports on heterogeneous relaxations in these systems. Simulated viscosity coefficients and dynamic heterogeneity features also reflect this difference. Moreover, simulated reorientational relaxations of acetamide molecules in these ionic DESs suggest that a Na+-containing DES is more heterogeneous than the corresponding K+-containing system. Estimated void and neck distributions for acetamide molecules differ as the alkali metal ions differ. In brief, this study provides a detailed microscopic view of the cation dependence of the microheterogeneous relaxation dynamics of these DESs reported repeatedly by different experiments.
Collapse
Affiliation(s)
- Swarup Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Pradip Kr Ghorai
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Dhrubajyoti Maji
- Department of Chemical, Biological and Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| | - Ranjit Biswas
- Department of Chemical, Biological and Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| |
Collapse
|
10
|
Srinivasan H, Sharma VK, Mitra S. Modulation of Diffusion Mechanism and Its Correlation with Complexation in Aqueous Deep Eutectic Solvents. J Phys Chem B 2022; 126:9026-9037. [PMID: 36315464 DOI: 10.1021/acs.jpcb.2c05312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Aqueous mixtures of deep eutectic solvents (DESs) have gained traction recently as an effective template to tailor their physicochemical properties. But detailed microscopic insights into the effects of water on the molecular relaxation phenomenon in DESs are not entirely understood. DESs are strong network-forming liquids due to the extensive hydrogen bonding and complex formation between their species, and therefore, water can behave as a controlled disruptor altering the microscopic structure and dynamics in DESs. In this study, the role of water in the diffusion mechanism of acetamide in the aqueous mixtures of DESs synthesized using acetamide and lithium perchlorate is investigated using molecular dynamics (MD) simulation and quasielastic neutron scattering (QENS). The acetamide dynamics comprises localized diffusion within transient cages and a jump diffusion process across cages. The jump diffusion process is observed to be strongly enhanced by about a factor of 10 as the water content in the system is increased. Meanwhile, the geometry of the localized dynamics is unaltered by addition of water, but the localized diffusion becomes significantly faster and more heterogeneous with increasing water concentration. The accelerating effects of water on localized diffusion are also substantiated by QENS experiments. The water concentration in the DES is observed to control the solvation structure of lithium ions, with the ions becoming significantly hydrated at 20 wt % water. The formation of interwater and water-acetamide hydrogen bonds is observed. The increase in water concentration is found to increase the number of H-bonds; however, their lifetimes are found to decrease substantially. Similarly, the lifetimes of acetamide-lithium complexes are also found to be diminished by increasing water concentration. A power-law scaling relationship between lifetimes and diffusion constants is established, elucidating the extent of coupling between diffusive processes and hydrogen bonding and microscopic complexation. This study demonstrates the ability to use water as an agent to probe the role of structural relaxation and complex lifetimes of diffusive processes at different time and length scales.
Collapse
Affiliation(s)
- H Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai400094, India
| | - V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai400094, India
| | - S Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai400094, India
| |
Collapse
|
11
|
Baksi A, Biswas R. Dynamical Anomaly of Aqueous Amphiphilic Solutions: Connection to Solution H-Bond Fluctuation Dynamics? ACS OMEGA 2022; 7:10970-10984. [PMID: 35415359 PMCID: PMC8991915 DOI: 10.1021/acsomega.1c06831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
We have investigated the possible connection between "dynamical anomaly" observed in time-resolved fluorescence measurements of reactive and nonreactive solute-centered relaxation dynamics in aqueous binary mixtures of different amphiphiles and the solution intra- and interspecies H-bond fluctuation dynamics. Earlier studies have connected the anomalous thermodynamic properties of binary mixtures at very low amphiphile concentrations to the structural distortion of water. This is termed as "structural anomaly." Interestingly, the abrupt changes in the composition-dependent average rates of solute relaxation dynamics occur at amphiphile mole fractions approximately twice as large as those where structural anomalies appear. We have investigated this anomalous solution dynamical aspect by considering (water + tertiary butanol) as a model system and performed molecular dynamics simulations at several tertiary butanol (TBA) concentrations covering the extremely dilute to the moderately concentrated regimes. The "dynamical anomaly" has been followed via monitoring the composition dependence of the intra- and interspecies H-bond fluctuations and reorientational relaxations of TBA and water molecules. Solution structural aspects have been followed via examining the tetrahedral order parameter, radial and spatial distribution functions, numbers of H bonds per water and TBA molecules, and the respective populations participating in H-bond formation. Our simulations reveal abrupt changes in the H-bond fluctuations and reorientational dynamics and tetrahedral order parameter at amphiphile concentrations differing approximately by a factor of 2 and corroborates well with the steady-state and the time-resolved spectroscopic measurements. This work therefore explains, following a uniform and cogent manner, both the experimentally observed structural and dynamical anomalies in microscopic terms.
Collapse
|
12
|
Barik S, Chakraborty M, Mahapatra A, Sarkar M. Choline chloride and ethylene glycol based deep eutectic solvent (DES) versus hydroxyl functionalized room temperature ionic liquids (RTILs): assessing the differences in microscopic behaviour between the DES and RTILs. Phys Chem Chem Phys 2022; 24:7093-7106. [PMID: 35262105 DOI: 10.1039/d1cp05010a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
With the aim of understanding the differences in the behavior of deep eutectic solvents (DESs) and room temperature ionic liquids (RTILs) in terms of their structure, dynamics, and intra- and intermolecular interactions, three different ILs and one DES having similar functionalities (hydroxyl) have been investigated by using both ensembled average and single-molecule spectroscopic techniques. Specifically, for this purpose, a choline chloride based DES (ethaline) and three hydroxyl functionalized ILs (1-(2-hydroxyethyl)-3-imidazolium bis(trifluoromethanesulfonyl)imide ([OHEMIM][NTF2]), N-(2-hydroxyl ethyl)-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([OHEMPy][NTf2]), and N-(2-hydroxyethyl)-N,N-dimethylpropan-1-aminium bis(trifluoromethanesulfonyl)imide ([OHC3CH][NTf2])) are employed and investigated by EPR, time-resolved fluorescence, NMR and FCS studies. Estimation of polarity through EPR spectroscopy has revealed that the hydroxyl ILs employed in these studies are hyper-polar (close to water) in nature, whereas the polarity of the DES is found to be close to those of aliphatic polyhydroxy-alcohols. Interestingly, both time-resolved fluorescence anisotropy and FCS studies on these systems have suggested that the hydroxyl ILs are more dynamically heterogeneous than the DES. More interestingly, PFG-NMR measurements have indicated that the fluid structure of ethaline is relatively more associated as compared to those of the ILs despite the fact that all the cations have the same hydroxyl functionalities. All these investigations have essentially demonstrated that, despite having similar functionalities, both the DES and hydroxyl ILs employed in the present study exhibit microscopic behaviours that are significantly different from each other, indicating the interplay of various intermolecular interactions within the constituent species in governing the behaviours of these solvent systems.
Collapse
Affiliation(s)
- Sahadev Barik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar, 752050, Odisha, India. .,Centre of Interdisciplinary Science (CIS), NISER, Bhubaneswar, Jatni, Khurda, 752050, Odisha, India
| | - Manjari Chakraborty
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar, 752050, Odisha, India. .,Centre of Interdisciplinary Science (CIS), NISER, Bhubaneswar, Jatni, Khurda, 752050, Odisha, India
| | - Amita Mahapatra
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar, 752050, Odisha, India. .,Centre of Interdisciplinary Science (CIS), NISER, Bhubaneswar, Jatni, Khurda, 752050, Odisha, India
| | - Moloy Sarkar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar, 752050, Odisha, India. .,Centre of Interdisciplinary Science (CIS), NISER, Bhubaneswar, Jatni, Khurda, 752050, Odisha, India
| |
Collapse
|
13
|
Mukherjee K, Das S, Rajbangshi J, Tarif E, Barman A, Biswas R. Temperature-Dependent Dielectric Relaxation in Ionic Acetamide Deep Eutectics: Partial Viscosity Decoupling and Explanations from the Simulated Single-Particle Reorientation Dynamics and Hydrogen-Bond Fluctuations. J Phys Chem B 2021; 125:12552-12567. [PMID: 34752087 DOI: 10.1021/acs.jpcb.1c07299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report here temperature-dependent (293 ≤ T (K) ≤ 336) dielectric relaxation (DR) measurements of (acetamide + LiBr/NO3-/ClO4-) deep eutectic solvents (DESs) in the frequency window of 0.2 ≤ ν (GHz) ≤ 50 and explore, via molecular dynamics simulations, the relative roles for the collective single-particle reorientational relaxations and the H-bond dynamics of acetamide in the measured DR response. In addition, DR measurements of neat molten acetamide were performed. Recorded DR spectra of these DESs require multi-Debye fits and produce well-separated DR time scales that are spread over several picoseconds to ∼1 ns. Simulations suggest DR time scales derive contributions from both the collective reorientational (Cl(t)) relaxation and structural H-bond (CHB(t)) dynamics of acetamide. A good correlation between the measured and simulated activation energies further reveals a strong connection between the measured DR and the simulated Cl(t) and CHB(t). Average DR times exhibit a strong fractional viscosity dependence, suggesting substantial microheterogeneity in these media. Simulations of Cl(t) and CHB(t) reveal strong stretched exponential relaxations with a stretching exponent, 0.4 ≤ β ≤ 0.7. The ratio between the average reorientational correlation times of first and second ranks, ⟨τ⟩l=1/⟨τ⟩l=2, deviates appreciably from Debye's l(l+1) law for homogeneous media. Importantly, a pronounced translation-rotation decoupling between the simulated reorientation and center-of-mass diffusion times was observed.
Collapse
|
14
|
Maji D, Indra S, Biswas R. Dielectric relaxations of molten acetamide: dependence on the model interaction potentials and the effects of system size. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01973-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Liu H, Xiang S, Zhu H, Li L. The Structural and Dynamical Properties of the Hydration of SNase Based on a Molecular Dynamics Simulation. Molecules 2021; 26:molecules26175403. [PMID: 34500836 PMCID: PMC8434405 DOI: 10.3390/molecules26175403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/01/2022] Open
Abstract
The dynamics of protein–water fluctuations are of biological significance. Molecular dynamics simulations were performed in order to explore the hydration dynamics of staphylococcal nuclease (SNase) at different temperatures and mutation levels. A dynamical transition in hydration water (at ~210 K) can trigger larger-amplitude fluctuations of protein. The protein–water hydrogen bonds lost about 40% in the total change from 150 K to 210 K, while the Mean Square Displacement increased by little. The protein was activated when the hydration water in local had a comparable trend in making hydrogen bonds with protein– and other waters. The mutations changed the local chemical properties and the hydration exhibited a biphasic distribution, with two time scales. Hydrogen bonding relaxation governed the local protein fluctuations on the picosecond time scale, with the fastest time (24.9 ps) at the hydrophobic site and slowest time (40.4 ps) in the charged environment. The protein dynamic was related to the water’s translational diffusion via the relaxation of the protein–water’s H-bonding. The structural and dynamical properties of protein–water at the molecular level are fundamental to the physiological and functional mechanisms of SNase.
Collapse
Affiliation(s)
- Hangxin Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing 210023, China; (H.L.); (S.X.)
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing 210023, China
- Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
- Jiangsu Key Laboratory of Biofunctional Materials, Nanjing 210023, China
- School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Shuqing Xiang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing 210023, China; (H.L.); (S.X.)
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing 210023, China
- Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
- Jiangsu Key Laboratory of Biofunctional Materials, Nanjing 210023, China
- School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Haomiao Zhu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing 210023, China; (H.L.); (S.X.)
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing 210023, China
- Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
- Jiangsu Key Laboratory of Biofunctional Materials, Nanjing 210023, China
- School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
- Correspondence: (H.Z.); (L.L.)
| | - Li Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing 210023, China; (H.L.); (S.X.)
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing 210023, China
- Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
- Jiangsu Key Laboratory of Biofunctional Materials, Nanjing 210023, China
- School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
- Correspondence: (H.Z.); (L.L.)
| |
Collapse
|
16
|
Srinivasan H, Sharma VK, Mitra S. Water accelerates the hydrogen-bond dynamics and abates heterogeneity in deep eutectic solvent based on acetamide and lithium perchlorate. J Chem Phys 2021; 155:024505. [PMID: 34266283 DOI: 10.1063/5.0054942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Deep eutectic solvents (DESs) have become a prevalent and promising medium in various industrial applications. The addition of water to DESs has attracted a lot of attention as a scheme to modulate their functionalities and improve their physicochemical properties. In this work, we study the effects of water on an acetamide based DES by probing its microscopic structure and dynamics using classical molecular dynamics simulation. It is observed that, at low water content, acetamide still remains the dominant solvate in the first solvation shell of lithium ions, however, beyond 10 wt. %, it is replaced by water. The increase in the water content in the solvent accelerates the H-bond dynamics by drastically decreasing the lifetimes of acetamide-lithium H-bond complexes. Additionally, water-lithium H-bond complexes are also found to form, with systematically longer lifetimes in comparison to acetamide-lithium complexes. Consequently, the diffusivity and ionic conductivity of all the species in the DES are found to increase substantially. Non-Gaussianity parameters for translational motions of acetamide and water in the DES show a conspicuous decrease with addition of water in the system. The signature of jump-like reorientation of acetamide is observed in the DES by quantifying the deviation from rotational Brownian motion. However, a notable decrease in the deviation is observed with an increase in the water content in the DES. This study demonstrates the intricate connection between H-bond dynamics and various microscopic dynamical parameters in the DES, by investigating the modulation of the former with addition of water.
Collapse
Affiliation(s)
- H Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - S Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
17
|
Rajbangshi J, Mukherjee K, Biswas R. Heterogeneous Orientational Relaxations and Translation–Rotation Decoupling in (Choline Chloride + Urea) Deep Eutectic Solvents: Investigation through Molecular Dynamics Simulations and Dielectric Relaxation Measurements. J Phys Chem B 2021; 125:5920-5936. [DOI: 10.1021/acs.jpcb.1c01501] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Juriti Rajbangshi
- Department of Chemical, Biological and Macro-molecular Sciences, S N Bose National Centre for Basic Sciences, JD-Block, Sector-III, Kolkata 700106, India
| | - Kallol Mukherjee
- Department of Chemical, Biological and Macro-molecular Sciences, S N Bose National Centre for Basic Sciences, JD-Block, Sector-III, Kolkata 700106, India
| | - Ranjit Biswas
- Department of Chemical, Biological and Macro-molecular Sciences, S N Bose National Centre for Basic Sciences, JD-Block, Sector-III, Kolkata 700106, India
| |
Collapse
|
18
|
Priyadarsini A, Mallik BS. Insignificant Effect of Temperature on the Structure and Angular Jumps of Water near a Hydrophobic Cation. ACS OMEGA 2021; 6:8356-8364. [PMID: 33817496 PMCID: PMC8015100 DOI: 10.1021/acsomega.1c00091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/15/2021] [Indexed: 05/12/2023]
Abstract
The ambiguity in the behavior of water molecules around hydrophobic solutes is a matter of interest for many studies. Motivated by the earlier results on the dynamics of water molecules around tetramethylammonium (TMA) cation, we present the effect of temperature on the structure and angular jumps of water due to hydrophobicity using first principles molecular dynamics simulations. The average intermolecular distance between the central oxygen and four nearest neighbors is found to be the highest for water molecules in the solvation shell of TMA at 400 K, followed by the same at 330 K. The hydrogen bond (HB) donor-acceptor count, HB per water molecule, and tetrahedral order parameter suggests the loss of tetrahedrality in the solvation shell. Elevated temperature affects the tetrahedral parameter in local regions. The HB jump mechanism is studied for methyl hydrogen and water molecules in the solvation shell. Observations hint at the presence of dangling water molecules in the vicinity of the hydrophobic cation, and no evidence is found for the enhanced structural ordering of nearby water molecules.
Collapse
|
19
|
Banerjee S, Ghorai PK, Das S, Rajbangshi J, Biswas R. Heterogeneous dynamics, correlated time and length scales in ionic deep eutectics: Anion and temperature dependence. J Chem Phys 2020; 153:234502. [DOI: 10.1063/5.0024355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Swarup Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, India
| | - Pradip Kr. Ghorai
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, India
| | - Suman Das
- Department of Chemical, Biological and Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Juriti Rajbangshi
- Department of Chemical, Biological and Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Ranjit Biswas
- Department of Chemical, Biological and Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences, Kolkata, India
| |
Collapse
|
20
|
Baksi A, Biswas R. Does Confinement Modify Preferential Solvation and H-Bond Fluctuation Dynamics? A Molecular Level Investigation through Simulations of a Bulk and Confined Three-Component Mixture. J Phys Chem B 2020; 124:11718-11729. [DOI: 10.1021/acs.jpcb.0c09079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Atanu Baksi
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector-III, Salt Lake, Kolkata 700106, India
| | - Ranjit Biswas
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector-III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
21
|
Biswas A, Dasari S, Mallik BS. Cohesiveness and Nondiffusive Rotational Jump Dynamics of Protic Ionic Liquid from Dispersion-Corrected FPMD Simulations. J Phys Chem B 2020; 124:10752-10765. [DOI: 10.1021/acs.jpcb.0c05866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Aritri Biswas
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India
| | - Sathish Dasari
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India
| | - Bhabani S. Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India
| |
Collapse
|
22
|
Kaur S, Kumari M, Kashyap HK. Microstructure of Deep Eutectic Solvents: Current Understanding and Challenges. J Phys Chem B 2020; 124:10601-10616. [DOI: 10.1021/acs.jpcb.0c07934] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Supreet Kaur
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K. Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
23
|
Srinivasan H, Sharma VK, Mukhopadhyay R, Mitra S. Solvation and transport of lithium ions in deep eutectic solvents. J Chem Phys 2020; 153:104505. [DOI: 10.1063/5.0018510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- H. Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - V. K. Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - R. Mukhopadhyay
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - S. Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
24
|
Das Mahanta D, Mitra RK. Connection of large amplitude angular jump motions with temporal heterogeneity in aqueous solutions. Phys Chem Chem Phys 2020; 22:9339-9348. [PMID: 32309843 DOI: 10.1039/d0cp00491j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
It has now been established that large angular jumps do take place when a rotating water molecule exchanges its hydrogen bond (H-bond) identity. This motion differs from the small angular diffusional steps occurring within short time intervals which define the 'Debye diffusion model' of water dynamics. We intend to investigate whether these two processes do eventually complement each other. In this present investigation the orientational dynamics of water in its mixture with a small hydrophobic molecule 1,2-dimethoxy ethane (DME) is studied microscopically using the all-atom classical molecular dynamics (MD) simulation technique. We found that the reorientational motions of water molecules are governed by continuous making and breaking of intermolecular H-bonds with their partners. We characterise these H-bond reorientation motions with the description of the "large amplitude angular jump model" and explore the coupling between the rotational and translational motions. By following the trajectories of each molecule in the solutions we describe the orientational dynamics of liquid water with a 'continuous time random walk' (CTRW) approach. Finally, we explore the diffusivity distribution through the jump properties of the water molecules, which successfully leads to the inherent transient heterogeneity of the solutions. We observe that the heterogeneity increases with increasing DME content in the mixtures. Our study correlates the coupling between rotational and translational motions of water molecules in the mixtures.
Collapse
Affiliation(s)
- Debasish Das Mahanta
- Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata, 700106, India.
| | | |
Collapse
|
25
|
Makarov DM, Egorov GI, Kolker AM. Volumetric Properties of Aqueous Solutions of Acetamide in the 274.15–333.15 K Range of Temperatures. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420040111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Barik S, Chakraborty M, Sarkar M. How Does Addition of Lithium Salt Influence the Structure and Dynamics of Choline Chloride-Based Deep Eutectic Solvents? J Phys Chem B 2020; 124:2864-2878. [DOI: 10.1021/acs.jpcb.9b11947] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sahadev Barik
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, HBNI, Bhimpur-Padanpur,
Jatni, Khurda, 752050 Odisha, India
| | - Manjari Chakraborty
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, HBNI, Bhimpur-Padanpur,
Jatni, Khurda, 752050 Odisha, India
| | - Moloy Sarkar
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, HBNI, Bhimpur-Padanpur,
Jatni, Khurda, 752050 Odisha, India
| |
Collapse
|
27
|
Subba N, Tarif E, Sen P, Biswas R. Subpicosecond Solvation Response and Partial Viscosity Decoupling of Solute Diffusion in Ionic Acetamide Deep Eutectic Solvents: Fluorescence Up-Conversion and Fluorescence Correlation Spectroscopic Measurements. J Phys Chem B 2020; 124:1995-2005. [DOI: 10.1021/acs.jpcb.0c00061] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Navin Subba
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur − 208 016, UP, India
| | - Ejaj Tarif
- Chemical, Biological and Macromolecular Sciences (CBMS), S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata − 700106, India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur − 208 016, UP, India
| | - Ranjit Biswas
- Chemical, Biological and Macromolecular Sciences (CBMS), S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata − 700106, India
| |
Collapse
|
28
|
Srivastava A, Malik S, Karmakar S, Debnath A. Dynamic coupling of a hydration layer to a fluid phospholipid membrane: intermittency and multiple time-scale relaxations. Phys Chem Chem Phys 2020; 22:21158-21168. [DOI: 10.1039/d0cp02803g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the coupling of a hydration layer and a lipid membrane is crucial to gaining access to membrane dynamics and understanding its functionality towards various biological processes.
Collapse
Affiliation(s)
- Abhinav Srivastava
- Department of Chemistry
- Indian Institute of Technology Jodhpur
- Rajasthan
- India
| | - Sheeba Malik
- Department of Chemistry
- Indian Institute of Technology Jodhpur
- Rajasthan
- India
| | - Smarajit Karmakar
- Centre for Interdisciplinary Sciences
- Tata Institute of Fundamental Research
- Hyderabad 500107
- India
| | - Ananya Debnath
- Department of Chemistry
- Indian Institute of Technology Jodhpur
- Rajasthan
- India
| |
Collapse
|
29
|
Srivastava A, Karmakar S, Debnath A. Quantification of spatio-temporal scales of dynamical heterogeneity of water near lipid membranes above supercooling. SOFT MATTER 2019; 15:9805-9815. [PMID: 31746927 DOI: 10.1039/c9sm01725a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A hydrated 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC) lipid membrane is investigated using an all atom molecular dynamics simulation at 308 K to determine the physical sources of universal slow relaxations of hydration layers and length-scale of the spatially heterogeneous dynamics. Continuously residing interface water (IW) molecules hydrogen bonded to different moieties of lipid heads in the membrane are identified. The non-Gaussian parameters of all classes of IW molecules show a cross-over from cage vibration to translational diffusion. A significant non-Gaussianity is observed for the IW molecules exhibiting large length correlations in translational van Hove functions. Two time-scales for the ballistic motions and hopping transitions are obtained from the self intermediate scattering functions of the IW molecules with an additional long relaxation, which disappears for bulk water. The long relaxation time-scales for the IW molecules obtained from the self intermediate scattering functions are in good accordance with the hydrogen bond relaxation time-scales irrespective of the nature of the chemical confinement and the confinement lifetime. Employing a block analysis approach, the length-scale of dynamical heterogeneities is captured from a transition from non-Gaussianity to Gaussianity in van Hove correlation functions of the IW molecules. The heterogeneity length-scale is comparable to the wave-length of the small and weak undulations of the membrane calculated by Fourier transforms of lipid tilts. This opens up a new avenue towards a possible correlation between heterogeneity length-scale and membrane curvature more significant for rippled membranes. Thus, our analyses provide a measure towards the spatio-temporal scale of dynamical heterogeneity of confined water near membranes.
Collapse
Affiliation(s)
- Abhinav Srivastava
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, India.
| | | | | |
Collapse
|
30
|
Choudhary A, Chandra A. Spatially resolved structure and dynamics of the hydration shell of pyridine in sub- and supercritical water. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Hossain SS, Paul S, Samanta A. Liquid Structure and Dynamics of Tetraalkylammonium Bromide-Based Deep Eutectic Solvents: Effect of Cation Chain Length. J Phys Chem B 2019; 123:6842-6850. [DOI: 10.1021/acs.jpcb.9b04955] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sk Saddam Hossain
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Sneha Paul
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Anunay Samanta
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| |
Collapse
|
32
|
Turner AH, Kim D. Rotation and translation dynamics of coumarin 153 in choline chloride-based deep eutectic solvents. J Chem Phys 2018; 149:174503. [DOI: 10.1063/1.5038067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Adam H. Turner
- Department of Physics, Sogang University, Seoul, South Korea
| | - Doseok Kim
- Department of Physics, Sogang University, Seoul, South Korea
| |
Collapse
|
33
|
Dasari S, Mallik BS. Nondiffusive Rotational Jump Dynamics in Ethyl Ammonium Nitrate. J Phys Chem B 2018; 122:9738-9746. [PMID: 30272452 DOI: 10.1021/acs.jpcb.8b06372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sathish Dasari
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India
| | - Bhabani S. Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India
| |
Collapse
|
34
|
Mukherjee K, Das S, Tarif E, Barman A, Biswas R. Dielectric relaxation in acetamide + urea deep eutectics and neat molten urea: Origin of time scales via temperature dependent measurements and computer simulations. J Chem Phys 2018; 149:124501. [DOI: 10.1063/1.5040071] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Kallol Mukherjee
- Chemical, Biological and Macromolecular Sciences (CBMS), S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Suman Das
- Chemical, Biological and Macromolecular Sciences (CBMS), S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Ejaj Tarif
- Chemical, Biological and Macromolecular Sciences (CBMS), S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Anjan Barman
- Condensed Matter Physics and Material Sciences (CMPMS), S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Ranjit Biswas
- Chemical, Biological and Macromolecular Sciences (CBMS), S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
35
|
|
36
|
Dubey V, Kumar N, Daschakraborty S. Importance of Solvents’ Translational–Rotational Coupling for Translational Jump of a Small Hydrophobic Solute in Supercooled Water. J Phys Chem B 2018; 122:7569-7583. [DOI: 10.1021/acs.jpcb.8b03177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vikas Dubey
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India
| | - Nitesh Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India
| | | |
Collapse
|
37
|
Choudhary A, Chandra A. Dynamics of water in conical solvation shells around a benzene solute under different thermodynamic conditions. Phys Chem Chem Phys 2018; 20:18328-18339. [PMID: 29938274 DOI: 10.1039/c7cp08109j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water molecules in different parts of the anisotropic hydration shell of an aromatic molecule experience different interactions. In the present study, we investigate the anisotropic dynamics of water molecules in different non-overlapping conical shells around a benzene solute at sub- and supercritical conditions by means of molecular dynamics simulations using both non-polarizable and polarizable models. In addition to the dynamical properties, the effects of polarizability on the hydration structure of benzene at varying thermodynamic conditions are also investigated in the current study. The presence of πH-bonding in the solvation shell is found to be an important factor that influences the anisotropic dynamics of the benzene hydration shell. The water molecules located axial to the benzene plane are found to be maximally influenced by the πH-bonding. The extent of πH-bonding is found to be somewhat reduced on inclusion of polarizability. The πH-bonded water molecules are found to reorient through large-amplitude angular jumps where the jump-angle amplitude increases at higher temperatures and lower densities. For both non-polarizable and polarizable models, it is found that the water molecules in the axial conical shells possess faster orientational and hydrogen bond dynamics compared to those in the equatorial plane. Water molecules in the axial conical shells are also found to diffuse at a faster rate than bulk molecules due to the relatively weaker benzene-water πH-bonding interactions in the axial region of the hydration shell. The residence dynamics of water molecules in different conical solvation shells around the solute is also investigated in the current study.
Collapse
Affiliation(s)
- Ashu Choudhary
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016, India.
| | | |
Collapse
|
38
|
Das S, Mukherjee B, Biswas R. Orientational dynamics in a room temperature ionic liquid: Are angular jumps predominant? J Chem Phys 2018; 148:193839. [DOI: 10.1063/1.5017797] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Suman Das
- Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Biswaroop Mukherjee
- Thematic Unit for Excellence–Computational Materials Science, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Ranjit Biswas
- Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
- Thematic Unit for Excellence–Computational Materials Science, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
39
|
Srivastava A, Debnath A. Hydration dynamics of a lipid membrane: Hydrogen bond networks and lipid-lipid associations. J Chem Phys 2018. [DOI: 10.1063/1.5011803] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Abhinav Srivastava
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwad, Rajasthan, India
| | - Ananya Debnath
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwad, Rajasthan, India
| |
Collapse
|
40
|
Perticaroli S, Comez L, Sassi P, Morresi A, Fioretto D, Paolantoni M. Water-like Behavior of Formamide: Jump Reorientation Probed by Extended Depolarized Light Scattering. J Phys Chem Lett 2018; 9:120-125. [PMID: 29243934 DOI: 10.1021/acs.jpclett.7b02943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Water is a strong self-associated liquid with peculiar properties that crucially depend on H-bonding. As regards its molecular dynamics, only recently has water reorientation been successfully described based on a jump mechanism, which is responsible for the overall H-bonding exchange. Here, using high-resolution broad-band depolarized light scattering, we have investigated the reorientational dynamics of formamide (FA) as a function of concentration from the neat liquid to diluted aqueous solutions. Our main findings indicate that in the diluted regime the water rearrangement can trigger the motion of FA solute molecules, which are forced to reorient at the same rate as water. This highlights an exceptional behavior of FA, which perfectly substitutes water within its network. Besides other fundamental implications connected with the relevance of FA, its water-like behavior provides rare experimental evidence of a solute whose dynamics is completely slaved to the solvent.
Collapse
Affiliation(s)
- S Perticaroli
- Shull Wollan Center, a Joint Institute for Neutron Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | | | | | | | | | | |
Collapse
|
41
|
Hossain SS, Samanta A. How do the hydrocarbon chain length and hydroxyl group position influence the solute dynamics in alcohol-based deep eutectic solvents? Phys Chem Chem Phys 2018; 20:24613-24622. [DOI: 10.1039/c8cp04859b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Effect of the hydrocarbon chain length and hydroxyl group position of hydrogen bond donor on the microscopic solution structure and diffusion dynamics of solutes is studied in a series of choline chloride/alcohol based deep eutectic solvents using ensemble and single-molecule measurements.
Collapse
Affiliation(s)
| | - Anunay Samanta
- School of Chemistry
- University of Hyderabad
- Hyderabad-500 046
- India
| |
Collapse
|
42
|
Hossain SS, Samanta A. Solute Rotation and Translation Dynamics in an Ionic Deep Eutectic Solvent Based on Choline Chloride. J Phys Chem B 2017; 121:10556-10565. [DOI: 10.1021/acs.jpcb.7b08472] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sk Saddam Hossain
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Anunay Samanta
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| |
Collapse
|
43
|
Indra S, Daschakraborty S. Mechanism of translational jump of a hydrophobic solute in supercooled water: Importance of presolvation. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.07.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
44
|
Das S, Mukherjee B, Biswas R. Microstructures and their lifetimes in acetamide/electrolyte deep eutectics: anion dependence. J CHEM SCI 2017. [DOI: 10.1007/s12039-017-1263-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Das S, Biswas R, Mukherjee B. Collective dynamic dipole moment and orientation fluctuations, cooperative hydrogen bond relaxations, and their connections to dielectric relaxation in ionic acetamide deep eutectics: Microscopic insight from simulations. J Chem Phys 2017; 145:084504. [PMID: 27586932 DOI: 10.1063/1.4961586] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The paper reports a detailed simulation study on collective reorientational relaxation, cooperative hydrogen bond (H-bond) fluctuations, and their connections to dielectric relaxation (DR) in deep eutectic solvents made of acetamide and three uni-univalent electrolytes, lithium nitrate (LiNO3), lithium bromide (LiBr), and lithium perchlorate (LiClO4). Because cooperative H-bond fluctuations and ion migration complicate the straightforward interpretation of measured DR timescales in terms of molecular dipolar rotations for these conducting media which support extensive intra- and inter-species H-bonding, one needs to separate out the individual components from the overall relaxation for examining the microscopic origin of various timescales. The present study does so and finds that reorientation of ion-complexed acetamide molecules generates relaxation timescales that are in sub-nanosecond to nanosecond range. This explains in molecular terms the nanosecond timescales reported by recent giga-Hertz DR measurements. Interestingly, the simulated survival timescale for the acetamide-Li(+) complex has been found to be a few tens of nanosecond, suggesting such a cation-complexed species may be responsible for a similar timescale reported by mega-Hertz DR measurements of acetamide/potassium thiocyanate deep eutectics near room temperature. The issue of collective versus single particle relaxation is discussed, and jump waiting time distributions are determined. Dependence on anion-identity in each of the cases has been examined. In short, the present study demonstrates that assumption of nano-sized domain formation is not required for explaining the DR detected nanosecond and longer timescales in these media.
Collapse
Affiliation(s)
- Suman Das
- Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098, India
| | - Ranjit Biswas
- Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098, India
| | - Biswaroop Mukherjee
- Thematic Unit for Excellence - Computational Materials Science, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098, India
| |
Collapse
|
46
|
Perticaroli S, Mostofian B, Ehlers G, Neuefeind JC, Diallo SO, Stanley CB, Daemen L, Egami T, Katsaras J, Cheng X, Nickels JD. Structural relaxation, viscosity, and network connectivity in a hydrogen bonding liquid. Phys Chem Chem Phys 2017; 19:25859-25869. [DOI: 10.1039/c7cp04013j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The structure and dynamics of the model H-bonding liquid,n-methylacetamide (NMA) have been studied, revealing the connection between the timescale of H-bond network reorganization and viscosity.
Collapse
|
47
|
Das SK, Majhi D, Sahu PK, Sarkar M. Linking Diffusion-Viscosity Decoupling and Jump Dynamics in a Hydroxyl-Functionalized Ionic Liquid: Realization of Microheterogeneous Nature of the Medium. Chemphyschem 2016; 18:198-207. [DOI: 10.1002/cphc.201600983] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/08/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Sudhir Kumar Das
- Department of Chemistry Raghunathpur College; Raghunathpur Purulia Pin-723133 India
| | - Debashis Majhi
- School of Chemical Sciences; National Institute of Science Education and Research, HBNI, Bhubaneswar, P.O. Jatni, Khurda; 752050 Odisha India
| | - Prabhat Kumar Sahu
- School of Chemical Sciences; National Institute of Science Education and Research, HBNI, Bhubaneswar, P.O. Jatni, Khurda; 752050 Odisha India
| | - Moloy Sarkar
- School of Chemical Sciences; National Institute of Science Education and Research, HBNI, Bhubaneswar, P.O. Jatni, Khurda; 752050 Odisha India
| |
Collapse
|
48
|
Das Mahanta D, Patra A, Samanta N, Luong TQ, Mukherjee B, Mitra RK. Non-monotonic dynamics of water in its binary mixture with 1,2-dimethoxy ethane: A combined THz spectroscopic and MD simulation study. J Chem Phys 2016; 145:164501. [DOI: 10.1063/1.4964857] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Debasish Das Mahanta
- Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Animesh Patra
- Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Nirnay Samanta
- Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Trung Quan Luong
- Department of Physical Chemistry II, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Biswaroop Mukherjee
- Thematic Unit for Excellence–Computational Materials Science, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Rajib Kumar Mitra
- Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
49
|
Indra S, Biswas R. How Heterogeneous Are Trehalose/Glycerol Cryoprotectant Mixtures? A Combined Time-Resolved Fluorescence and Computer Simulation Investigation. J Phys Chem B 2016; 120:11214-11228. [PMID: 27723334 DOI: 10.1021/acs.jpcb.6b06511] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heterogeneity and molecular motions in representative cryoprotectant mixtures made of trehalose and glycerol are investigated in the temperature range 298 ≤ T (K) ≤ 353, via time-resolved fluorescence Stokes shift and anisotropy measurements, and molecular dynamics simulations of four-point density-time correlations and H-bond relaxations. Mixtures containing 5 and 20 wt % of trehalose along with neat glycerol are studied. Viscosity coefficients for these systems lie in the range 0.30 < η (P) < 23. Measured solute (Coumarin 153) rotation and solvation times reveal a substantial departure from the hydrodynamic viscosity dependence, suggesting the strong microheterogeneous nature of these systems. Fluorescence anisotropy decays are highly nonexponential, reflecting a non-Markovian character of the medium friction. A complete missing of the Stokes shift dynamics in these systems at 298 K but partial detection of it at other higher temperatures (shift magnitude being ∼400-600 cm-1) indicates rigid solute environments. An amorphous solid-like feature emerges in the simulated radial distribution functions at these temperatures. Analyses of mean squared displacements reveal rattling-in-a-cage motion, non-Gaussian displacement distributions, and strong dynamic heterogeneity features. Simulated dynamic structure factors and four-point correlations hint, respectively, at very long α-relaxation and correlated time scales at 298 K. This explains the long solute rotation times (∼80-200 ns) measured at 298 K. Stretched exponential decay of the simulated H-bond relaxations with long time scales further highlights the strong temporal heterogeneity and slow dynamics inherent to these systems. In summary, this work provides the first insight into the molecular motions and interspecies interaction in a representative cryoprotectant mixture, and stimulates further study to investigate the interconnection between cryoprotection and dynamic heterogeneity.
Collapse
Affiliation(s)
- Sandipa Indra
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences , Block-JD, Salt Lake, Sector-III, Kolkata 700106, India
| | - Ranjit Biswas
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences , Block-JD, Salt Lake, Sector-III, Kolkata 700106, India
| |
Collapse
|
50
|
Araque JC, Daly RP, Margulis CJ. A link between structure, diffusion and rotations of hydrogen bonding tracers in ionic liquids. J Chem Phys 2016; 144:204504. [DOI: 10.1063/1.4951012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Juan C. Araque
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | - Ryan P. Daly
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|